
Zowe Documentation
Version 1.0.0

 | Contents | iii

Contents

Chapter 1: Getting Started..5
Zowe overview... 6

Zowe overview... 6
Zowe architecture..10

Release notes...11
Version 1.0.0 (February 2019)... 11

Chapter 2: User Guide...15
Installing Zowe... 16

Installing Zowe... 16
System requirements...17
Installing Zowe on z/OS...22
Installing Zowe CLI... 39
Uninstalling Zowe...41

Configuring Zowe...43
Zowe Application Framework configuration... 43
Configuring Zowe CLI... 48

Using Zowe...49
Using the Zowe Desktop..49
API Catalog...54
Using Zowe CLI... 57

Zowe CLI extensions and plug-ins.. 65
Extending Zowe CLI.. 65
Installing plug-ins... 65
Zowe CLI Plug-in for IBM CICS..67
Zowe CLI plug-in for IBM Db2 Database.. 71
VSCode Extension for Zowe... 74

Chapter 3: Extending... 77
Developing for API Mediation Layer.. 78

Onboarding Overview...78
Zowe API Mediation Layer Security... 82
Java REST APIs with Spring Boot..91
Java REST APIs service without Spring Boot.. 102
Prerequisites.. 103
Java Jersey REST APIs..112
REST APIs without code changes required...117

Developing for Zowe CLI..123
Developing for Zowe CLI..123
Setting up your development environment.. 125
Installing the sample plug-in.. 126
Extending a plug-in.. 128
Developing a new plug-in.. 131
Implementing profiles in a plug-in.. 136

Developing for Zowe Application Framework.. 137
Extending the Zowe Application Framework (zLUX).. 137
Creating application plug-ins..137

Plug-ins definition and structure.. 138
Dataservices...142
Zowe Desktop and window management.. 144
Configuration Dataservice.. 147
URI Broker... 152
Application-to-application communication.. 154
Error reporting UI...158
Logging utility.. 161
Stand up a local version of the Example Zowe Application Server.. 163
Zowe tutorials... 167
Starter Samples... 168
User Database Browser Starter App.. 168
User Browser Tutorial.. 168
Zowe Samples...183
Add Iframe App to Zowe...183
Add a Native Angular App to Zowe... 184

Chapter 4: Troubleshooting the installation..185
Troubleshooting z/OSMF... 186

z/OS Services are unavailable.. 186
Troubleshooting installing the Zowe Application Framework.. 187
Troubleshooting installing Zowe CLI.. 187

Command not found message displays when issuing npm install commands..................................... 187
npm install -g Command Fails Due to an EPERM Error...187
Sudo syntax required to complete some installations...187
npm install -g command fails due to npm ERR! Cannot read property 'pause'

of undefined error.. 188
Node.js commands do not respond as expected.. 188
Installation fails on Oracle Linux 6... 188

Chapter 5: How to contribute...189
Before you get started.. 190
Contributing to documentation...190

Sending a GitHub pull request...190
Opening an issue for the documentation..190

Documentation Style guide ... 190
Headings and titles... 191
Technical elements..191
Tone...192
Word usage... 194
Graphics...195
Abbreviations.. 195
Structure and format... 195

Word usage... 195

Chapter

1
Getting Started

Topics:

• Zowe overview
• Release notes

 | Getting Started | 6

Zowe overview

Zowe overview

Zowe is an open source project that is created to host technologies that benefit the Z platform from all members of the
Z community, including Integrated Software Vendors, System Integrators, and z/OS consumers. Zowe, like Mac or
Windows, comes with a set of APIs and OS capabilities that applications build on and also includes some applications
out of the box.

Zowe offers modern interfaces to interact with z/OS and allows you to work with z/OS in a way that is similar to
what you experience on cloud platforms today. You can use these interfaces as delivered or through plug-ins and
extensions that are created by clients or third-party vendors.

Zowe consists of the following main components. For details of each component, see the corresponding section.

• Zowe Application Framework on page 6: A web user interface (UI) that provides a virtual desktop
containing a number of apps allowing access to z/OS function. Base Zowe includes apps for traditional access
such as a 3270 terminal and a VT Terminal, as well as an editor and explorers for working with JES, MVS Data
Sets and Unix System Services.

• z/OS Services: Provides a range of APIs for the management of z/OS JES jobs and MVS data set services.
• API Mediation Layer on page 8: Provides a gateway that acts as a reverse proxy for z/OS services, together

with a catalog of REST APIs and a dynamic discovery capability. Base Zowe provides core services for working
with MVS Data Sets, JES, as well as working with z/OSMF REST APIs. The API Mediation Layer also provides
a framework for Single Sign On (SSO).

• Zowe CLI on page 7: Provides a command-line interface that lets you interact with the mainframe remotely
and use common tools such as Integrated Development Environments (IDEs), shell commands, bash scripts, and
build tools for mainframe development. It provides a set of utilities and services for application developers that
want to become efficient in supporting and building z/OS applications quickly. It provides a core set of commands
for working with data sets, USS, JES, as well as issuing TSO and console commands. Some Zowe extensions are
powered by Zowe CLI, for example the VSCode Extension for Zowe on page 74.

Check out the video below for a demo of the modern interfaces that Zowe provides.

Zowe Application Framework

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application
Framework, you can create applications to suit your specific needs. The Zowe Application Framework contains a web
UI that has the following features:

• The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a
full screen mode as compared to the command line interface.

• The web UI makes use of leading-edge web presentation technology and is also extensible through web UI plug-
ins to capture and present a wide variety of information.

• The web UI facilitates common z/OS developer or system programmer tasks by providing an editor for common
text-based files like REXX or JCL along with general purpose data set actions for both Unix System Services
(USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

• Zowe Desktop

The desktop, accessed through a browser.
• Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the
Express.js as a webservices framework, and the proxy applications that communicate with the z/OS services and
components.

• ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server.

 | Getting Started | 7

• Application plug-ins

Several application-type plug-ins are provided. For more information, see Zowe Desktop application plug-ins on
page 50.

z/OS Services

Zowe provides a z/OS® RESTful web service and deployment architecture for z/OS microservices. Zowe contains the
following core z/OS services:

• z/OS Datasets services

Get a list of jobs, get content from a job file output, submit job from a data set, and more.
• z/OS Jobs services

Get a list of data sets, retrieve content from a member, create a data set, and more.

You can view the full list of capabilities of the RESTful APIs from the API catalog that displays the Open API
Specification for their capabilities.

• These APIs are described by the Open API Specification allowing them to be incorporated to any standard-based
REST API developer tool or API management process.

• These APIs can be exploited by off-platform applications with proper security controls.

As a deployment architecture, the z/OS Services are running as microservices with a Springboot embedded Tomcat
stack.

Zowe CLI

Zowe CLI is a command-line interface that lets application developers interact with the mainframe in a familiar
format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe
applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets application developers use common
tools such as Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for
mainframe development. It provides a set of utilities and services for application developers that want to become
efficient in supporting and building z/OS applications quickly.

Zowe CLI provides the following benefits:

• Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.
• Fosters the development of new and innovative tools from a computer that can interact with z/OS.
• Ensure that business critical applications running on z/OS can be maintained and supported by existing and

generally available software development resources.
• Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about prerequisites, software requirements, installing and upgrading Zowe CLI, see Installing
Zowe on page 16.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

• Interact with mainframe files:Create, edit, download, and upload mainframe files (data sets) directly from Zowe
CLI.

• Submit jobs:Submit JCL from data sets or local storage, monitor the status, and view and download the output
automatically.

• Issue TSO and z/OS console commands:Issue TSO and console commands to the mainframe directly
from Zowe CLI.

• Integrate z/OS actions into scripts:Build local scripts that accomplish both mainframe and local tasks.
• Produce responses as JSON documents:Return data in JSON format on request for consumption in other

programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI command groups on page
57.

 | Getting Started | 8

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI on
page 65.

More Information:

• System requirements on page 17
• Installing Zowe CLI on page 39

API Mediation Layer

The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer offers
enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and documentation. The API Mediation Layer facilitates secure communication across
loosely coupled microservices through the API Gateway. The API Mediation Layer includes an API Catalog that
provides an interface to view all discovered microservices, their associated APIs, and Swagger documentation in a
user-friendly manner. The Discovery Service makes it possible to determine the location and status of microservice
instances running inside the ecosystem.

More Information:

• Java REST APIs with Spring Boot on page 91
• API Catalog on page 54

Key features

• High availability of services in which application instances on a failing node are distributed among surviving
nodes

• Microservice UIs available through the API Gateway and API Catalog by means of reverse proxying
• Support for standardization and normalization of microservice URLs and routing to provide API Mediation Layer

users with a consistent way of accessing microservices.
• Minimal effort to register a microservice with the gateway (configuration over code)
• Runs on Windows, Linux, and z/OS (target platform)
• Written in Java utilizing Spring Boot (2.x), Angular 5, and the Netflix CloudStack
• Supports multiple client types for discovery (including Spring Boot, Java, and NodeJS)
• Contains enablers that allow for easy discovery and exposure of REST APIs and Swagger documentation for each

microservice

API Mediation Layer architecture

The following diagram illustrates the single point of access with the API Gateway and the interactions between the
API Gateway, API Catalog, and the Discovery Service:

 | Getting Started | 9

Components

The API Layer consists of the following key components:

API Gateway

The microservices that are contained within the ecosystem are located behind a reverse proxy. Clients interact with
the gateway layer (reverse proxy). This layer forwards API requests to the appropriate corresponding service through
the microservice endpoint UI. The gateway is built using Netflix Zuul and Spring Boot technology.

Discovery Service

The Discovery service is the central point in the API Gateway infrastructure that accepts "announcements of REST
services" and serves as a repository of active services. Back-end microservices register with this service either
directly by using a Eureka client. Non-Spring Boot applications register with the Discover Service indirectly through
a Sidecar. The Discovery Service is built on Eureka and Spring Boot technology.

API Catalog

The API Catalog is the catalog of published APIs and their associated documentation that are discoverable or can be
available if provisioned from the service catalog. The API documentation is visualized using the Swagger UI. The
API Catalog contains APIs of services available as product versions. A service can be implemented by one or more
service instances, which provide exactly the same service for high-availability or scalability.

More Information:

• Java REST APIs with Spring Boot on page 91

 | Getting Started | 10

• API Catalog on page 54

Zowe Third-Party Software Requirements and Bill of Materials

• Third-Party Software Requirements (TPSR)
• Bill of Materials (BOM)

Zowe architecture

Zowe is a collection of components that together form a framework that allows Z based functionality to be accessible
across an organization. This includes exposing Z based components such as z/OSMF as Rest APIs. The framework
provides an environment where other components can be included and exposed to a broader non-Z based audience.

 | Getting Started | 11

The following diagram depicts the high level Zowe architecture.

Release notes
Learn about what is new, changed, removed, and known issues in Zowe.

Version 1.0.0 (February 2019)

Version 1.0.0 contains the following changes since the Open Beta release.

 | Getting Started | 12

What's new in API Mediation Layer

• HTTPs is now supported on all Java enablers for onboarding API microservices with the API ML.
• SSO authentication using z/OSMF has been implemented for the API Catalog login. Mainframe credentials are

required for access.

What's new in Zowe CLI

• Breaking change to Zowe CLI: The --pass command option is changed to --password for all core Zowe
CLI commands for clarity and to be consistent with plug-ins. If you have zosmf profiles that you created prior to
January 11, 2019, you must recreate them to use the --password option. The aliases --pw and --pass still
function when you issue commands as they did prior to this breaking change. You do not need to modify scripts
that use --pass.

• The @next npm tag used to install Zowe CLI is deprecated. Use the @latest npm tag to install the product
with the online registry method.

What's new in the Zowe Desktop

• You can now obtain information about an application by right-clicking on an application icon and then clicking
Properties.

• To view version information for the desktop, click the avatar in the lower right corner of the desktop.
• Additional information was added for the Workflow application.
• The titlebar of the active window is now colored to give an at-a-glance indication of which window is in the

foreground.
• Window titlebar maximize button now changes style to indicate whether a window is maximized.
• Windows now have a slight border around them to help see boundaries and determine which window is active.
• Multiple instances of the same application can be opened and tracked from the launchbar. To open multiple

instances, right-click and choose Open New. Once multiple instances are open, you can click the application icon
to select which application to bring to the foreground. The number of orbs below the application icon relates to the
number of instances of the application that is open.

• Desktop framework logging trimmed and formalized to the Zowe App Logger. For more information, see https://
github.com/zowe/zlux/wiki/Logging.

• The UriBroker was updated to support dataservice versioning and UNIX file API updates.
• Removed error messages about missing components.js by making this optional component explicitly

declared within an application. By using the property "webContent.hasComponents = true/false".
• Set the maximum username and password length for login to 100 characters each.
• Applications can now list webContent.framework = "angular" as an alias for "angular2".
• Fixed a bug where the desktop might not load on high latency networks.

What's new in the Zowe App Server

• HTTP support was disabled in favor of HTTPS-only hosting.
• The server can be configured to bind to specific IPs or to hostnames. Previously, the server would listen on all

interfaces. For more information, see https://github.com/zowe/zlux-app-server/pull/30.
• The core logger prefixes for the Zowe App Server were changed from "_unp" to "_zsf".
• Dataservices are now versioned, and dataservices can depend on specific versions of other dataservices. A

plug-in can include more than one version of a dataservice for compatibility. For more information, see https://
github.com/zowe/zlux/wiki/ZLUX-Dataservices.

• Support to communicate with the API Mediation Layer with the use of keys and certificates was added.
• Trimmed and corrected error messages regarding unconfigured proxies for clarity and understanding. For more

information, see https://github.com/zowe/zlux-server-framework/pull/33.
• Fixed the nodeCluster.sh script to have its logging and environment variable behavior consistent with

nodeServer.sh.
• Removed the "swaggerui" plug-in in favor of the API Catalog.
• Bugfix for /plugins API to not show the installation location of the plug-in.
• Bugfix to print a warning if the server finds two plug-ins with the same name.

https://github.com/zowe/zlux/wiki/Logging
https://github.com/zowe/zlux/wiki/Logging
https://github.com/zowe/zlux-app-server/pull/30
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux-server-framework/pull/33

 | Getting Started | 13

• Added the ability to conditionally add HTTP headers for secure services to instruct the browser not to cache the
responses. For more information, see https://github.com/zowe/zlux-server-framework/issues/36.

• Added a startup check to confirm that ZSS is running as a prerequisite of the Zowe App Server.
• Bugfix for sending HTTP 404 response when content is missing, instead of a request hanging.
• Added tracing of login, logout, and HTTP routing so that administrators can track access.

What's changed

• Previously, APIs for z/OS Jobs services and z/OS Data Set services are provided unsing an IBM WebSphere
Liberty web application server. In this release, they are provided using a Tomcat web application server. You can
view the associated API documentation corresponding to the z/OS services through the API Catalog.

• References to zlux-example-server were changed to zlux-app-server and references to zlux-
proxy-server were changed to zlux-server-framework.

Known issues

Paste operations from the Zowe Desktop TN3270 and VT Terminal applications

TN3270 App - If you are using Firefox, the option to use Ctrl+V to paste is not available. Instead, press Shift + right-
click to access the paste option through the context menu.

Pressing Ctrl+V will perform paste for the TN3270 App on other browsers.

VT Terminal App - In the VT Terminal App, Ctrl+V will not perform a paste operation for any browser.

Note: In both terminals, press Shift + right-click to access copy and paste options through the context menu.

z/OS Subsystems App - The z/OS Subsystems application is being removed temporarily for the 1.0 release. The
reason is that as the ZSS has transitioned from closed to open source some APIs needed to be re-worked and are not
complete yet. Look for the return of the application in a future update.

https://github.com/zowe/zlux-server-framework/issues/36

Chapter

2
User Guide

Topics:

• Installing Zowe
• Configuring Zowe
• Using Zowe
• Zowe CLI extensions and plug-

ins

 | User Guide | 16

Installing Zowe

Installing Zowe

You install the Zowe runtime on z/OS and install Zowe CLI on your computer. The installations on z/OS and on a
computer are independent processes.

When you install Zowe on z/OS, there are two parts. The first part is to install the Zowe Application Framework, the
API Mediation Layer, and a number of micro services that provide capability to both. The second part is to install the
Zowe Cross Memory Server. This is an authorized server application that provides privileged services to Zowe in a
secure manner.

The Zowe CLI is not installed on z/OS and runs on a personal computer.

Installation roadmap

Installing Zowe involves several steps that you must complete in the appropriate sequence. Review the following
installation roadmap that presents the task-flow for preparing your environment and installing and configuring Zowe
before you begin the installation process.

 | User Guide | 17

1. Prepare your environment to meet the installation requirements. | See System requirements on page 17.
2. Allocate enough space for the installation. | The installation process requires approximately 1 GB of available

space. Once installed on z/OS, API Mediation Layer requires approximately 150MB of space, and the Zowe
Application Framework requires approximately 50 MB of space before configuration. Zowe CLI requires
approximately 200 MB of space on your computer.

3. Install components of Zowe. | To install Zowe runtime on z/OS, see Installing Zowe on z/OS on page 22. To
install Zowe CLI on a computer, see Installing Zowe CLI on page 39.

4. Verify that Zowe is installed correctly. | To verify that the Zowe runtime is installed correctly, see Verifying
installation on page 38. To verify that Zowe CLI is installed correctly, see Testing connection to z/OSMF.

5. Optional: Troubleshoot problems that occurred during installation. | See Troubleshooting the installation on page
185. To uninstall Zowe, see Uninstalling Zowe on page 41.

System requirements

Before installing Zowe, ensure that your environment meets the prerequisites.

Overview

z/OS host requirements (for all components):

• IBM z/OS Management Facility (z/OSMF) Version 2.2 or Version 2.3.

z/OSMF is a prerequisite for the Zowe microservice. z/OSMF must be installed and running before you use Zowe.
For details, see z/OSMF configuration on page 18.

• z/OS® Version 2.2 or later.
• Node.js Version 6.14.4.1 or later on the z/OS host where you install the Zowe Application Server.

1. To install Node.js on z/OS, follow the procedures at https://developer.ibm.com/node/sdk/ztp.

Notes:

• To install Node.js on z/OS, ensure that you meet the following requirements in the procedure. Other
requirements, including installing Python, Make 4.1, or Perl, are not needed.

z/OS V2R2 with PTF UI46658 or z/OS V2R3, z/OS UNIX System Services enabled, and Integrated
Cryptographic Service Facility (ICSF) configured and started.

• The following requirements for installing Node.js are NOT needed, so you can skip those configurations.

• Python, Make 4.1, or Perl
• C/C++ compiler

After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is installed.
For example, NODE_HOME=/proj/mvd/node/installs/node-v6.14.4-os390-s390x.

• npm 5.4 or later

To update npm, issue the following command:

npm install -g npm

• IBM SDK for Java Technology Edition V8 or later

Disk and browser requirements (for Zowe desktop):

• 833 MB of HFS file space.
• Supported browsers:

• Google Chrome V54 or later
• Mozilla Firefox V44 or later
• Safari V11 or later
• Microsoft Edge (Windows 10)

Client requirements (for Zowe CLI):

https://developer.ibm.com/node/sdk/ztp

 | User Guide | 18

Any platform where Node.js 8.0 or 10 is available, including Windows, Linux, and Mac operating systems. For
details, see System requirements for Zowe CLI on page 21.

z/OSMF configuration

The following information contains procedures and tips for meeting z/OSMF requirements. For complete information,
go to IBM Knowledge Center and read the following documents.

• IBM z/OS Management Facility Configuration Guide
• IBM z/OS Management Facility Help

z/OS requirements

Ensure that the z/OS system meets the following requirements:

Requirements Description Resources in IBM Knowledge
Center

Integrated Cryptographic Service
Facility (ICSF)

On z/OS, Node requires ICSF to be
installed, configured and started.

N/A

AXR (System REXX) z/OS uses AXR (System REXX)
component to perform Incident
Log tasks. The component enables
REXX executable files to run outside
of conventional TSO and batch
environments.

System REXX

Common Event Adapter (CEA)
server

The CEA server, which is a co-
requisite of the Common Information
Model (CIM) server, enables the
ability for z/OSMF to deliver z/OS
events to C-language clients.

Customizing for CEA

Common Information Model (CIM)
server

z/OSMF uses the CIM server to
perform capacity-provisioning and
workload-management tasks. Start
the CIM server before you start z/
OSMF (the IZU* started tasks).

Reviewing your CIM server setup

CONSOLE and CONSPROF
commands

The CONSOLE and CONSPROF
commands must exist in the
authorized command table.

Customizing the CONSOLE and
CONSPROF commands

IBM z/OS Provisioning Toolkit The IBM® z/OS® Provisioning
Toolkit is a command line utility that
provides the ability to provision z/
OS development environments. If
you want to provision CICS or Db2
environments with the Zowe CLI,
this toolkit is required.

What is IBM Cloud Provisioning and
Management for z/OS?

Java level IBM® 64-bit SDK for z/OS®, Java
Technology Edition V8 or later is
required.

Software prerequisites for z/OSMF

TSO region size To prevent exceeds maximum
region size errors, verify that the
TSO maximum region size is a
minimum of 65536 KB for the z/OS
system.

N/A

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

 | User Guide | 19

Requirements Description Resources in IBM Knowledge
Center

User IDs User IDs require a TSO segment
(access) and an OMVS segment.
During workflow processing and
REST API requests, z/OSMF might
start one or more TSO address spaces
under the following job names:
userid; substr(userid, 1, 6) CN
(Console).

N/A

Configuring z/OSMF

Follow these steps:

1. From the console, issue the following command to verify the version of z/OS:

/D IPLINFO

Part of the output contains the release, for example,

RELEASE z/OS 02.02.00.

2. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured and
running on every z/OS V2.2 and V2.3 system.

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS, and then start
the z/OSMF server. The z/OSMF configuration process occurs in three stages, and in the following order:

• Stage 1 - Security setup
• Stage 2 - Configuration
• Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure z/
OSMF, see Configuring z/OSMF if you use z/OS V2.2 or Setting up z/OSMF for the first time if V2.3.

Note: In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL). Therefore, z/
OSMF is available for use as soon as you set up the system. If you prefer not to start z/OSMF automatically, disable
the autostart function by checking for START commands for the z/OSMF started procedures in the COMMNDxx
parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator console
such as Zowe CLI's RestConsoles API require Version 2.3.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

 | User Guide | 20

1. Verify that the z/OSMF server and angel processes are running. From the command line, issue the following
command:

/D A,IZU*

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

/S IZUANG1

After you see the message ""CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL"", issue the
following command to start the server:

/S IZUSVR1

The server might take a few minutes to initialize. The z/OSMF server is available when the message
""CWWKF0011I: The server zosmfServer is ready to run a smarter planet."" is displayed.

2. Issue the following command to find the startup messages in the SDSF log of the z/OSMF server:

f IZUG349I

You could see a message similar to the following message, which indicates the port number:

IZUG349I: The z/OSMF STANDALONE Server home page can be accessed at
 https://mvs.hursley.ibm.com:443/zosmf after the z/OSMF server is started
 on your system.

In this example, the port number is 443. You will need this port number later.

Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its Welcome
Page where you can log in.

Note: If your implementation uses an external security manager other than RACF (for example, CA Technologies,
a Broadcom Company, Top Secret or CA Technologies ACF2), you provide equivalent commands for your
environment. For more information, see the following product documentation:

• Configure z/OS Management Facility for CA Technologies Top Secret
• Configure z/OS Management Facility for CA Technologies ACF2

z/OSMF REST services for the Zowe CLI

The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and extract
system data. Ensure that the following REST services are configured and available.

z/OSMF REST services Requirements Resources in IBM knowledge
Center

Cloud provisioning services Cloud provisioning services
are required for the Zowe CLI
CICS and Db2 command groups.
Endpoints begin with /zosmf/
provisioning/

Cloud provisioning services

TSO/E address space services TSO/E address space services are
required to issue TSO commands in
the Zowe CLI. Endpoints begin with
/zosmf/tsoApp

TSO/E address space services

https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://docops.ca.com/ca-acf2-for-z-os/16-0/en/installing-and-implementing/configure-z-os-management-facility-for-ca-acf2
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm

 | User Guide | 21

z/OSMF REST services Requirements Resources in IBM knowledge
Center

z/OS console services z/OS console services are required to
issue console commands in the Zowe
CLI. Endpoints begin with /zosmf/
restconsoles/

z/OS console

z/OS data set and file REST interface z/OS data set and file REST interface
is required to work with mainframe
data sets and UNIX System Services
files in the Zowe CLI. Endpoints
begin with /zosmf/restfiles/

z/OS data set and file interface

z/OS jobs REST interface z/OS jobs REST interface is required
to use the zos-jobs command group
in the Zowe CLI. Endpoints begin
with /zosmf/restjobs/

z/OS jobs interface

z/OSMF workflow services z/OSMF workflow services is
required to create and manage z/
OSMF workflows on a z/OS system.
Endpoints begin with /zosmf/
workflow/

z/OSMF workflow services

Zowe uses symbolic links to the z/OSMF bootstrap.properties,
jvm.security.override.properties, and ltpa.keys files. Zowe reuses SAF, SSL, and LTPA
configurations; therefore, they must be valid and complete.

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint into
your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Notes:

• Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user
credentials.

• The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw JSON format.

Planning for installation of API Mediation Layer, Zowe Application Framework, and Zowe APF
Angel

The following information is required during the installation process of API Mediation Layer and Zowe Application
Framework. Make the decisions before the installtion.

• The HFS directory where you install Zowe, for example, /var/zowe.
• The HFS directory that contains a 64-bit Java™ 8 JRE.
• The z/OSMF installation directory, for example, /usr/lpp/zosmf/lib.
• The API Mediation Layer HTTP and HTTPS port numbers. You will be asked for 3 unique port numbers.
• The user ID that runs the Zowe started task.

Tip: Use the same user ID that runs the z/OSMF IZUSVR1 task, or a user ID with equivalent authorizations.
• The mainframe account under which the ZSS server runs must have UPDATE permission on the BPX.DAEMON

and BPX.SERVER facility class profiles.

System requirements for Zowe CLI

Before you install Zowe CLI, make sure your system meets the following requirements:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm

 | User Guide | 22

Prerequisite software

The following prerequisites for Windows, Mac, and Linux are required if you are installing Zowe CLI from a local
package. If you are installing Zowe CLI from Bintray registry, you only require Node.js and npm.

Note: As a best practice, we recommend that you update Node.js regularly to the latest Long Term Support (LTS)
version.

Ensure that the following prerequisite software is installed on your computer:

• Node.js V8.0 or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed.

• Node Package Manager V5.0 or later

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

Supported platforms

Zowe CLI is supported on any platform where Node.js 8.0 or 10 is available, including Windows, Linux, and Mac
operating systems. For information about known issues and workarounds, see Troubleshooting installing Zowe CLI
on page 187.

Zowe CLI is designed and tested to integrate with z/OSMF running on IBM z/OS Version 2.2 or later. Before you can
use Zowe CLI to interact with the mainframe, system programmers must install and configure IBM z/OSMF in your
environment.

Important!

• Oracle Linux 6 is not supported.

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space consumed might
vary depending on the operating system where you install Zowe CLI.

Installing Zowe on z/OS

To install Zowe on z/OS, there are two parts. The first part is the Zowe runtime that consists of three components:
Zowe Application Framework, z/OS Explorer Services, and Zowe API Mediation Layer. The second part is the Zowe
Cross Memory Server. This is an authorized server application that provides privileged services to Zowe in a secure
manner.

Follow the instructions in this topic to obtain the installation file for z/OS runtime components and run the installation
scripts.

1. Obtaining and preparing the installation file on page 23
2. Prerequisites on page 26
3. Installing the Zowe runtime on z/OS on page 26

• How the install script zowe-install.sh works on page 30
4. Starting and stopping the Zowe runtime on z/OS on page 32

• Starting the ZOWESVR PROC on page 32
• Stopping the ZOWESVR PROC on page 33

5. Installing the Zowe Cross Memory Server on z/OS on page 33

• Manually installing the Zowe Cross Memory Server on page 33
• Scripted install of the Zowe Cross Memory Server on page 36

6. Starting and stopping the Zowe Cross Memory Server on z/OS on page 37
7. Verifying installation on page 38
8. Looking for troubleshooting help? on page 39

https://nodejs.org/en/download/

 | User Guide | 23

Obtaining and preparing the installation file

The Zowe installation file for Zowe z/OS components are distributed as a PAX file that contains the runtimes and
the scripts to install and launch the z/OS runtime. For each release, there is a PAX file named zowe-v.r.m.pax,
where

• v indicates the version
• r indicates the release number
• m indicates the modification number

The numbers are incremented each time a release is created so the higher the numbers, the later the release.

To download the PAX file, open your web browser and click the DOWNLOAD Zowe z/OS Components button on the
Zowe Download website to save it to a folder on your desktop. After you obtain the PAX file, follow the procedures
below to verify the PAX file and prepare it to install the Zowe runtime.

Follow these steps:

https://zowe.org/download/

 | User Guide | 24

1. Verify the integrity of the PAX file to ensure that the file you download is officially distributed by the Zowe
project.

Notes:

• The commands in the following steps are tested on both Mac OS X V10.13.6 and Ubuntu V16.04 and V17.10.
• Ensure that you have GPG installed. Click here to download and install GPG.
• The v.r.m in the commands of this step is a variable. You must replace it with the actual PAX file version,

for example, 0.9.0.

Step 1: Verify the hash code.

Download the hash code file zowe-v.r.m.pax.sha512 from the Zowe website. Then, run the following
commands to check:

(gpg --print-md SHA512 zowe-v.r.m.pax > zowe-v.r.m.pax.sha512.my) && diff
 zowe-v.r.m.pax.sha512.my zowe-v.r.m.pax.sha512 && echo matched || echo
 "not match"

When you see "matched", it means the PAX file that you download is the same one that is officially distributed by
the Zowe project. You can delete the temporary zowe-v.r.m.pax.sha512.my file.

You can also use other commands such as sha512, sha512sum, or openssl dgst -sha512 to generate
SHA512 hash code. These hash code results are in a different format from what Zowe provides but the values are
the same.

Step 2. Verify with signature file.

In addition to the SHA512 hash, the hash is also verifiable. This is done by digitally signing the hash text file with
a KEY from one of the Zowe developers.

Follow these steps:

a. Download the signature file zowe-v.r.m.pax.asc from https://projectgiza.org/Downloads/
post_download.html, and download the public key KEYS from https://github.com/zowe/release-management/.

b. Import the public key with the gpg --import KEYS command.
c. If you have never used gpg before, generate keys with the gpg --gen-key command.
d. Sign the downloaded public key with the gpg --sign-key DC8633F77D1253C3 command.
e. Verify the file with the gpg --verify zowe-v.r.m.pax.asc zowe-v.r.m.pax command.
f. Optional: You can remove the imported key with the gpg --delete-key DC8633F77D1253C3

command.

When you see output similar to the following one, it means the PAX file that you download is the same one that is
officially distributed by the Zowe project.

gpg: Signature made Tue 14 Aug 2018 08:29:46 AM EDT
gpg: using RSA key DC8633F77D1253C3
gpg: Good signature from "Matt Hogstrom (CODE SIGNING KEY) " [full]

https://www.gnupg.org/
https://projectgiza.org/Downloads/post_download.html
https://projectgiza.org/Downloads/post_download.html
https://projectgiza.org/Downloads/post_download.html

 | User Guide | 25

2. Transfer the PAX file to z/OS.

Follow these steps:

a. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory where
you downloaded the Zowe PAX file.

b. Connect to z/OS using SFTP. Issue the following command:

sftp <userID@ip.of.zos.box>

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

ftp <userID@ip.of.zos.box>

Note: When you use FTP, switch to binary file transfer mode by issuing the following command:

bin

c. Navigate to the target directory that you wish to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter into the Unix file system. The following
commands are useful:

• To see what directory you are in, type pwd.
• To switch directory, type cd.
• To list the contents of a directory, type ls.
• To create a directory, type mkdir.

d. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

put <zowe-v.r.m>.pax

Where zowe-v.r.m is a variable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with l to have
them issued against your desktop. To list the contents of a directory on your desktop, type lls where ls lists
contents of a directory on z/OS.

3. When the PAX file is transferred, expand the PAX file by issuing the following command in an SSH session:

pax -ppx -rf <zowe-v.r.m>.pax

Where zowe-v.r.m is a variable that indicates the name of the PAX file you downloaded.

This will expand to a file structure.

 /files
 /install
 /scripts
 ...

Note: The PAX file will expand into the current directory. A good practice is to keep the installation directory
apart from the directory that contains the PAX file. To do this, you can create a directory such as /zowe/paxes
that contains the PAX files, and another such as /zowe/builds. Use SFTP to transfer the Zowe PAX file into
the /zowe/paxes directory, use the cd command to switch into /zowe/builds and issue the command pax
-ppx -rf ../paxes/<zowe-v.r.m>.pax. The /install folder will be created inside the zowe/
builds directory from where the installation can be launched.

 | User Guide | 26

Prerequisites

• Before you start the installation on z/OS, ensure that your environment meets the necessary prerequisites that are
described in System requirements on page 17.

• The user ID that is used to perform the installation must have authority to read the z/OSMF keyring. For how to
check the name of the keyring and grant read access to the keyring, see the Trust z/OSMF certificate topic.

Installing the Zowe runtime on z/OS

To install Zowe API Mediation Layer, Zowe Application Framework, and z/OS Services, you install the Zowe
runtime on z/OS.

Follow these steps:

1. Navigate to the directory where the installation archive is extracted. Locate the /install directory.

 /install
 /zowe-install.sh
 /zowe-install.yaml

2. Review the zowe-install.yaml file which contains the following properties:

• install:rootDir is the directory that Zowe installs to create a Zowe runtime. The default directory is
~/zowe/v.r.m where v is the Zowe version number, r is the release number and m is the modification
number,for example, 1.0.0 or 1.2.11 . The user's home directory is the default value. This ensures that the user
who performs the installation has permission to create the directories that are required for the installation. If
the Zowe runtime will be maintained by multiple users, it is recommended to use another directory, such as /
var/zowe/v.r.m.

You can run the installation process multiple times with different values in the zowe-install.yaml file
to create separate installations of the Zowe runtime. Ensure that the directory where Zowe will be installed is
empty. The install script exits if the directory is not empty and creates the directory if it does not exist.

• Zowe API Mediation Layer has three HTTPS ports, one for each micro-service.
• z/OS Services has HTTPS ports for the jobs and the data sets microservices.
• z/OS desktop apps has three ports for each of its explorer apps
• The zlux-server has two ports: the HTTPS port used by the Zowe Application Server, and an HTTP port that is

used by the ZSS Server.

Example:

install:
 rootDir=/var/zowe/1.0.0

api-mediation:
 catalogPort=7552
 discoveryPort=7553
 gatewayPort=7554
 externalCertificate=
 externalCertificateAlias=
 externalCertificateAuthorities=
 verifyCertificatesOfServices=true
 enableSso=false
 zosmfKeyring=IZUKeyring.IZUDFTL
 zosmfUser=IZUSVR

zos-services:
 jobsAPIPort=8545
 mvsAPIPort=8547

zowe-desktop-apps:
 jobsExplorerPort=8546
 mvsExplorerPort=8548

 | User Guide | 27

 ussExplorerPort=8550

Notes:

• If all of the default port values are acceptable, the ports do not need to be changed. To allocate ports, ensure
that the ports are not in use for the Zowe runtime servers.

• Comments are not supported in the YAML file, apart from lines starting with '#' in column one.
3. Determine which ports are not available.

a. Display a list of ports that are in use with the following command:

TSO NETSTAT

b. Display a list of reserved ports with the following command:

TSO NETSTAT PORTLIST

The zowe-install.yaml also contains the telnet and SSH port with defaults of 23 and 22. If your z/OS
LPAR is using different ports, edit the values. This allows the TN3270 terminal desktop application to connect as
well as the VT terminal desktop application.

Note: Unlike the ports needed by the Zowe runtime for its Zowe Application Framework and z/OS Services
which must be unused, the terminal ports are expected to be in use.

Ports for the TN3270 and the VT terminal to connect to
terminals:
 sshPort=22
 telnetPort=23

4. Select the ZOWESVR PROCLIB member.

The zowe-install.yaml file contains the dataset name and member name of the ZOWESVR JCL to be used
to run Zowe.

Example:

started task JCL member for Zowe job
zowe-server-proclib:
dsName=SYS1.PROCLIB
 dsName=auto

 | User Guide | 28

 memberName=ZOWESVR

Follow these steps:

a. Specify the dataset name of the PROCLIB member you want to use with the dsName tag. For example,

dsName=user.proclib

The following guidelines apply.

• Do not enclose the dataset name in quotes.
• The dataset name is not case-sensitive, but the dsName tag is case-sensitive and must be written exactly as

shown.
• The dataset name must be an existing z/OS dataset in the PROCLIB concatenation. The user who installs

Zowe must have update access to this dataset.
• If you omit the dsName tag or specify dsName=auto, the install script scans the available PROCLIB

datasets and places the JCL member in the first dataset where the installing user has write access. For further
details, see How the install script zowe-install.sh works on page 30.

b. Specify the member name of the PROCLIB member you want to use with the memberName tag. For example,

memberName=ZOWEABC

The following guidelines apply.

• Do not enclose the member name in quotes.
• The member name is not case-sensitive, but the memberName tag is case-sensitive and must be written

exactly as shown.
• The member name must be a valid PDS member name in z/OS. If the member already exists, it will be

overwritten.
• If you omit the memberName tag or specify memberName=, the install script uses ZOWESVR.

5. (Optional) Use existing certificate signed by an external CA for HTTPS ports in API Mediation Layer and Zowe
Application Framework.

If you skip this step, then certificates generated by the local API Mediation CA are used. These certificates are
generated automatically during the installation. The server certificate needs to be imported to your browser. See
Import the local CA certificate to your browser on page 86.

You can use an existing server certificate that is signed by an external CA such as a CA managed by the IT
department of your company. The benefit of such certificate is that it will be trusted by browsers in your company.
You can even use a public certificate authority such as Symantec, Comodo, or GoDaddy. Such certificate are
trusted by all browsers and most REST API clients. This is, however, a manual process of requesting a certificate.
As such, we recommend to start with the local API Mediation Layer CA for an initial evaluation.

You can use an existing certificate with the following procedure.

Follow these steps:

a. Update the value of externalCertificate in the api-mediation section of the YAML file. The value
needs to point to a keystore in PKCS12 format that contains the certificate with its private key. The file needs
to be transferred as a binary to the z/OS system. Currently only the PKCS12 keystore with the password set to
password are supported.

b. Update the value of externalCertificateAlias to the alias of the server certificate in the keystore.

c. Update the value of externalCertificateAuthorities to the path of the public certificate of the
certificate authority that has the signed the certificate. You can add additional certificate authorities separated by

 | User Guide | 29

spaces. This can be used for certificate authorities that have signed the certificates of the services that you want to
access via the API Mediation Layer.

d. (Optional) If you have trouble getting the certificates and you want only to evaluate Zowe, you can switch off
the certificate validation by setting verifyCertificatesOfServices=false. The HTTPS will still be
used but the API Mediation Layer will not validate any certificate.

Important! Switching off certificate evaluation is a non-secure setup.

Example:

 api-mediation:
 externalCertificate=/path/to/keystore.p12
 externalCertificateAlias=servercert
 externalCertificateAuthorities=/path/to/cacert.cer
 verifyCertificatesOfServices=true

6. (Optional) Check the install condition of the required prerequisites. To do this, issue the following command with
the current directory being the /install directory.

zowe-check-prereqs.sh

The script writes messages to your terminal window. The results are marked OK, Info, Warning or Error.
Correct any reported errors and rerun the command to ensure that no errors exist before you run the zowe-
install.sh script to install the Zowe runtime. The zowe-check-prereqs.sh script does not change any
settings. You can run it as often as required before you run the install script.

7. Execute the zowe-install.sh script.

With the current directory being the /install directory, execute the script zowe-install.sh by issuing the
following command:

zowe-install.sh

You might receive the following error that the file cannot be executed:

zowe-install.sh: cannot execute

The error occurs when the install script does not have execute permission. To add execute permission, issue the
following command:

chmod u+x zowe-install.sh

When the script runs, it echos its progress to the shell and attempts to determine and validate the location of
the prerequisites including z/OSMF, Java, and Node. When the script cannot determine the location of these
prerequisites, you will be prompted for their location.

Each time the install script runs it create a log file that contains more information. This file is stored in the /log
directory and is created with a date and time stamp name, for example /log/2019-02-05-18-08-35.log.
This file is copied across into the runtime folder into which Zowe is installed, and contains useful information to
help diagnose problems that may occur during an install.

You may also receive the following message:

apiml_cm.sh --action trust-zosmf has failed.
WARNING: z/OSMF is not trusted by the API Mediation Layer. Follow
 instructions in Zowe documentation about manual steps to trust z/OSMF

This error does not interfere with installation progress and can be remediated after the install completes. See Trust
z/OSMF Certificate for more details.

 | User Guide | 30

8. Configure Zowe as a started task.

The ZOWESVR must be configured as a started task (STC) under the IZUSVR user ID. You can do this after the
zowe-install.sh script has completed by running the script zowe-config-stc.sh. To run this script,
use the cd command to switch to the Zowe runtime directory that you specified in the install:rootDir in
the zowe-install.yaml file, and execute the script from the /install directory that is created by the pax
command. For example:

cd /var/zowe/1.0.0
/zowe/builds/install/zowe-config-stc.sh

Alternatively, you can issue the commands manually:

Note: You must replace ZOWESVR in the commands below with the name of your server that you specified as
memberName=ZOWESVR in the zowe-install.yaml file.

• If you use RACF, issue the following commands:

RDEFINE STARTED ZOWESVR.* UACC(NONE) STDATA(USER(IZUSVR) GROUP(IZUADMIN)
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
SETROPTS REFRESH RACLIST(STARTED)

• If you use CA ACF2, issue the following commands:

SET CONTROL(GSO)
INSERT STC.ZOWESVR LOGONID(IZUSVR) GROUP(IZUADMIN) STCID(ZOWESVR)
F ACF2,REFRESH(STC)

• If you use CA Top Secret, issue the following commands:

TSS ADDTO(STC) PROCNAME(ZOWESVR) ACID(IZUSVR)

9. Add the users to the required groups, IZUADMIN for administrators, and IZUUSER for standard users.

• If you use RACF, issue the following command:

CONNECT (userid) GROUP(IZUADMIN)

• If you use CA ACF2, issue the following commands:

ACFNRULE TYPE(TGR) KEY(IZUADMIN) ADD(UID(<uid string of user>) ALLOW)
F ACF2,REBUILD(TGR)

• If you use CA Top Secret, issue the following commands:

TSS ADD(userid) PROFILE(IZUADMIN)
TSS ADD(userid) GROUP(IZUADMGP)

How the install script zowe-install.sh works

When the zowe-install.sh script runs, it performs a number of steps broken down into the following sections.
Review the sections to help you undertand messsages and issues that might occur when you run the script and actions
you can take to resolve the issues.

 | User Guide | 31

1. Environment variables

To prepare the environment for the Zowe runtime, a number of ZFS folders need to be located for prerequisites on
the platform that Zowe needs to operate. These can be set as environment variables before the script is run. If the
environment variables are not set, the install script will attempt to locate default values.

• ZOWE_ZOSMF_PATH: The path where z/OSMF is installed. Defaults to /usr/lpp/zosmf/lib/
defaults/servers/zosmfServer.

• ZOWE_JAVA_HOME: The path where 64 bit Java 8 or later is installed. Defaults to /usr/lpp/java/
J8.0_64.

• ZOWE_EXPLORER_HOST: The hostname of where the explorer servers are launched from. Defaults to
running hostname -c.

When you run the install script for the first time, the script attempts to locate environment variables. The install
script creates a files named .zowe_profile that resides in the current user's home directory and adds lines that
specify the values of the environment variables to the file. The next time you run the install script, it uses the same
values in this file.

Each time you run the install script, it retrieves environment variable settings in the following ways.

• When the .zowe-profile file exists in the home diretory, the install script uses the values in this file to set
the environment variables.

• When the .zowe-profile file does not exist, the install script checks if the .profile file exists in the
home directory. If it does exist, the install script uses the values in this file to set the environment variables.

You can create, edit, or delete the .zowe_profile file (as needed) before each install to set the variables to
the values that you want. We recommend that you do not add commands to the .zowe_profile file, with the
exception of the export command and shell variable assignments.

Note: If you wish to set the environment variables for all users, add the lines to assign the variables and their
values to the file /etc/profile.

If the environment variables for ZOWE_ZOSMF_PATH, ZOWE_JAVA_HOME are not set and the install script
cannot determine a default location, the install script will prompt for their location. The install script will not
continue unless valid locations are provided.

2. Expanding the PAX files

The install script will create the Zowe runtime directory structure using the install:rootDir value in the
zowe-install.yaml file. The runtime components of the Zowe server are then unpaxed into the directory
that contains a number of directories and files that make up the Zowe runtime.

If the expand of the PAX files is successful, the install script will report that it ran its install step to completion.
3. Changing Unix permissions

After the install script lays down the contents of the Zowe runtime into the rootDir, the next step is to set the
file and directory permissions correctly to allow the Zowe runtime servers to start and operate successfully.

The install process will execute the file scripts/zowe-runtime-authorize.sh in the Zowe runtime
directory. If the script is successful, the result is reported. If for any reason the script fails to run because of
insufficient authority by the user running the install, the install process reports the errors. A user with sufficient
authority should then run the zowe-runtime-authorize.sh. If you attempt to start the Zowe runtime
servers without the zowe-runtime-authorize.sh having successfully completed, the results are
unpredictable and Zowe runtime startup or runtime errors will occur.

4. Creating the PROCLIB member to run the Zowe runtime

Note: The name of the PROCLIB member might vary depending on the standards in place at each z/OS site,
however for this documentation, the PROCLIB member is called ZOWESVR.

At the end of the installation, a Unix file ZOWESVR.jcl is created under the directory where the runtime is
installed into, $INSTALL_DIR/files/templates. The contents of this file need to be tailored and placed in
a JCL member of the PROCLIB concatenation for the Zowe runtime to be executed as a started task. The install
script does this automatically. If the user specifies dsName=auto, or omits the dsName tag, or sets it to null by

 | User Guide | 32

coding dsName=, the install script proceeds as follows and stops after the first successful write to the destination
PROCLIB.

a. Try JES2 PROCLIB concatenation.
b. Try master JES2 JCL.
c. Try SYS1.PROCLIB.

If this succeeds, you will see a message like the following one:

PROC ZOWESVR placed in USER.PROCLIB

Otherwise you will see messages beginning with the following information:

Failed to put ZOWESVR.JCL in a PROCLIB dataset.

In this case, you need to copy the PROC manually. Issue the TSO oget command to copy the ZOWESVR.jcl
file to the preferred PROCLIB:

oget '$INSTALL_DIR/files/templates/ZOWESVR.jcl' 'MY.USER.PROCLIB(ZOWESVR)'

You can place the PROC in any PROCLIB data set in the PROCLIB concatenation, but some data sets such as
SYS1.PROCLIB might be restricted, depending on the permission of the user.

You can tailor the JCL at this line

//ZOWESVR PROC SRVRPATH='/zowe/install/path'

to replace the /zowe/install/path with the location of the Zowe runtime directory that contains the z/OS
Services. The install process inserts the expanded install:rootDir value from the zowe-install.yaml
file into the SRVRPATH for you by default. Otherwise you must specify that path on the START command when
you start Zowe in SDSF:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR'

Starting and stopping the Zowe runtime on z/OS

Zowe has a number of runtimes on z/OS: the z/OS Service microservice server, the Zowe Application Server, and
the Zowe API Mediation Layer microservices. When you run the ZOWESVR PROC, all of these components start.
The Zowe Application Server startup script also starts the zSS server, so starting the ZOWESVR PROC starts all the
required servers. Stopping ZOWESVR PROC stops all of the servers that run as independent Unix processes.

Starting the ZOWESVR PROC

To start the ZOWESVR PROC, run the zowe-start.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts
./zowe-start.sh

where:

$ZOWE_ROOT_DIR is the directory where you installed the Zowe runtime. This script starts the ZOWESVR PROC
for you so you do not have to log on to TSO and use SDSF.

Note: The default startup allows self-signed and expired certificates from the Zowe Application Framework proxy
data services.

If you prefer to use SDSF to start Zowe, start ZOWESVR by issuing the following operator command in SDSF:

/S ZOWESVR

 | User Guide | 33

By default, Zowe uses the runtime version that you most recently installed. To start a different runtime, specify its
server path on the START command:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR'

To test whether the API Mediation Layer is active, open the URL: https://<hostname>:7554.

The port number 7554 is the default API Gateway port. You can overwrite this port in the zowe-install.yaml
file before the zowe-install.sh script is run. See Step 2 in Installing the Zowe runtime on z/OS on page 26.

Stopping the ZOWESVR PROC

To stop the ZOWESVR PROC, run the zowe-stop.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts
./zowe-stop.sh

If you prefer to use SDSF to stop Zowe, stop ZOWESVR by issuing the following operator command in SDSF:

/C ZOWESVR

Either method will stop the z/OS Service microservice server, the Zowe Application Server, and the zSS server.

When you stop the ZOWESVR, you might get the following error message:

IEE842I ZOWESVR DUPLICATE NAME FOUND- REENTER COMMAND WITH 'A='

This error results when there is more than one started task named ZOWESVR. To resolve the issue, stop the required
ZOWESVR instance by issuing the following commands:

/C ZOWESVR,A=asid

You can obtain the asid from the value of A=asid when you issue the following commands:

/D A,ZOWESVR

Installing the Zowe Cross Memory Server on z/OS

The Zowe Cross Memory Service is a started task angel that runs an authorized server application providing
privileged cross-memory services to Zowe.

The server runs as a started task and requires an APF authorized load library, a program properties table (PPT) entry,
and a parmlib. You can create these by using one of the following methods. The two methods achieve the same end
result.

• Manually
• Use the script /install/zowe-install-apf-server.sh that reads configuration parameters from the

file /install/zowe-install-apf-server.yaml

You can choose which method to use depending on your familiarity with z/OS configuration steps that are required
for the manual path, together with the authority and privileges of your user ID if you choose to run the automated
path.

Once the cross memory server is installed and started, there will be started task ZWESIS01 that runs the load library
ZWESIS01. The ZWESIS01 started task serves the ZOWESVR started task and provides secure services that require
running in an APF-authorized state.

Manually installing the Zowe Cross Memory Server

A number of files are included in the USS directory zowe_install_dir/files/zss. If this directory is
not present, you must create it by expanding the file zowe_install_dir/files/zss.pax. To do this, first

 | User Guide | 34

create the folder zss beneath files using the command mkdir zss and navigate into the zss folder using the
command cd zss. Then, expand the zss.pax file using the command pax -ppx -rf ../zss.pax.

The manual installation consists of the following steps.

1. ZWESIS01 load module and proclib

Zowe Cross Memory Server consists of a single load module with the name ZWESIS01. The load module
is supplied in the files\zss\LOADLIB\ZWESIS01 file. This must be copied to a user-defined data set
zwes_loadlib, for example, ZWES.SISLOAD.

You can copy the ZWESIS01 file to your zwes_loadlib data set by using the command cp ZWESIS01
"//'zwes_loadlib(ZWESIS01)'". The zwes_loadlib must be a PDSE due to language requirements.

Do not add the zwes_loadlib data set to the system LNKLST or LPALST concatenations. You must execute
it by using a started task that uses a STEPLIB DD statement so that the appropriate version of the software is
loaded correctly. A sample JCL for the PROCLIB is provided in files/zss/SAMPLIB/ZWESIS01. Copy
this to your system PROCLIB, such as SYS1.PROCLIB, or any other PROCLIB in the JES2 Concatenation
PROCLIB Path.

Note: The user that is assigned to the started task must have an OMVS segment. The cross memory server loads
the module to LPA for its PC-cp services.

2. PPT Entry

The Zowe cross memory server must run in key 4 and be non-swappable. For the server to start in this
environment, you must add a corresponding PPT entry to the SCHEDxx member of the system PARMLIB. For
example, add the following PPT entry to the SCHEDxx member:

PPT PGMNAME(ZWESIS01) KEY(4) NOSWAP

After you edit the PARMLIB, issue the following command to make the SCHEDxx changes effective:

/SET SCH=xx

3. APF-authorization

Due to the nature of the services the Zowe cross memory server provides, its load library requires APF-
authorization. It is possible to check whether a load library is APF-authorized by using the following TSO
command:

D PROG,APF,DSNAME=ZWES.SISLOAD

where the value of DSNAME is the name of the data set that contains the ZWESIS01 load module.

To dynamically add the load library to the APF list, run one of the following TSO commands:

SETPROG APF,ADD,DSNAME=ZWES.SISLOAD,VOLUME=volser
(If the load library resides on Non SMS-Managed Volume)
Or
SETPROG APF,ADD,DSNAME=ZWES.SISLOAD,SMS
(If the load library is SMS-Managed library)

where the value of DSNAME is the name of the data set that contains the ZWESIS01 load module.
4. PARMLIB member

The Zowe cross memory server started task requires a valid ZWESISPxx PARMLIB member to be found
at startup. The file zowe_install_dir/files/zss/SAMPLIB/ZWESIP00 contains the default
configuration values. You can copy this member to your system PARMLIB data set, or allocate the default PDS
data set ZWES.SISAMP that is specified in the ZWESIS01 started task JCL.

 | User Guide | 35

5. Security requirements for the cross memory server

The Zowe cross memory server performs a sequence of SAF checks to protect its services from unauthorized
callers. This is done by using the FACILITY class and an entry for ZWES.IS. Valid callers must have READ
access to the ZWES.IS class. The following examples assume that you will be running the ZOWESVR STC
under the IZUSVR user.

• If you use RACF, issue the following commands:

• To see the current class settings, issue:

SETROPTS LIST

• To activate the FACILITY class, issue:

SETROPTS CLASSACT(FACILITY)

• To RACLIST the FACILITY class, issue:

SETROPTS RACLIST(FACILITY)

• To define the ZWES.IS profile in the FACILITY class and grant IZUSVR READ access, issue the
following commands:

RDEFINE FACILITY ZWES.IS UACC(NONE)
PERMIT ZWES.IS CLASS(FACILITY) ID(IZUSVR) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

• If you use CA ACF2, issue the following commands:

SET RESOURCE(FAC)
RECKEY ZWES ADD(IS ROLE(IZUSVR) SERVICE(READ) ALLOW)
F ACF2,REBUILD(FAC)

• If you use CA Top Secret, issue the following commands, where owner-acid may be IZUSVR or a
different ACID:

TSS ADD(`owner-acid`) IBMFAC(ZWES.)
TSS PERMIT(IZUSVR) IBMFAC(ZWES.IS) ACCESS(READ)

6. ICSF cryptographic services

The user IZUSVR who runs ZOWESVR will need READ access to CSFRNGL in the CSFSERV class.

When using ICSF services, you need to define or check the following configurations depending on whether ICSF
is already installed.

• The ICSF or CSF job that runs on your z/OS system.
• Configuration of ICSF options in SYS1.PARMLIB(CSFPRM00), SYS1.SAMPLIB, SYS1.PROCLIB.
• Create CKDS, PKDS, TKDS VSAM data sets.
• Define and activate the CSFSERV class:

• If you use RACF, issue the following commands:

RDEFINE CSFSERV profile-name UACC(NONE)
PERMIT profile-name CLASS(CSFSERV) ID(tcpip-stackname) ACCESS(READ)
PERMIT profile-name CLASS(CSFSERV) ID(userid-list) ... [for userids
 IKED, NSSD, and Policy Agent]
SETROPTS CLASSACT(CSFSERV)

 | User Guide | 36

SETROPTS RACLIST(CSFSERV) REFRESH

• If you use CA ACF2, issue the following commands. Note that profile-prefix and profile-
suffix are user defined.

SET CONTROL(GSO)
INSERT CLASMAP.CSFSERV RESOURCE(CSFSERV) RSRCTYPE(CSF)
F ACF2,REFRESH(CLASMAP)
SET RESOURCE(CSF)
RECKEY profile-prefix ADD(profile-suffix uid(UID string for tcpip-
stackname) SERVICE(READ) ALLOW)
RECKEY profile-prefix ADD(profile-suffix uid(UID string for IZUSVR)
 SERVICE(READ) ALLOW) ... [repeat for userids IKED, NSSD, and Policy
 Agent]
F ACF2,REBUILD(CSF)

• If you use CA Top Secret, issue the following commands. Note that profile-prefix and profile-
suffix are user defined.

TSS ADDTO(owner-acid) RESCLASS(CSFSERV)

TSS ADD(owner-acid) CSFSERV(profile-prefix.)
TSS PERMIT(tcpip-stackname) CSFSERV(profile-prefix.profile-suffix)
 ACCESS(READ)
TSS PERMIT(user-acid) CSFSERV(profile-prefix.profile-suffix)
 ACCESS(READ) ... [repeat for user-acids IKED, NSSD,
 and Policy Agent]

• The user under which zssServer runs will need READ access to CSFRNGL in the CSFSERV class.
• Determine whether you want SAF authorization checks against CSFSERV and set

CSF.CSFSERV.AUTH.CSFRNG.DISABLE accordingly.
• Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation,

initialization, and customization.
• CCA and/or PKCS #11 coprocessor for random number generation.
• Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if required.

Scripted install of the Zowe Cross Memory Server

For users who have sufficient authority under their user ID to the z/OS instance they are installing the Zowe cross
memory server into, there is a convenience script provided in /zowe_install_dir/install/zowe-
install-apf-server.sh.

• The script will create the APF authorized load library, copy the load module, create the PROCLIB, define the
ZWES.IS FACILITY class and give READ access to the ZOWESVR user ID.

• The script will not create the PPT entry which must be done manually. This is done using the steps described
in step "5. Security requirements for the cross memory server" in Manually installing the Zowe Cross Memory
Server on page 33.

• The script will not create anything for the ICSF cryptographic services. These are described in step "6. ICSF
cryptographic services" in Manually installing the Zowe Cross Memory Server on page 33.

Because the parameters that are used to control the script are contained in the file /zowe_install_dir/
install/zowe-install-apf-server.yaml, you must edit this file before running the zowe-install-
apf-server.sh script with appropriate values.

Datasets that APF server will be installed into
install:
 # PROCLIB dataset name (required, no default values)
 proclib=
 # PARMLIB dataset name (${USER}.PARMLIB by default)
 parmlib=
 # LOADLIB dataset name (${USER}.LOADLIB by default)

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

 | User Guide | 37

 loadlib=

where,

• install:proclib is the data set name that the ZWESIS01 JCL member that is used to start the ZWESIS01 started
task will be copied into, for example, USER.PROCLIB.

• install:parmlib is the data set name that the ZWESIP00 PARMLIB member will be copied into and used by the
ZWESIS01 PROCLIB. Choose a value such as IZUSVR.PARMLIB.

• install:loadlib is the data set name where the ZWESIS01 load module will be copied into. This data set will be
created as a PDSE and be APF authorized by the script. Choose a value such as USER.LOADLIB.

APF server users
users:
 # User to run Zowe server (required, no default values)
 zoweUser=
 # APF server STC user (ZWESISTC by default)
 stcUser=
 # APF server STC user UID (required if STC user doesn't exist)
 stcUserUid=
 # STC user group (required if either STC user or profile doesn't exist)
 stcGroup=

where,

• users:zoweUser is the TSO user ID that the ZOWESVR started task runs under. For the majority of installs, this
will be IZUSVR, so enter IZUSVR as the value, and the script will give this user access to the READ ZWES.IS
FACILITY class that allows Zowe to use the cross memory server.

• users:sctUser is the user ID that the ZWESIS01 started task will be run under. Enter the same value as the user ID
that is running ZOWESVR, so choose IZUSVR.

• users:stcUserUid. This is the Unix user ID of the TSO user ID used to run the ZWESIS01 started task. If the user
ID is IZUSVR to see the Unix user ID enter the command id IZUSVR which will return the sctUserUid in the
uid result. In the example below IZUSVR has a uid of 210, so users:stcUserUid=210 should be entered.

/:>id IZUSVR
uid=210(IZUSVR) gid=202(IZUADMIN) groups=205(IZUSECAD)

• users:stcGroup is the user group that the ZWESIS01 started task will be run under. Enter the same values as the
user group that is running ZOWESVR, so choose IZUADMIN.

After you edit the zowe-install-apf-server.yaml file with values, add a PPT entry before you run zowe-
install-apf-server.sh.

Starting and stopping the Zowe Cross Memory Server on z/OS

The Zowe Cross Memory server is run as a started task from the JCL in the PROCLIB member ZWESIS01. To start
this, issue the operator start command through SDSF:

/S ZWESIS01

To end the Zowe APF Angel process, issue the operator stop command through SDSF:

/P ZWESIS01

Note: The starting and stopping of the ZOWESVR for the main Zowe servers is independent of the ZWESIS01
angel process. If you are running more than one ZOWESVR instance on the same LPAR, then these will be sharing
the same ZWESIS01 cross memory server. Stopping ZWESIS01 will affect the behavior of all Zowe servers on the
same LPAR. The Zowe Cross Memory Server is designed to be a long-lived address space. There is no requirement
to recycle on a regular basis. When the cross-memory server is started with a new version of the ZWESIS01 load
module, it will abandon its current load module instance in LPA and will load the updated version.

 | User Guide | 38

Verifying installation

Once Zowe is running and the startup sequence is complete, you can check the configuration files and jobs for Zowe
on your z/OS system to ensure that the installation process is successful. To do this, follow these steps.

1. Navigate to the runtime $ZOWE_ROOT_DIR/scripts directory, where $ZOWE_ROOT_DIR is the location of
the Zowe runtime directory that contains the explorer server.

2. Run the zowe-verify.sh script by issuing the following command:

zowe-verify.sh

The script writes its messages to your terminal window. The results are marked OK, Info, Warning or Error.
Correct any reported errors and restart the Zowe server. The zowe-verify.sh script does not change any settings,
so you can run it as often as required.

Next steps

Follow the instructions in the following sections to verify that the components are installed correctly and are
functional.

• Verifying Zowe Application Framework installation on page 38
• Verifying z/OS Services installation
• Verifying API Mediation installation on page 38

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

where:

• myHost is the host on which you installed the Zowe Application Server.
• httpPort is the port number that is assigned to node.http.port in zluxserver.json.
• httpsPort is the port number that is assigned to node.https.port in zluxserver.json.

For example, if the Zowe Application Server runs on host myhost and the port number that is
assigned to node.https.port is 12345, you specify https://myhost:12345/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.htm.

Verifying z/OS Services installation

After the ZOWESVR procedure is started, you can verify the installation of z/OS Services from an internet browser
by entering the following case-sensitive URL:

https://hostName:<_gatewayPort_>/api/v1/jobs?prefix=*

where, gatewayPort is the port number that is assigned to api:mediation:gatewayPort in zowe-
install.yaml.

Verifying API Mediation installation

Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed
through the API Gateway using the following URL:

https://hostName:basePort/api/v1/apicatalog/application/state

The hostName is set during install, and basePort is set as the gatewayHttpsPort parameter.

Example:

 | User Guide | 39

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the grep
utility to parse out the response status variable value

$ curl -v -k --silent https://hostName:basePort/api/v1/apicatalog/
application/state 2>&1 | grep -Po '(?<=\"status\"\:\")[^\"]+'
UP

The response UP confirms that API Mediation Layer is installed and is running properly.

Looking for troubleshooting help?

If you encounter unexpected behavior when installing or verifying Zowe runtime, see the Troubleshooting the
installation on page 185 section for troubleshooting tips.

Installing Zowe CLI

As a systems programmer or application developer, you install Zowe CLI on your computer and create Zowe CLI
profiles.

Methods to install Zowe CLI

Use one of the following methods to install Zowe CLI.

• Install Zowe CLI from a local package
• Installing Zowe CLI from an online registry on page 40

If you encounter problems when you attempt to install Zowe CLI, see Troubleshooting installing Zowe CLI on page
187.

Installing Zowe CLI from a local package

If you do not have internet access at your site, use the following method to install Zowe CLI from a local package.

Follow these steps:

1. Ensure that the following prerequisite software is installed on your computer:

• Node.js V8.0 or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed.

• Node Package Manager V5.0 or later

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

2. Obtain the installation files. From the Zowe Download website, click Download Zowe Command Line Interface
to download the Zowe CLI installation bundle (zowe-cli-bundle.zip) to your computer.

3. Open a command line window. For example, Windows Command Prompt. Browse to the directory where you
downloaded the Zowe CLI installation bundle (.zip file). Issue the following command to unzip the files:

unzip zowe-cli-bundle.zip

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the .zip
file. You can extract the contents of the zip file to your preferred location.

https://nodejs.org/en/download/
https://zowe.org/download/

 | User Guide | 40

4. Issue the following command to install Zowe CLI on your computer:

Note: You might need to issue a change directory command and navigate to the location where you extracted the
contents of the zip file before you issue the npm install command.

npm install -g zowe-cli.tgz

Note: On Linux, you might need to prepend sudo to your npm commands so that you can issue the install and
uninstall commands. For more information, see Troubleshooting installing Zowe CLI on page 187.

Zowe CLI is installed on your computer. See Installing plug-ins on page 65 for information about the
commands for installing plug-ins from the package.

5. (Optional) Create a zosmf profile so that you can issue commands that communicate with z/OSMF. For
information about how to create a profile, see Creating Zowe CLI profiles on page 60.

Tip: Profiles are a Zowe CLI feature that let you store configuration information for use on multiple commands.
You can create a profile that contains your username, password, and connection details for a particular mainframe
system, then reuse that profile to avoid typing it again on every command.

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For more information, see Displaying Zowe CLI help on page 57.

Installing Zowe CLI from an online registry

If your computer is connected to the Internet, you can use the following method to install Zowe CLI from an npm
registry.

Follow these steps:

1. Ensure that the following prerequisite software is installed on your computer:

• Node.js V8.0 or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed.

• Node Package Manager V5.0 or later

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

2. Issue the following command to set the registry to the Zowe CLI scoped package on Bintray. In addition to setting
the scoped registry, your non-scoped registry must be set to an npm registry that includes all of the dependencies
for Zowe CLI, such as the global npm registry:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

3. Issue the following command to install Zowe CLI from the registry:

npm install -g @brightside/core@latest

4. (Optional) To install all available plug-ins to Zowe CLI, issue the following command:

zowe plugins install @brightside/cics@latest

Note: For more information about how to install multiple plug-ins, update to a specific version of a plug-in, and
install from specific registries, see Installing plug-ins on page 65.

5. (Optional) Create a zosmf profile so that you can issue commands that communicate with z/OSMF. For
information about how to create a profile, see Creating Zowe CLI profiles on page 60.

Tip: Profiles are a Zowe CLI feature that let you store configuration information for use on multiple commands. You
can create a profile that contains your username, password, and connection details for a particular mainframe system,
then reuse that profile to avoid typing it again on every command.

https://nodejs.org/en/download/

 | User Guide | 41

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For more information, see Displaying Zowe CLI help on page 57.

Testing Zowe CLI connection to z/OSMF

You can issue a command at any time to receive diagnostic information from the server and confirm that Zowe CLI
can communicate with z/OSMF or other mainframe APIs.

Tip: We recommend that you append --help to the end of commands in the product to see the complete set of
commands and options available to you. For example, issue zowe profiles --help to learn more about how to
list profiles, switch your default profile, or create different profile types.

Without a Profile

Verify that your CLI can communicate with z/OSMF by issuing the following command:

zowe zosmf check status --host <host> --port <port> --user <username> --pass
 <password>

Default profile

Verify that you can use your default profile to communicate with z/OSMF by issuing the following command:

zowe zosmf check status

Specific profile

Verify that you can use a specific profile to communicate with z/OSMF by issuing the following command:

zowe zosmf check status --zosmf-profile <profile_name>

The commands return a success or failure message and display information about your z/OSMF server. For example,
the z/OSMF version number and a list of installed plug-ins. Report any failure to your systems administrator and use
the information for diagnostic purposes.

Uninstalling Zowe

You can uninstall Zowe if you no longer need to use it. Follow these procedures to uninstall each Zowe component.

• Uninstalling Zowe from z/OS
• Uninstalling Zowe CLI from the desktop on page 42

Uninstalling Zowe from z/OS

Follow these steps on z/OS:

1. Stop the Zowe started task which stops all of its microservices by using the following command:

C ZOWESVR

 | User Guide | 42

2. Delete the ZOWESVR member from your system PROCLIB data set.

To do this, you can issue the following TSO DELETE command from the TSO READY prompt or from ISPF
option 6:

delete 'your.zowe.proclib(zowesvr)'

Alternatively, you can issue the TSO DELETE command at any ISPF command line by prefixing the command
with TSO:

tso delete 'your.zowe.proclib(zowesvr)'

To query which PROCLIB data set that ZOWESVR is put in, you can view the SDSF JOB log of ZOWESVR and
look for the following message:

IEFC001I PROCEDURE ZOWESVR WAS EXPANDED USING SYSTEM LIBRARY
 your.zowe.proclib

If no ZOWESVR JOB log is available, issue the /$D PROCLIB command at the SDSF COMMAND INPUT
line and BROWSE each of the DSNAME=some.jes.proclib output lines in turn with ISPF option 1, until
you find the first data set that contains member ZOWESVR. Then issue the DELETE command as shown above.

3. Remove RACF® \(or equivalent\) definitions using the following command:

RDELETE STARTED (ZOWESVR.*)
SETR RACLIST(STARTED) REFRESH
REMOVE (userid) GROUP(IZUUSER)

where userid indicates the user ID that is used to install Zowe.

Uninstalling Zowe CLI from the desktop

Important\! The uninstall process does not delete the profiles and credentials that you created when using the product
from your computer. To delete the profiles from your computer, delete them before you uninstall Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe CLI.

Follow these steps:

1. Open a command line window.

Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.
2. List all profiles that you created for a Zowe CLI command groups on page 57 by issuing the following

command:

 zowe profiles list <profileType>

Example:

$ zowe profiles list zosmf
The following profiles were found for the module zosmf:
'SMITH-123' (DEFAULT)
smith-123@SMITH-123-W7 C:\Users\SMITH-123
$

 | User Guide | 43

3. Delete all of the profiles that are listed for the command group by issuing the following command:

Tip: For this command, use the results of the list command.

Note: When you issue the delete command, it deletes the specified profile and its credentials from the
credential vault in your computer's operating system.

zowe profiles delete <profileType> <profileName> --force

Example:

zowe profiles delete zosmf SMITH-123 --force

4. Repeat Steps 2 and 3 for all Zowe CLI command groups and profiles.
5. Uninstall Zowe CLI by issuing one of the following commands:

• If you installed Zowe CLI from the package, issue the following command

npm uninstall --global @brightside/core

• If you installed Zowe CLI from the online registry, issue the following command:

npm uninstall --global brightside

The uninstall process removes all Zowe CLI installation directories and files from your computer.
6. Delete the C:\Users\<user_name>\.brightside directory on your computer. The directory contains the

Zowe CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.
7. If you installed Zowe CLI from the online registry, issue the following command to clear your scoped

npm registry:

npm config set @brightside:registry

Configuring Zowe

Zowe Application Framework configuration

After you install Zowe, you can optionally configure the terminal application plug-ins or modify the Zowe
Application Server and Zowe System Services (ZSS) configuration, if needed.

Setting up terminal application plug-ins

Follow these optional steps to configure the default connection to open for the terminal application plug-ins.

Setting up the TN3270 mainframe terminal application plug-in

_defaultTN3270.json is a file in tn3270-ng2/, which is deployed during setup. Within this file, you can
specify the following parameters to configure the terminal connection:

 "host": <hostname>
 "port": <port>
 “security”: {
 type: <”telnet” or “tls”>
 }

 | User Guide | 44

Setting up the VT Terminal application plug-in

_defaultVT.json is a file in vt-ng2/, which is deployed during setup. Within this file, you can specify the
following parameters to configure the terminal connection:

 “host”:<hostname>
 “port”:<port>
 “security”: {
 type: <”telnet” or “ssh”>
 }

Configuring the Zowe Application Server and ZSS
Configuration file

The Zowe Application Server and ZSS rely on many parameters to run, which includes setting up networking,
deployment directories, plug-in locations, and more.

For convenience, the Zowe Application Server and ZSS read from a JSON file with a common structure. ZSS reads
this file directly as a startup argument, while the Zowe Application Server (as defined in the zlux-server-
framework repository) accepts several parameters, which are intended to be read from a JSON file through an
implementer of the server, such as the example in the zlux-app-server repository, the js/zluxServer.js
file. This file accepts a JSON file that specifies most, if not all, of the parameters needed. Other parameters can be
provided through flags, if needed.

An example of a JSON file (zluxserver.json) can be found in the zlux-app-server repository, in the
config directory.

Note: All examples are based on the zlux-app-server repository.

Network configuration

Note: The following attributes are to be defined in the server's JSON configuration file.

The Zowe Application Server can be accessed over HTTP, HTTPS, or both, provided it has been configured for either
(or both).

HTTP

To configure the server for HTTP, complete these steps:

1. Define an attribute http within the top-level node attribute.
2. Define port within http. Where port is an integer parameter for the TCP port on which the server will listen.

Specify 80 or a value between 1024-65535.

HTTPS

For HTTPS, specify the following parameters:

1. Define an attribute https within the top-level node attribute.
2. Define the following within https:

• port: An integer parameter for the TCP port on which the server will listen. Specify 443 or a value between
1024-65535.

• certificates: An array of strings, which are paths to PEM format HTTPS certificate files.
• keys: An array of strings, which are paths to PEM format HTTPS key files.
• pfx: A string, which is a path to a PFX file which must contain certificates, keys, and optionally Certificate

Authorities.
• certificateAuthorities (Optional): An array of strings, which are paths to certificate authorities files.
• certificateRevocationLists (Optional): An array of strings, which are paths to certificate revocation list (CRL)

files.

Note: When using HTTPS, you must specify pfx, or both certificates and keys.

 | User Guide | 45

Network example

In the example configuration, both HTTP and HTTPS are specified:

 "node": {
 "https": {
 "port": 8544,
 //pfx (string), keys, certificates, certificateAuthorities, and
 certificateRevocationLists are all valid here.
 "keys": ["../deploy/product/ZLUX/serverConfig/server.key"],
 "certificates": ["../deploy/product/ZLUX/serverConfig/server.cert"]
 },
 "http": {
 "port": 8543
 }
 }

Deploy configuration

When the Zowe Application Server is running, it accesses the server's settings and reads or modifies the contents of
its resource storage. All of this data is stored within the Deploy folder hierarchy, which is spread out into a several
scopes:

• Product: The contents of this folder are not meant to be modified, but used as defaults for a product.
• Site: The contents of this folder are intended to be shared across multiple Zowe Application Server instances,

perhaps on a network drive.
• Instance: This folder represents the broadest scope of data within the given Zowe Application Server instance.
• Group: Multiple users can be associated into one group, so that settings are shared among them.
• User: When authenticated, users have their own settings and storage for the application plug-ins that they use.

These directories dictate where the Configuration Dataservice on page 147 stores content.

Deploy example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 installation process.
 "rootDir":"../deploy",
 "productDir":"../deploy/product",
 "siteDir":"../deploy/site",
 "instanceDir":"../deploy/instance",
 "groupsDir":"../deploy/instance/groups",
 "usersDir":"../deploy/instance/users"

Application plug-in configuration

This topic describes application plug-ins that are defined in advance.

In the configuration file, you can specify a directory that contains JSON files, which tell the server what application
plug-in to include and where to find it on disk. The backend of these application plug-ins use the server's plug-in
structure, so much of the server-side references to application plug-ins use the term plug-in.

To include application plug-ins, define the location of the plug-ins directory in the configuration file, through the top-
level attribute pluginsDir.

Note: In this example, the directory for these JSON files is /plugins. Yet, to separate configuration files from
runtime files, the zlux-app-server repository copies the contents of this folder into /deploy/instance/
ZLUX/plugins. So, the example configuration file uses the latter directory.

Plug-ins directory example

// All paths relative to zlux-app-server/js or zlux-app-server/bin

 | User Guide | 46

// In real installations, these values will be configured during the install
 process.
//...
 "pluginsDir":"../deploy/instance/ZLUX/plugins",

Logging configuration

For more information, see Logging utility on page 161.

ZSS configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are:rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the server, but
if the Zowe Application Server and ZSS are not run from the same location, then these directories can be different.

The zssPort attribute is specific to ZSS. This is the TCP port on which ZSS listens in order to be contacted by the
Zowe Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting the Zowe Application Server to ZSS

When you run the Zowe Application Server, specify the following flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

• -h: Declares the host where ZSS can be found. Use as "-h \<hostname\>"
• -P: Declares the port at which ZSS is listening. Use as "-P \<port\>"

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the zluxserver.json
file.

For example:

"logLevels": {
 "_zsf.routing": 0,
 "_zsf.install": 0,
 "_zss.traceLevel": 0,
 "_zss.fileTrace": 1
}

Specify the following settings inside the logLevels object.

All settings are optional.

Zowe Application Server tracing

To determine how the Zowe Application Server (zlux-app-server) is working, you can assign a logging level to
one or more of the pre-defined logger names in the zluxserver.json file.

The log prefix for the Zowe Application Server is _zsf, which is used by the server framework. (Applications and
plug-ins that are attached to the server do not use the _zsf prefix.)

The following are the logger names that you can specify:

_zsf.bootstrap Logging that pertains to the startup of the server.

_zsf.auth Logging for network calls that must be checked for authentication and authorization purposes.

_zsf.static Logging of the serving of static files (such as images) from an application's /web folder.

_zsf.child Logging of child processes, if any.

_zsf.utils Logging for miscellaneous utilities that the server relies upon.

_zsf.proxy Logging for proxies that are set up in the server.

_zsf.install Logging for the installation of plug-ins.

 | User Guide | 47

_zsf.apiml Logging for communication with the api mediation layer.

_zsf.routing Logging for dispatching network requests to plug-in dataservices.

_zsf.network Logging for the HTTPS server status (connection, ports, IP, and so on)

Log levels

The log levels are:

• SEVERE = 0,
• WARNING = 1,
• INFO = 2,
• FINE = 3,
• FINER = 4,
• FINEST = 5

FINE, FINER, and FINEST are log levels for debugging, with increasing verbosity.

Enabling tracing for ZSS

To increase logging for ZSS, you can assign a logging level (an integer value greater than zero) to one or more of the
pre-defined logger names in the zluxserver.json file.

A higher value specifies greater verbosity.

The log prefix for ZSS is _zss. The following are the logger names that you can specify:

_zss.traceLevel: Controls general server logging verbosity.

_zss.fileTrace: Logs file serving behavior (if file serving is enabled).

_zss.socketTrace: Logs general TCP Socket behavior.

_zss.httpParseTrace: Logs parsing of HTTP messages.

_zss.httpDispatchTrace: Logs dispatching of HTTP messages to dataservices.

_zss.httpHeadersTrace: Logs parsing and setting of HTTP headers.

_zss.httpSocketTrace: Logs TCP socket behavior for HTTP.

_zss.httpCloseConversationTrace: Logs HTTP behavior for when an HTTP conversation ends.

_zss.httpAuthTrace: Logs behavior for session security.

When you are finished specifying the settings, save the zluxserver.json file.

Zowe Application Framework logging

The Zowe Application Framework log files contain processing messages and statistics. The log files are generated in
the following default locations:

• Zowe Application Server: zlux-app-server/log/nodeServer-yyyy-mm-dd-hh-mm.log
• ZSS: zlux-app-server/log/zssServer-yyyy-mm-dd-hh-mm.log

The logs are timestamped in the format yyyy-mm-dd-hh-mm and older logs are deleted when a new log is created at
server startup.

Controlling the logging location

The log information is written to a file and to the screen. (On Windows, logs are written to a file only.)

ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables

To control where the information is logged, use the environment variable ZLUX_NODE_LOG_DIR, for the Zowe
Application Server, and ZSS_LOG_DIR, for ZSS. While these variables are intended to specify a directory, if you
specify a location that is a file name, Zowe will write the logs to the specified file instead (for example: /dev/null
to disable logging).

 | User Guide | 48

When you specify the environment variables ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR and you
specify directories rather than files, Zowe will timestamp the logs and delete the older logs that exceed the
ZLUX_NODE_LOGS_TO_KEEP threshold.

ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

If you set the log file name for the Zowe Application Server by setting the ZLUX_NODE_LOG_FILE environment
variable, or if you set the log file for ZSS by setting the ZSS_LOG_FILE environment variable, there will only be one
log file, and it will be overwritten each time the server is launched.

Note: When you set the ZLUX_NODE_LOG_FILE or ZSS_LOG_FILE environment variables, Zowe will not
override the log names, set a timestamp, or delete the logs.

If the directory or file cannot be created, the server will run (but it might not perform logging properly).

Retaining logs

By default, the last five logs are retained. To specify a different number of logs to retain, set
ZLUX_NODE_LOGS_TO_KEEP (Zowe Application Server logs) or ZSS_LOGS_TO_KEEP (ZSS logs) to the
number of logs that you want to keep. For example, if you set ZLUX_NODE_LOGS_TO_KEEP to 10, when the
eleventh log is created, the first log is deleted.

Configuring Zowe CLI

After you install Zowe, you can optionally perform Zowe CLI configurations.

Setting environment variables for Zowe CLI

You can set environment variables on your operating system to modify Zowe CLI behavior, such as the log level
and the location of the .zowe directory, where the logs, profiles, and plug-ins are stored. Refer to your computer's
operating system documentation for information about how to set environmental variables.

Setting log levels

You can set the log level to adjust the level of detail that is written to log files:

Important\! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,
command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

ZOWE_APP_LOG
_LEVEL

Zowe CLI logging level Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

ZOWE_IMPERATIVE
_LOG_LEVEL

Imperative CLI Framework
logging level

Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

Setting the .zowe directory

You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log files,
profiles, and plug-ins for the product:

Environment Variable Description Values Default

ZOWE_CLI_HOME Zowe CLI home directory
location

Any valid path on your
computer

Your computer default
home directory

 | User Guide | 49

Using Zowe

Using the Zowe Desktop

You can use the Zowe Application Framework to create application plug-ins for the Zowe Desktop. For more
information, see Extending the Zowe Application Framework (zLUX) on page 137.

Navigating the Zowe Desktop

From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

where:

• myHost is the host on which you are running the Zowe Application Server.
• httpsPort is the value that was assigned to node.https.port in zluxserver.json. For example, if

you run the Zowe Application Server on host myhost and the value that is assigned to node.https.port in
zluxserver.json is 12345, you would specify https://myhost:12345/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html.

Logging in and out of the Zowe Desktop

1. To log in, enter your mainframe credentials in the Username and Password fields.
2. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the the avatar in the lower right corner and click Sign Out.

Pinning applications to the task bar

1. Click the Start menu.
2. Locate the application you want to pin.
3. Right-click the on the application icon and select Pin to taskbar.

Using Explorers within the Zowe Desktop

The explorer server provides a sample web client that can be used to view and manipulate the Job Entry Subsystem
(JES), data sets, z/OS UNIX System Services (USS), and System log.

The following views are available from the explorer server Web UI and are accessible via the explorer server icon
located in the application draw of Zowe Desktop (Navigation between views can be performed using the menu draw
located in the top left corner of the explorer server Web UI):

JES Explorer

Use this view to query JES jobs with filters, and view the related steps, files, and status. You can also purge jobs from
this view.

MVS Explorer

Use this view to browse the MVS™ file system by using a high-level qualifier filter. With the MVS Explorer, you can
complete the following tasks:

• List the members of partitioned data sets.
• Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").
• Submit data sets that contain JCL to Job Entry Subsystem (JES).
• Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for

JCL and REXX.
• Conduct basic validation of record length when editing JCL.
• Delete data sets and members.

 | User Guide | 50

• Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is then
reusable for example in help tickets.

USS Explorer

Use this view to browse the USS files by using a path. With the USS Explorer, you can complete the following tasks:

• List files and folders.
• Create new files and folders.
• Edit files with basic syntax highlighting and content assist for JCL and REXX.
• Delete files and folders.

Zowe Desktop application plug-ins

Application plug-ins are applications that you can use to access the mainframe and to perform various tasks.
Developers can create application plug-ins using a sample application as a guide. The following application plug-ins
are installed by default:

Hello World Sample

The Hello World sample application plug-in for developers demonstrates how to create a dataservice and how to
create an application plug-in using Angular.

IFrame Sample

The IFrame sample application plug-in for developers demonstrates how to embed pre-made webpages within the
desktop as an application and how an application can request an action of another application (see the source code for
more information).

z/OS Subsystems

The z/OS Subsystems plug-in helps you find information about the important services on the mainframe, such as
CICS, Db2, and IMS.

TN3270

This TN3270 plug-in provides a 3270 connection to the mainframe on which the Zowe Application Server runs.

VT Terminal

The VT Terminal plug-in provides a connection to UNIX System Services and UNIX.

API Catalog

The API Catalog plug-in lets you view API services that have been discovered by the API Mediation Layer. For
more information about the API Mediation Layer, Discovery Service, and API Catalog, see API Mediation Layer
Overview.

Editor

With the Zowe Editor you can create and edit files on the system that Zowe serves.

Workflows

From the Workflows application plug-in you can create, manage, and use z/OSMF workflows to manage your system.

Using the Editor

With the Zowe Editor, you can create and edit the many types of files.

Specifying a language server

To specify a language server, complete these steps:

1. From the Language Server menu, select URL*.
2. From the Language Server Setting, Put your config here area, paste your configuration.
3. Ensure that the Enable Language Server check box is selected.
4. Click Save.

 | User Guide | 51

Specifying a language

From the Language menu, select the language you want to use.

Opening a directory

To open a directory on the system, complete these steps:

1. From the File menu, select Open Directory.(Alternatively, you can click Open Directory in the File Explorer.)
2. From the Open Directory, Input Your Directory field, type the name of the directory you want to open. For

example: /u/zs1234
3. Click Open.

The File Explorer on the left side of the window lists the folders and files in the specified directory. Clicking on a
folder expands the tree. Clicking on a file opens a tab that displays the file contents.

Creating a new file

To create a new file, complete these steps:

1. From the File menu, select New File. The New File tab opens.
2. From the New File, File Name field, type the name of the file.
3. Click Create.

Saving a file

To save a file, click File > Save.

Note: To save all files, click File > Save All (or Ctrl+S).

Using the Workflows application plug-in

The Workflows application plug-in is available from the Zowe Deskstop Start menu. To launch Workflows, click the
Start menu in the lower-left corner of the desktop and click the Workflows application plug-in icon. The Users/Tasks
Workflows window opens.

Logging on to the system

If you are prompted to log on to the system, complete these steps:

1. Enter your user ID and password.
2. Click Sign in.

Updating the data display

To refresh the data on any tab, click in the upper right corner of the window.

Configuration

From the Configuration tab, you can view, add, and remove servers.

Adding a z/OSMF server

Complete these steps to add a new z/OSMF server:

1. Click the Configuration tab.
2. Click the plus sign (+) on the left side of the window.
3. In the Host field, type the name of the host.
4. In the Port field, type the port number.
5. Click OK.

Testing a server connection

To test the connection, click Test. When the server is online the Online indicator next to the server Host and Port is
green.

 | User Guide | 52

Setting a server as the default z/OSMF server

Complete these steps to set a default z/OSMF server:

1. Click Set as default.
2. Enter your user ID and password.
3. Click Sign in.

Note: You must specify a default server.

Removing a server

To remove a server, click x next to the server that you want to remove.

Reload a server configuration

To reload a server configuration, click Reload.

Save a server configuration

To save a server configuration, click Save.

Workflows

To display all workflows on the system, click the Workflows tab.

You can sort the workflows based on the following information:

Workflow

The name of the workflow.

Description

The description of the workflow.

Version

The version number.

Owner

The user ID of the workflow owner.

System

The system identifier.

Status

The status of the workflow (In progress or Completed).

Progress

Indicates how much of the workflow has been completed based on the number of tasks completed.

Searching workflows

To locate a specific workflow, type a search string in the search box in the upper right corner of the window.

Defining a workflow

To define a workflow, complete these steps:

1. From the Workflows tab, click Actions > New workflow. (By default, the Advanced Mode check box is
selected.)

2. In the Name field, specify a descriptive name for the workflow.
3. In the Workflow definition file field, specify the primary XML file for this workflow.
4. In the System field, specify a system.
5. In the Owner field, specify the user ID of the person that is responsible for assigning the tasks in the workflow.

(To set the owner to the current user, select the Set owner to current user check box.)

 | User Guide | 53

6. Click OK.

Viewing tasks

To view the tasks associated with a workflow, click the My Tasks tab. Workflows that have assigned tasks are shown
on the left side of the window. The task work area is on the right side of the window.

You can choose to view workflows that have Pending or Completed tasks or you can choose to view all workflows
(Pending and Completed) and their tasks, regardless of the task status.

For each workflow, you can click the arrow to expand or collapse the task list. Assigned tasks display below each
workflow. Hovering over each task displays more information about the task, such as the status and the owner.

Each task has a indicator of PERFORM (a step to be performed) or CHECK (Check the step that was performed).
Clicking CHECK or PERFORM opens a work area on the right side of the window. When a task is complete, a
green clipboard icon with a checkmark is displayed.

Note: If you are viewing tasks on a Pending or Completed tab, only those workflows that have tasks with a
corresponding status, are displayed.

Task work area

When you click CHECK or PERFORM, a work area on the right side of the window opens to display the steps to

complete the task. Expand or collapse the work area by clicking .

Tip: Hovering over the task description in the title bar of the work area window on the right side displays more
information about the corresponding workflow and the step description.

Performing a task

1. To perform a task that has steps that are assigned to you, click PERFORM.
2. Use the work area to perform the steps associated with the selected task. Depending on the task, you might use an

embedded tool (such as another application) or you might complete a series of steps to complete the task.
3. If there are multiple steps to perform, click Next to advance to the next step for the task.
4. Click Finish.

Note: When a task is complete, a green clipboard icon with a checkmark is displayed next to the task.

Checking a task

1. To check a task, click CHECK.
2. In the task work area, view the JESMSGLG, JESJCL, JESYSMSG, or SYSTSPRT output that is associated with

the selected task.

Managing tasks

To manage a task in the PERFORM status, click to the right of the task status. Choose from the following options:

Properties

Display the title and description of the task.

Perform

Perform the first step.

Skip

Skip this step.

Override Complete

Override the completion of the step. The selected step will be bypassed and will not be performed for this workflow.
You must ensure that the step is performed manually.

Assignment

 | User Guide | 54

Opens the Manage Assignees window where authorized users can add or remove the user ID of the person that is
assigned to the step.

Return

Remove ownership of the step.

Viewing warnings

To view any warning messages that were encountered, click the Warnings tab. A message is listed in this tab each
time it is encountered.

To locate a specific message, type a search string in the search box in the upper right corner of the window.

You can sort the warning messages based on the following information.

Message Code

The message code that is associated with the warning.

Description

A description of the warning.

Date

The date of the warning.

Corresponding Workflow

The workflow that is associated with the warning.

API Catalog

As an application developer, use the API Catalog to view what services are running in the API Mediation Layer.
Through the API Catalog, you can also view the associated API documentation corresponding to a service,
descriptive information about the service, and the current state of the service. The tiles in the API Catalog can be
customized by changing values in the mfaas.catalog-ui-tile section defined in the application.yml of a service. A
microservice that is onboarded with the API Mediation Layer and configured appropriately, registers automatically
with the API Catalog and a tile for that service is added to the Catalog.

Note: For more information about how to configure the API Catalog in the application.yml, see: Java REST APIs
with Spring Boot on page 91.

View Service Information and API Documentation in the API Catalog

Use the API Catalog to view services, API documentation, descriptive information about the service, the current state
of the service, service endpoints, and detailed descriptions of these endpoints.

Note: Verify that your service is running. At least one started and registered instance with the Discovery Service is
needed for your service to be visible in the API Catalog.

Follow these steps:

1. Use the search bar to find the service that you are looking for. Services that belong to the same product family are
displayed on the same tile.

Example: Sample Applications, Endevor, SDK Application
2. Click the tile to view header information, the registered services under that family ID, and API documentation for

that service.

Notes:

• The state of the service is indicated in the service tile on the dashboard page. If no instances of the service are
currently running, the tile displays a message displays that no services are running.

• At least one instance of a service must be started and registered with the discovery service for it to be visible in
the API Catalog. If the service that you are onboarding is running, and the corresponding API documentation

 | User Guide | 55

is displayed, this API documentation is cached and remains visible even when the service and all service
instances stop.

• Descriptive information about the service and a link to the home page of the service is displayed.

Example:

 | User Guide | 56

3. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the
endpoint description, and the full structure of the endpoint.

Example:

Notes:

• If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.
• The structure of the endpoint is displayed relative to the base URL.
• The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:

 | User Guide | 57

/api/v1/{yourServiceId}/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/api/v1/{yourServiceId}/{endpointName}

Both links target the same endpoint location.

Using Zowe CLI

This section contains information about using Zowe CLI.

Displaying Zowe CLI help

Zowe CLI contains a help system that is embedded directly into the command-line interface. When you want help
with Zowe CLI, you issue help commands that provide you with information about the product, syntax, and usage.

Displaying top-level help

To begin using the product, open a command line window and issue the following command to view the top-level
help descriptions:

zowe --help

Tip: The command zowe initiates the product on a command line. All Zowe CLI commands begin with zowe.

Displaying command group, action, and object help

You can use the --help global option get more information about a specific command group, action, or object. Use
the following syntax to display group-level help and learn more about specific command groups (for example, zos-
jobs and zos-files):

zowe <group, action, or object name> --help

zowe zos-files create --help

Zowe CLI command groups

Zowe CLI contains command groups that focus on specific business processes. For example, the zos-files
command group provides the ability to interact with mainframe data sets. This article provides you with a brief
synopsis of the tasks that you can perform with each group. For more information, see Displaying Zowe CLI help on
page 57.

The commands available in the product are organized in a hierarchical structure. Command groups (for example,
zos-files) contain actions (for example, create) that let you perform actions on specific objects (for example,
a specific type of data set). For each action that you perform on an object, you can specify options that affect the
operation of the command.

Important! Before you issue these commands, verify that you completed the steps in Create a Zowe CLI profile
and Testing Zowe CLI connection to z/OSMF on page 41 to help ensure that Zowe CLI can communicate with z/
OS systems.

Zowe CLI contains the following command groups:

plugins

The plugins command group lets you install and manage third-party plug-ins for the product. Plug-ins extend the
functionality of Zowe CLI in the form of new commands.

With the plugins command group, you can perform the following tasks:

• Install or uninstall third-party plug-ins.
• Display a list of installed plug-ins.

 | User Guide | 58

• Validate that a plug-in integrates with the base product properly.

Note: For more information about plugins syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe plugins -h

profiles

The profiles command group lets you create and manage profiles for use with other Zowe CLI command groups.
Profiles allow you to issue commands to different mainframe systems quickly, without specifying your connection
details with every command.

With the profiles command group, you can perform the following tasks:

• Create, update, and delete profiles for any Zowe CLI command group that supports profiles.
• Set the default profile to be used within any command group.
• List profile names and details for any command group, including the default active profile.

Note: For more information about profiles syntax, actions, and options, open Zowe CLI, and issue the following
command:

zowe profiles -h

provisioning

The provisioning command group lets you perform IBM z/OSMF provisioning tasks with templates and provisioned
instances from Zowe CLI.

With the provisioning command group, you can perform the following tasks:

• Provision cloud instances using z/OSMF Software Services templates.
• List information about the available z/OSMF Service Catalog published templates and the templates that you used

to publish cloud instances.
• List summary information about the templates that you used to provision cloud instances. You can filter the

information by application (for example, DB2 and CICS) and by the external name of the provisioned instances.
• List detail information about the variables used (and their corresponding values) on named, published cloud

instances.

Note: For more information about provisioning syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe provisioning -h

zos-console

The zos-console command group lets you issue commands to the z/OS console by establishing an extended Multiple
Console Support (MCS) console.

With the zos-console command group, you can perform the following tasks: Important\! Before you issue z/OS
console commands with Zowe CLI, security administrators should ensure that they provide access to commands that
are appropriate for your organization.

• Issue commands to the z/OS console.
• Collect command responses and continue to collect solicited command responses on-demand.

Note: For more information about zos-console syntax, actions, and options, open Zowe CLI and issue the
following command:

zowe zos-console -h

 | User Guide | 59

zos-files

The zos-files command group lets you interact with data sets on z/OS systems.

With the zos-files command group, you can perform the following tasks:

• Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of data sets
from templates. You can specify options to customize the data sets you create.

• Download mainframe data sets and edit them locally in your preferred Integrated Development Environment
(IDE).

• Upload local files to mainframe data sets.
• List available mainframe data sets.
• Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM data

sets.

Note: For more information about zos-files syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-files -h

zos-jobs

The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.

With the zos-jobs command group, you can perform the following tasks:

• Submit jobs from JCL that resides on the mainframe or a local file.
• List jobs and spool files for a job.
• View the status of a job or view a spool file from a job.

Note: For more information about zos-jobs syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-jobs -h

zos-tso

The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS systems.

With the zos-tso command group, you can perform the following tasks:

• Excecute REXX scripts
• Create a TSO address space and issue TSO commands to the address space.
• Review TSO command response data in Zowe CLI.

Note: For more information about zos-tso syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-tso -h

zosmf

The zosmf command group lets you work with Zowe CLI profiles and get general information about z/OSMF.

With the zosmf command group, you can perform the following tasks:

• Create and manage your Zowe CLI zosmf profiles. You must have at least one zosmf profile to issue most
commands. Issue the zowe help explain profiles command in Zowe CLI to learn more about using
profiles.

• Verify that your profiles are set up correctly to communicate with z/OSMF on your system. For more information,
see Test Connection to z/OSMF.

• Get information about the current z/OSMF version, host, port, and plug-ins installed on your system.

 | User Guide | 60

Note: For more information about zosmf syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zosmf -h

Defining Zowe CLI connection details

Zowe CLI has a command option order of precedence that lets you define arguments and options for commands
in multiple ways (command-line, environment variables, and profiles). This provides flexibility when you issue
commands and write automation scripts. This topic explains order of precedence and different methods for specifying
your mainframe connection details.

• Understanding command option order of precedence on page 60
• Creating Zowe CLI profiles on page 60
• Defining Environment Variables on page 61
• Integrating with API Mediation Layer on page 62

Understanding command option order of precedence

Before you issue commands, it is helpful to understand the command option order of precedence. The following is the
order in which Zowe CLI searches for your command arguments and options when you issue a command:

1. Arguments and options that you specify directly on the command line.
2. Environment variables that you define in the computer's operating system. For more information, see Defining

Environment Variables on page 61
3. User profiles that you create.
4. The default value for the argument or option.

The affect of the order is that if you omit an argument/option from the command line, Zowe CLI searches for an
environment variable that contains a value that you defined for the argument/option. If Zowe CLI does not find a
value for the argument/option in an environment variable, Zowe CLI searches your user profiles for the value that you
defined for the option/argument. If Zowe CLI does not find a value for the argument/option in your profiles, Zowe
CLI executes the command using the default value for the argument/option.

Note: If a required option or argument value is not located, you receive a syntax error message that states Missing
Positional Argument or Missing Option.

Creating Zowe CLI profiles

Profiles are a Zowe CLI functionality that let you store configuration information for use on multiple commands. You
can create a profile that contains your username, password, and connection details for a particular mainframe system,
then reuse that profile to avoid typing it again on every command. You can switch between profiles to quickly target
different mainframe subsystems.

To create a zosmf profile, issue the following command. Refer to the available options in the help text to define your
profile:

zowe profiles create zosmf-profile --help

Creating a profile to access an API Mediation Layer

You can create profiles that access an either an exposed API or API Mediation Layer (API ML) in the following
ways:

• When you create a profile, specify the host and port of the API that you want to access. When you only provide
the host and port configuration, Zowe CLI connects to the exposed endpoints of a specific API.

• When you create a profile, specify the host, port, and the base path of API ML instance that you want to access.
Using the base path to API ML, Zowe CLI routes your requests to an appropriate instance of the API based on the
system load and the available instances of the API.

Example:

 | User Guide | 61

The following example illustrates the command to create a profile that connects to z/OSMF through API ML with the
base path my/api/layer:

zowe profiles create zosmf myprofile -H <myhost> -P <myport> -u <myuser> --
pw <mypass> --base-path <my/api/layer>

For more information, see Integrating with API Mediation Layer on page 62.

• When you create a profile, specify the host and port of the API that you want to access. When you only provide
the host and port configuration, Zowe CLI connects to the exposed endpoints of a specific API.

• When you create a profile, specify the host, port, and the base path of the API Mediation Layer instance that you
want to access. Using the base path to an API Mediation Layer, Zowe CLI routes your requests to an appropriate
instance of the API based on the system load and the available instances of the API.

Example:

The following example illustrates the command to create a profile that connects to z/OSMF through API Mediation
Layer with the base path my/api/layer:

zowe profiles create zosmf myprofile -H <myhost> -P <myport> -u <myuser> --
pw <mypass> --base-path <my/api/layer>

After you create a profile, verify that it can communicate with z/OSMF. For more information, see Testing Zowe CLI
connection to z/OSMF on page 41.

Defining Environment Variables

You can define environment variables in your environment to execute commands more efficiently. You can store a
value, such as your password, in an environment variable, then issue commands without specifying your password
every time. The term environment refers to your operating system, but it can also refer to an automation server, such
as Jenkins or a Docker container. In this section we explain how to transform arguments and options from Zowe CLI
commands into environment variables and define them with a value. In this section we explain how to transform
arguments and options from Zowe CLI commands into environment variables and define them with a value.

• Assigning an environment variable for a value that is commonly used.

For example, you might want to specify your mainframe user name as an environment variable on your computer.
When you issue a command and omit the --username argument, Zowe CLI automatically uses the value
that you defined in the environment variable. You can now issue a command or create any profile type without
specifying your user name repeatedly.

• Overriding a value that is used in existing profiles.

For example, you might want to override a value that you previously set on multiple profiles to avoid recreating
each profile.This reduces the number of profiles that you need to maintain and lets you avoid specifying every
option on command line for one-off commands.

• Specifying environment variables in a Jenkins environment (or other automation server) to store
credentials securely.

You can set values in Jenkins environment variables for use in scripts that run in your CI/CD pipeline. You
can define Jenkins environment variables in the same manner that you can on your computer. You can also
define sensitive information in the Jenkins secure credential store. For example, you might need to define your
mainframe password in the secure credential store so that it is not available in plain text.

Transforming arguments/options to environment variable format

Transform the option/argument into the correct format for a Zowe CLI environment variable, then define values to the
new variable. The following rules apply to this transformation:

• Prefix environment variables with ZOWE_OPT_
• Convert lowercase letters in arguments/options to uppercase letters
• Convert hyphens in arguments/options to underscores

 | User Guide | 62

Tip: See your operating system documentation for information about how to set and get environment variables. The
procedure for setting environment variables varies between Windows, Mac, and various versions of Linux operating
systems.

Examples:

The following table shows command line options that you might want to transform and the resulting environment
variable to which you should define the value. Use the appropriate procedure for for your operating system to define
the variables.

Command Option Environment Variable Use Case

--user ZOWE_OPT_USER Define your mainframe user name
to an environment variable to avoid
specifying it on all commands or
profiles.

--reject-unauthorized ZOWE_OPT_REJECT_UNAUTHORIZEDDefine a value of true to the --
reject-unathorized flag
when you always require the flag
and do not want to specify it on all
commands or profiles.

Setting environment variables in an automation server

You can use environment variables in an automation server, such as Jenkins, to write more efficient scripts and make
use of secure credential storage.

You can either set environment variables using the SET command within your scripts, or navigate to Manage
Jenkins \> Configure System \> Global Properties and define an environment variable in the Jenkins GUI. For
example:

Using secure credential storage

Automation tools such as Jenkins automation server usually provide a mechanism for securely storing configuration
(for example, credentials). In Jenkins, you can use withCredentials to expose credentials as an environment
variable (ENV) or Groovy variable.

Note: For more information about using this feature in Jenkins, see Credentials Binding Plugin in the Jenkins
documentation.

Integrating with API Mediation Layer

The API Mediation Layer provides a single point of access to a defined set of microservices. The API Mediation
Layer provides cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and API documentation.

https://jenkins.io/doc/pipeline/steps/credentials-binding/

 | User Guide | 63

When Zowe CLI executes commands that connect to a service through the API Mediation Layer, the layer routes the
command execution requests to an appropriate instance of the API. The routing path is based on the system load and
available instances of the API.

Use the --base-path option on commands to let all of your Zowe CLI core command groups (excludes plug-in
groups) access REST APIs through an API Mediation Layer. To access API Mediation Layers, you specify the base
path, or URL, to the API gateway as you execute your commands. Optionally, you can define the base path URL as
an environment variable or in a profile that you create.

Examples:

The following example illustrates the base path for a REST request that is not connecting through an API Mediation
Layer to one system where an instance of z/OSMF is running:

https://mymainframehost:port/zosmf/restjobs/jobs

The following example illustrates the base path (named api/v1/zosmf1) for a REST request to an API mediation
layer:

https://myapilayerhost:port/api/v1/zosmf1/zosmf/restjobs/jobs

The following example illustrates the command to verify that you can connect to z/OSMF through an API Mediation
Layer that contains the base path my/api/layer:

zowe zosmf check status -H <myhost> -P <myport> -u <myuser> --pw <mypass> --
base-path <my/api/layer>

More Information:

• API Mediation Layer
• Creating a profile to access an API Mediation Layer on page 60

Writing scripts to automate mainframe actions

You can combine multiple Zowe CLI commands in bash or shell scripts to automate actions on z/OS. You can
implement scripts to enhance your development workflow, automate repetitive test or build tasks, and orchestrate
mainframe actions from continuous integration/continuous deployment (CI/CD) tools such as Jenkins or TravisCI.

• Writing a Script on page 63
• Example: Clean up Temporary Data Sets
• Example: Submit Jobs and Save Spool Output

Writing a Script

Write a script that executes multiple CLI commands.

Note: The type of script that you write depends on the programming languages that you use and the environment
where the script is executed. The following procedure is a general guide to Zowe CLI scripts, but you might need to
refer to third-party documentation to learn more about scripting in general.

Follow these steps:

1. Create a new file on your computer with the extension .sh. For example, testScript.sh.

Note: On Linux, an extension is not required. You make the file executable by issuing the command chmod u+x
testScript.

2. At the top of the file, specify the interpreter that your script requires. For example, type #!/bin/sh or #!/
bin/sh.

Note: The command terminal that you use to execute the script depends on what you specify at the top of your
script. Bash scripts require a bash interpreter (bash terminal), while shell scripts can be run from any terminal.

 | User Guide | 64

3. Write a script using a series of Zowe CLI commands.

Tip: You can incorporate commands from other command-line tools in the same script. You might choose to
"pipe" the output of one command into another command.

4. From the appropriate command terminal, issue a command to execute the script. The command you use to execute
script varies by operating system.

The script runs and prints the output in your terminal. You can run scripts manually, or include them in your
automated testing and delivery pipelines.

Example: Clean up Temporary Data Sets

The script in this example lists specified data sets, then loops through the list of data sets and deletes each file. You
can use a similar script to clean up temporary data sets after use.

Note: This script must be run from a bash terminal.

#!/bin/bash
set -e
Project cleanup script - deletes temporary project data sets
Obtain the list of temporary project data sets
dslist=$(zowe files ls ds "my.project.ds*")
Delete each data set in the list
IFS=$'\n'
for ds in $dslist
do
 echo "Deleting Temporary Project Dataset: $ds"
 zowe files delete ds "$ds" -f
done

Example: Submit Jobs and Save Spool Output

The script in this example submits a job, waits for the job to enter output status, and saves the spool files to local files
on your computer.

Note: This script must be run from a bash terminal.

#! /bin/env bash
#submit our job
jobid=$(zowe zos-jobs submit data-set "boech02.public.cntl(iefbr14)" --rff
 jobid --rft string)
echo "Submitted our job, JOB ID is $jobid"
#wait for job to go to output
status="UNKNOWN"
while [["$status" != "OUTPUT"]]; do
 echo "Checking
 status of job $jobid" status=$(zowe zos-jobs view job-status-by-jobid
 "$jobid" --rff status --rft string)
 echo "Current status is $status"
 sleep 5s
done;
echo "Job completed in OUTPUT status. Final result of job: "
zowe zos-jobs view job-status-by-jobid "$jobid"
get a list of all of the spool files for our job now that it's in output
spool_ids=$(zowe zos-jobs list spool-files-by-jobid "$jobid" --rff id --rft
 table)
save each spool ID to a custom file name
while read -r id; do
 zowe zos-jobs view spool-file-by-id "$jobid" "$id" > ./${jobid}_spool_
${id}.txt
 echo "Saved spool DD to ./${jobid}_spool_${id}.txt"
done <<< "$spool_ids"

 | User Guide | 65

Zowe CLI extensions and plug-ins

Extending Zowe CLI

You can install plug-ins to extend the capabilities of Zowe CLI.

Plug-ins CLI to third-party applications are also available, such as Visual Studio Code Extension for Zowe (powered
by Zowe CLI).

Plug-ins add functionality to the product in the form of new command groups, actions, objects, and options.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

Note: For information about how to install, update, and validate a plug-in, see Installing plug-ins on page 65.

The following plug-ins are available:

CA Brightside Plug-in for IBM® CICS®

The Zowe CLI Plug-in for IBM CICS lets you extend Zowe CLI to interact with CICS programs and transactions.
The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS.
For more information, see CICS management client interface on the IBM Knowledge Center.

For more information, see Zowe CLI Plug-in for IBM CICS on page 67.

Zowe CLI plug-in for IBM® Db2® Database

The Zowe CLI plug-in for Db2 enables you to interact with IBM Db2 Database on z/OS to perform tasks
with modern development tools to automate typical workloads more efficiently. The plug-in also enables you to
interact with IBM Db2 to foster continuous integration to validate product quality and stability.

For more information, see Zowe CLI plug-in for IBM Db2 Database on page 71.

VSCode Extension for Zowe

The Visual Studio Code (VSCode) Extension for Zowe lets you interact with data sets that are stored on IBM z/OS
mainframe. Install the extension directly to VSCode to enable the extension within the GUI. You can explore data
sets, view their contents, make changes, and upload the changes to the mainframe. For some users, it can be more
convenient to interact with data sets through a GUI rather than using command-line interfaces or 3270 emulators. The
extension is powered by Zowe CLI.

For more information, see VSCode Extension for Zowe on page 74.

Installing plug-ins

Use commands in the plugins command group to install and manage plug-ins for Zowe CLI.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

You can install the following plug-ins:

• Zowe CLI Plug-in for IBM CICS

Use @brightside/cics@latest in your command syntax to install, update, and validate the plug-in.
• Zowe CLI Plug-in for IBM Db2 Database

Use @brightside/db2@latest in your command syntax to install, update, and validate the IBM Db2
Database plug-in.

Setting the registry

If you installed Zowe CLI from the zowe-cli-bundle.zip distributed with the Zowe PAX media, proceed to the
Installing plug-ins on page 65.

https://code.visualstudio.com/

 | User Guide | 66

If you installed Zowe CLI from a registry, confirm that NPM is set to target the registry by issuing the following
command:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

Meeting the prerequisites

Ensure that you meet the prerequisites for a plug-in before you install the plug-in to Zowe CLI. For documentation
related to each plug-in, see Extending Zowe CLI on page 65.

Installing plug-ins

Issue an install command to install plug-ins to Zowe CLI. The install command contains the following
syntax:

zowe plugins install [plugin...] [--registry <registry>]

• [plugin...] (Optional) Specifies the name of a plug-in, an npm package, or a pointer to a (local or remote)
URL. When you do not specify a plug-in version, the command installs the latest plug-in version and specifies the
prefix that is stored in npm save-prefix. For more information, see npm save prefix. For more information about
npm semantic versioning, see npm semver. Optionally, you can specify a specific version of a plug-in to install.
For example, zowe plugin install pluginName@^1.0.0.

Tip: You can install multiple plug-ins with one command. For example, issue zowe plugin install
plugin1 plugin2 plugin3

• [--registry <registry>](Optional) Specifies a registry URL from which to install a plug-in when you
do not use npm config set to set the registry initially.

Examples: Install plug-ins

• The following example illustrates the syntax to use to install a plug-in that is distributed with the zowe-cli-
bundle.zip. If you are using zowe-cli-bundle.zip, issue the following command for each plug-in .tgz file:

zowe plugins install ./zowe-cli-cics.tgz

• The following example illustrates the syntax to use to install a plug-in that is named "my-plugin" from a specified
registry:

zowe plugins install @brightside/my-plugin@latest

• The following example illustrates the syntax to use to install a specific version of "my-plugins"

 zowe plugins install @brightside/my-plugin@"^1.2.3"

Validating plug-ins

Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify) to verify
that the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing
command groups in the base application. The command response provides you with details or error messages about
how the plug-ins integrate with Zowe CLI.

Perform validation after you install the plug-ins to help ensure that it integrates with Zowe CLI.

The validate command has the following syntax:

zowe plugins validate [plugin]

• [plugin](Optional) Specifies the name of the plug-in that you want to validate. If you do not specify a plug-in
name, the command validates all installed plug-ins. The name of the plug-in is not always the same as the name of
the NPM package.

https://docs.npmjs.com/misc/config#save-prefix
https://docs.npmjs.com/misc/semver

 | User Guide | 67

Examples: Validate plug-ins

• The following example illustrates the syntax to use to validate a specified installed plug-in:

zowe plugins validate @brightside/my-plugin

• The following example illustrates the syntax to use to validate all installed plug-ins:

zowe plugins validate

Updating plug-ins

Issue the update command to install the latest version or a specific version of a plug-in that you installed
previously. The update command has the following syntax:

zowe plugins update [plugin...] [--registry <registry>]

• [plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same
as the name of the NPM package. You can use npm semantic versioning to specify a plug-in version to which to
update. For more information, see npm semver.

• [--registry <registry>]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

• The following example illustrates the syntax to use to update an installed plug-in to the latest version:

zowe plugins update @brightside/my-plugin@latest

• The following example illustrates the syntax to use to update a plug-in to a specific version:

zowe plugins update @brightside/my-plugin@"^1.2.3"

Uninstalling plug-ins

Issue the uninstall command to uninstall plug-ins from a base application. After the uninstall process completes
successfully, the product no longer contains the plug-in configuration.

Tip: The command is equivalent to using npm uninstall to uninstall a package.

The uninstall command contains the following syntax:

zowe plugins uninstall [plugin]

• [plugin] Specifies the plug-in name to uninstall.

Example: Uninstall plug-ins

• The following example illustrates the syntax to use to uninstall a plug-in:

zowe plugins uninstall @brightside/my-plugin

Zowe CLI Plug-in for IBM CICS

The Zowe CLI Plug-in for IBM® CICS® lets you extend Zowe CLI to interact with CICS programs and transactions.
The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS.
For more information, see CICS management client interface on the IBM Knowledge Center.

• Use cases on page 68
• Prerequisites on page 68

https://docs.npmjs.com/misc/semver
https://docs.npmjs.com/cli/uninstall
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html

 | User Guide | 68

• Installing on page 68
• Creating a user profile on page 69
• Commands on page 69

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM CICS to perform the following tasks:

• Deploy code changes to CICS applications that were developed with COBOL.
• Deploy changes to CICS regions for testing or delivery. See the Defining resources to CICS on page 69 for an

example of how you can define programs to CICS to assist with testing and delivery.
• Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.
• Deploy build artifacts to CICS regions.
• Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Prerequisites

Before you install the plug-in, meet the following prerequisites:

• Installing Zowe CLI on page 39 on your computer.
• Ensure that IBM CICS Transaction Server v5.2 or later is installed and running in your mainframe environment.
• Ensure that IBM CICS Management Client Interface (CMCI) is configured and running in your CICS region.

Installing

Use one of the two following methods that you can use to install the Zowe CLI Plug-in for IBM CICS:

• Installing from an online registry on page 68
• Installing from a local package on page 68

Note: For more information about how to install multiple plug-ins, update to a specific version of a plug-ins, and
install from specific registries, see Installing plug-ins on page 65.

Installing from an online registry

To install Zowe CLI from an online registry, complete the following steps:

1. Set your npm registry if you did not already do so when you installed Zowe CLI. Issue the following command:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

2. Open a command line window and issue the following command:

zowe plugins install @brightside/cics@latest

3. (Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate cics

Successful validation of the IBM CICS plug-in returns the response: Successfully validated.

Installing from a local package

If you downloaded the Zowe PAX file and extracted the zowe-cli-bundle.zip package, complete the
following steps to install the Zowe CLI Plug-in for CICS:

1. Open a command line window and change the local directory where you extracted the zowe-cli-
bundle.zip file. If you do not have the zowe-cli-bundle.zip file, see the topic Install Zowe CLI from
local package for information about how to obtain and extract it.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html

 | User Guide | 69

2. Issue the following command to install the plug-in:

zowe plugins install zowe-cli-cics.tgz

3. (Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate @brightside/cics

Successful validation of the CICS plug-in returns the response: Successfully validated. You can safely
ignore *** Warning: messages related to Imperative CLI Framework.

Creating a user profile

You can create a CICS user profile to avoid typing your connection details on every command. The cics profile
contains your host, port, username, and password for the IBM CMCI server of your choice. You can create multiple
profiles and switch between them as needed.

Issue the following command to create a cics profile:

zowe profiles create cics <profile name> -H <host> -P <port> -u <user> -p
 <password>

Note: For more information about the syntax, actions, and options, for a profiles create command, open Zowe
CLI and issue the following command:

zowe profiles create cics -h

The result of the command displays as a success or failure message. You can use your profile when you issue
commands in the cics command group.

Commands

The Zowe CLI Plug-in for IBM CICS adds the following commands to Zowe CLI:

• Defining resources to CICS on page 69
• Deleting CICS resources on page 70
• Discarding CICS resources on page 70
• Getting CICS resources on page 70
• Installing resources to CICS on page 70
• Refreshing CICS programs on page 70

Defining resources to CICS

The define command lets you define programs and transactions to CICS so that you can deploy and test the changes
to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics define -h

Example:

Define a program named myProgram to the region named myRegion in the CICS system definition (CSD) group
myGroup:

zowe cics define program myProgram myGroup --region-name myRegion

 | User Guide | 70

Deleting CICS resources

The delete command lets you delete previously defined CICS programs or transactions to help you deploy and test the
changes to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics delete -h

Example:

Delete a program named PGM123 from the CICS region named MYREGION:

zowe cics delete program PGM123 --region-name MYREGION

Discarding CICS resources

The discard command lets you remove existing CICS program or transaction definitions to help you deploy and test
the changes to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics discard -h

Example:

Discard a program named PGM123 from the CICS region named MYREGION:

zowe cics discard program PGM123 --region-name MYREGION

Getting CICS resources

The get command lets you get a list of programs and transactions that are installed in your CICS region so that you
can determine if they were installed successfully and defined properly. To display a list of objects and options, issue
the following command:

zowe cics get -h

Example:

Return a list of program resources from a CICS region named MYREGION:

zowe cics get resource CICSProgram --region-name MYREGION

Installing resources to CICS

The install command lets you install resources, such as programs and transactions, to a CICS region so that you can
deploy and test the changes to your CICS application. To display a list of possible objects and options, issue the
following command:

zowe cics install -h

Example:

Install a transaction named TRN1 to the region named MYREGION in the CSD group named MYGRP:

zowe cics install transaction TRN1 MYGRP --region-name MYREGION

Refreshing CICS programs

The refresh command lets you refresh changes to a CICS program so that you can deploy and test the changes to your
CICS application. To display a list of objects and options, issue the following command:

zowe cics refresh -h

Example:

 | User Guide | 71

Refresh a program named PGM123 from the region named MYREGION:

zowe cics refresh PGM123 --region-name MYREGION

Zowe CLI plug-in for IBM Db2 Database

The Zowe CLI plug-in for IBM® Db2® Database lets you interact with Db2 for z/OS to perform tasks through Zowe
CLI and integrate with modern development tools. The plug-in also lets you interact with Db2 to advance continuous
integration and to validate product quality and stability.

Zowe CLI Plug-in for IBM Db2 Database lets you execute SQL statements against a Db2 region, export a Db2 table,
and call a stored procedure. The plug-in also exposes its API so that the plug-in can be used directly in other products.

• Use cases on page 71
• Prerequisites on page 71
• Installing on page 71
• Addressing the license requirement on page 72
• Creating a user profile on page 73
• Commands on page 73

Use cases

Use cases#for Zowe CLI Db2 plug-in include:

• Execute SQL and interact with databases.
• Execute a file with SQL statements.
• Export tables to a local file on your computer in SQL format.
• Call a stored procedure and pass parameters.

Prerequisites

Before you install the plug-in, meet the following prerequisites:

• Installing Zowe CLI on page 39 on your computer.

Installing

There are two methods that you can use to install the Zowe CLI Plug-in for IBM Db2 Database - install from an
online registry or install from the local package.

Installing from online registry

If you installed Zowe CLI from online registry, complete the following steps:

1. Open a command line window and issue the following command:

zowe plugins install @brightside/db2@latest

2. After the command execution completes, issue the following command to validate that the installation completed
successfully.

zowe plugins validate db2

Successful validation of the IBM Db2 plug-in returns the response: Successfully validated.
3. Addressing the license requirement on page 72 to begin using the plug-in.

Installing from local package

Follow these procedures if you downloaded the Zowe installation package:

Downloading the ODBC driver

Download the ODBC driver before you install the Db2 plug-in.

 | User Guide | 72

Follow these steps:

1. Download the ODBC CLI Driver. Use the table within the download URL to select the correct CLI Driver for
your platform and architecture.

2. Create a new directory named odbc_cli on your computer. Remember the path to the new directory. You will
need to provide the full path to this directory immediately before you install the Db2 plug-in.

3. Place the ODBC driver in the odbc_cli folder. Do not extract the ODBC driver.

You downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe CLI.

Installing the Plug-in

Now that the Db2 ODBC CLI driver is downloaded, set the IBM_DB_INSTALLER_URL environment variable and
install the Db2 plug-in to Zowe CLI.

Follow these steps:

1. Open a command line window and change the directory to the location where you extracted the zowe-cli-
bundle.zip file. If you do not have the zowe-cli-bundle.zip file, see the topic Install Zowe CLI from
local package in Installing Zowe CLI on page 39 for information about how to obtain and extract it.

2. From a command line window, set the IBM_DB_INSTALLER_URL environment variable by issuing the
following command:

• Windows operating systems:

set IBM_DB_INSTALLER_URL=<path_to_your_odbc_folder>/odbc_cli

• Linux and Mac operating systems:

export IBM_DB_INSTALLER_URL=<path_to_your_odbc_folder>/odbc_cli

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli, you would issue
the following command:

 set IBM_DB_INSTALLER_URL=C:\odbc_cli

3. Issue the following command to install the plug-in:

zowe plugins install zowe-db2.tgz

4. (Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate db2

Successful validation of the IBM Db2 plug-in returns the response: Successfully validated.
5. Addressing the license requirement on page 72 to begin using the plug-in.

Addressing the license requirement

The following steps are required for both the registry and offline package installation methods:

1. Locate your client copy of the Db2 license. You must have a properly licensed and configured Db2 instance for
the Db2 plugin to successfully connect to Db2 on z/OS.

Note: The license must be of version 11.1 if the Db2 server is not db2connectactivated. You can buy a
db2connect license from IBM. The connectivity can be enabled either on server using db2connectactivate utility
or on client using client side license file. To know more about DB2 license and purchasing cost, please contact
IBM Customer Support.

https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url

 | User Guide | 73

2. Copy your Db2 license file and place it in the following directory.

• Windows:

<zowe_home>\plugins\installed\node_modules\@brightside\db2\node_modules
\ibm_db\installer\clidriver\license

• Linux:

<zowe_home>/plugins/installed/lib/node_modules/@brightside/db2/
node_modules/ibm_db/installer/clidriver/license

Tip: By default, <zowe_home> is set to ~/.zowe on *NIX systems, and C:\Users\<Your_User>\.zowe
on Windows systems.

After the license is copied, you can use the Db2 plugin functionality.

Creating a user profile

Before you start using the IBM Db2 plug-in, create a profile.

Issue the command -DISPLAY DDF in the SPUFI or ask your DBA for the following information:

• The Db2 server host name
• The Db2 server port number
• The database name (you can also use the location)
• The user name
• The password
• If your Db2 systems use a secure connection, you can also provide an SSL/TSL certificate file.

To create a db2 profile in Zowe CLI, issue a command in the command shell in the following format:

zowe profiles create db2 <profile name> -H <host> -P <port> -d <database> -u
 <user> -p <password>

The profile is created successfully with the following output:

Profile created successfully! Path:
/home/user/.zowe/profiles/db2/<profile name>.yaml
type: db2
name: <profile name>
hostname: <host>
port: <port>
username: securely_stored
password: securely_stored
database: <database>
Review the created profile and edit if necessary using the profile update
 command.

Commands

The following commands can be issued with the Zowe CLI Plug-in for IBM Db2:

• Calling a stored procedure on page 74
• Executing an SQL statement on page 74
• Exporting a table in SQL format on page 74

Tip: At any point, you can issue the help command -h to see a list of available commands.

 | User Guide | 74

Calling a stored procedure

Issue the following command to call a stored procedure that returns a result set:

$ zowe db2 call sp "DEMOUSER.EMPBYNO('000120')"

Issue the following command to call a stored procedure and pass parameters:

$ zowe db2 call sp "DEMOUSER.SUM(40, 2, ?)" --parameters 0

Issue the following command to call a stored procedure and pass a placeholder buffer:

$ zowe db2 call sp "DEMOUSER.TIME1(?)" --parameters "....placeholder..

Executing an SQL statement

Issue the following command to count rows in the EMP table:

$ zowe db2 execute sql -q "SELECT COUNT(*) AS TOTAL FROM DSN81210.EMP;"

Issue the following command to get a department name by ID:

$ zowe db2 execute sql -q "SELECT DEPTNAME FROM DSN81210.DEPT WHERE
 DEPTNO='D01'

Exporting a table in SQL format

Issue the following command to export the PROJ table and save the generated SQL statements:

$ zowe db2 export table DSN81210.PROJ

Issue the following command to export the PROJ table and save the output to a file:

$ zowe db2 export table DSN81210.PROJ --outfile projects-backup.sql

You can also pipe the output to gzip for on-the-fly compression.

VSCode Extension for Zowe

The Visual Studio Code (VSCode) Extension for Zowe lets you interact with data sets that are stored on IBM z/OS
mainframe. Install the extension directly to VSCode to enable the extension within the GUI. You can explore data
sets, view their contents, make changes, and upload the changes to the mainframe. For some users, it can be more
convenient to interact with data sets through a GUI rather than using command-line interfaces or 3270 emulators. The
extension is powered by Zowe CLI.

Note: The primary documentation, for this plug-in is available on the Visual Studio Code Marketplace. This topic is
intended to be an overview of the extension.

• Prerequisites on page 74
• Installing on page 75
• Use-Cases on page 75

Prerequisites

Before you use the VSCode extension, meet the following prerequisites on your computer:

• Install VSCode.
• Installing Zowe CLI on page 39.
• Create at least one Zowe CLI 'zosmf' profile so that the extension can communicate with the mainframe. See

Creating Zowe CLI profiles on page 60.

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://code.visualstudio.com/

 | User Guide | 75

Installing

1. Address Prerequisites on page 74.
2. Open VSCode. Navigate to the Extensions tab on the left side of the UI.
3. Click the green Install button to install the plug-in.
4. Restart VSCode. The plug-in is now installed and available for use.

Tip: For information about how to install the extension from a VSIX file and run system tests on the extension, see
the Developer README file in the Zowe VSCode extension GitHub repository.

You can also watch the following video to learn how to install and use the Zowe VSCode Extension. If you read this
doc in PDF format, you can click here to watch the video.

Use-Cases

As an developer, you can use VSCode Extension for Zowe to perform the following tasks.

• View and filter mainframe data sets.
• Create download, edit, upload, and delete PDS and PDS members.
• Use "safe save" to safely resolve conflicts when a data set is changed during local editing.
• Switch between Zowe CLI profiles to quickly target different mainframe systems.

Note: For detailed step-by-step instructions for using the plug-in and more information about each feature, see Zowe
on the Visual Studio Code Marketplace.

https://youtu.be/la1_Ss27fn8
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe

Chapter

3
Extending

Topics:

• Developing for API Mediation
Layer

• Developing for Zowe CLI
• Developing for Zowe Application

Framework

 | Extending | 78

Developing for API Mediation Layer

Onboarding Overview

Overview of APIs

Before identifying the API you want to expose in the API Mediation Layer, it is useful to consider the structure
of APIs. An application programming interface (API) is a set of rules that allow programs to talk to each other. A
developer creates an API on a server and allows a client to talk to the API. Representational State Transfer (REST)
determines the look of an API and is a set of rules that developers follow when creating an API. One of these rules
states that a user should be able to get a piece of data (resource) through URL endpoints using HTTP. These resources
are usually represented in the form of JSON or XML documents. The preferred documentation type in Zowe is in the
JSON format.

A REST API service can provide one or more REST APIs and usually provides the latest version of each API. A
REST service is hosted on a web server which can host one or more services, often referred to as applications. A
web server that hosts multiple services or applications is referred to as a web application server. Examples of web
application servers are Apache Tomcat or WebSphere Liberty.

Note: Definitions used in this procedure follow the OpenAPI specification. Each API has its own title, description,
and version (versioned using Semantic Versioning 2.0.0).

The following diagram shows the relations between various types of services, their APIs, REST API endpoints, and
the API gateway:

http://tomcat.apache.org/
https://developer.ibm.com/wasdev/websphere-liberty/
https://swagger.io/specification/
https://semver.org/spec/v2.0.0.html

 | Extending | 79

«Service»
service1

Web Application Server

«Service»
service3

«Service»
service2

«API»
/v1
/endpoint1
/endpoint2

«API»
/v1
/endpoint1
/endpoint2

«API»
/v2
/endpoint1
/endpoint2

«API»
/v1
/endpoint1
/endpoint2

API Gateway
/api/v1/service1
/api/v2/service1

/api/v2/service2

/api/v1/service3

A web server can host
one or more API services

A service usually provides one API

A service can run
in its own embedded web server

A service can provide
multiple versions of a REST API

API Gateway routes
HTTP requests to REST APIs

Sample REST API Service

In microservice architecture, a web server usually provides a single service. A typical example of a single service
implementation is a Spring Boot web application.

To demonstrate the concepts that apply to REST API services, we use the following example of a Spring Boot REST
API service: https://github.com/swagger-api/swagger-samples/tree/master/java/java-spring-boot. This example is used
in the REST API onboarding guide: REST API without code changes required.

You can build this service using instructions in the source code of the Spring Boot REST API service example
(https://github.com/swagger-api/swagger-samples/blob/master/java/java-spring-boot/README.md).

The Sample REST API Service has a base URL. When you start this service on your computer, the service base URL
is: http://localhost:8080.

Note: If a service is deployed to a web application server, the base URL of the service (application) has the following
format: https://application-server-hostname:port/application-name.

 | Extending | 80

This sample service provides one API that has the base path /v2, which is represented in the base URL of the API
as http://localhost:8080/v2. In this base URL, /v2 is a qualifier of the base path that was chosen by the
developer of this API. Each API has a base path depending on the particular implementation of the service.

This sample API has only one single endpoint:

• /pets/{id} - Find pet by ID.

This endpoint in the sample service returns information about a pet when the {id} is between 0 and 10. If {id} is
greater than 0 or a non-integer then it returns an error. These are conditions set in the sample service.

Tip: Access http://localhost:8080/v2/pets/1 to see what this REST API endpoint does. You should get the following
response:

{
 "category": {
 "id": 2,
 "name": "Cats"
 },
 "id": 1,
 "name": "Cat 1",
 "photoUrls": [
 "url1",
 "url2"
],
 "status": "available",
 "tags": [
 {
 "id": 1,
 "name": "tag1"
 },
 {
 "id": 2,
 "name": "tag2"
 }
]
}

Note: The onboarding guides demonstrate how to add the Sample REST API Service to the API Mediation Layer to
make the service available through the petstore service ID.

The following diagram shows the relations between the Sample REST API Service and its corresponding API, REST
API endpoint, and API gateway:

 | Extending | 81

«Service»
petstore

«API»
/v2
/pets

API Gateway
/api/v2/petstore

API Gateway routes
HTTP requests to /v2 of the API in the petstore service

The petstore service provides one API (/v2)
This service runs in its own embedded web server

This sample service provides a Swagger document in JSON format at the following URL:

http://localhost:8080/v2/swagger.json

The Swagger document is used by the API Catalog to display the API documentation.

API Service Types

The process of onboarding depends on the method that is used to develop the API service.

While any REST API service can be added to the API Mediation Layer, this documentation focuses on following
types of REST APIs:

• Services that can be updated to support the API Mediation Layer natively by updating the service code:

• Java REST APIs with Spring Boot on page 91
• Java Jersey REST APIs on page 112
• Java REST APIs service without Spring Boot on page 102

• REST APIs without code changes required on page 117

Tip: When developing a new service, we recommend that you update the code to support the API Mediation Layer
natively. Use the previously listed onboarding guides for services that can be updated to support the API Mediation
Layer natively. The benefit of supporting the API Mediation Layer natively is that it requires less configuration for
the system administrator. Such service can be moved to different systems, can be listened to on a different port, or
additional instances can be started without the need to change configuration of the API Mediation Layer.

 | Extending | 82

Zowe API Mediation Layer Security

• How API ML transport security works on page 82

• Transport layer security on page 82
• Authentication on page 82
• Zowe API ML services on page 83
• Zowe API ML TLS requirements on page 83
• Authentication for API ML services on page 84
• Authorization on page 84
• API ML truststore and keystore on page 84
• Authentication to the Discovery Service on page 85

• Certificate management in Zowe API Mediation Layer on page 85

• Running on localhost on page 85

• How to start API ML on localhost with full HTTPS on page 85
• Certificate management script on page 85
• Generate certificates for localhost on page 85
• Generate a certificate for a new service on localhost on page 85
• Add a service with an existing certificate to API ML on localhost on page 86
• Log in to Discovery Service on localhost on page 86

• Zowe runtime on z/OS on page 86

• Certificates for z/OS installation from the Zowe PAX file on page 86
• Import the local CA certificate to your browser on page 86
• Generate a keystore and truststore for a new service on z/OS on page 87
• Add a service with an existing certificate to API ML on z/OS on page 88

• Procedure if the service is not trusted on page 88
• Trust a z/OSMF certificate on page 89
• Disable certificate validation on page 90

How API ML transport security works

Security within the API Mediaiton Layer (API ML) is performed on several levels. This article describes how API
ML uses Transport Layer Security (TLS). As a system administrator or API developer, use this guide to familiarize
yourself with the following security concepts:

Transport layer security

Secure data during data-transport by using the TLS protocol for all connections to API Mediation Layer services.
While it is possible to disable the TLS protocol for debugging purposes or other use-cases, the enabled TLS protocol
is the default mode.

Authentication

Authentication is the method of how an entity, whether it be a user (API Client) or an application (API Service),
proves its true identity.

API ML uses the following authentication methods:

• User ID and password

• The user ID and password are used to retreive authentication tokens.
• Requests originate from a user.
• The user ID and password are validated by a z/OS security manager and a token is issued that is then used to

access the API service.
• TLS client certificates

• Certificates are for service-only requests.

 | Extending | 83

Zowe API ML services

The following range of service types apply to the Zowe API ML:

• Zowe API ML services

• Gateway Service (GW) The Gateway is the access point for API clients that require access to API services.
API services can be accessed through the Gateway by API Clients. The Gateway receives information about an
API Service from the Discovery Service.

• Discovery Service (DS) The Discovery Service collects information about API services and provides this
information to the Gateway and other services. API ML internal services are also registered to the Discovery
Service.

• API Catalog (AC) The Catalog displays information about API services through a web UI. The Catalog
receives information about an API service from the Discovery Service.

• Authentication and Authorization Service (AAS)

AAS provides authentication and authorization functionality to check user access to resources on z/OS. The API
ML uses z/OSMF API for authentication. For more information, see: APIML wiki

• API Clients

External applications, users, or other API services that are accessing API services via the API Gateway
• API Services

Applications that are accessed through the API Gateway. API services register themselves to the Discovery
Service and can access other services through the Gateway. If an API service is installed in such a way that direct
access is possible, API services can access other services without the Gateway. When APIs access other services,
they can also function as API clients.

Zowe API ML TLS requirements

The API ML TLS requires servers to provide HTTPS ports. Each of the API ML services has the following specific
requirements:

• API Client

• The API Client is not a server
• Requires trust of the API Gateway
• Has a truststore that contains certificates required to trust the Gateway

• Gateway Service

• Provides an HTTPS port
• Has a keystore with a server certificate

• The certificate needs to be trusted by API Clients
• This certificate should be trusted by web browsers because the API Gateway can be used to display web

UIs
• Has a truststore that contains certificates needed to trust API Services

• API Catalog

• Provides an HTTPS port
• Has a keystore with a server certificate

• The certificate needs to be trusted by the API Gateway
• This certificate does not need to be trusted by anyone else

• Discovery Service

• Provides an HTTPS port
• Has a keystore with a server certificate

• The certificate needs to be trusted by API Clients
• Has a truststore that contains certificates needed to trust API services

https://github.com/zowe/api-layer/wiki/Zowe-Authentication-and-Authorization-Service

 | Extending | 84

• API Service

• Provides an HTTPS port
• Has a keystore with a server and client certificate

• The server certificate needs to be trusted by the Gateway
• The client certificate needs to be trusted by the Discovery Service
• The client and server certificates can be the same
• These certificates do not need to be trusted by anyone else

• Has a truststore that contains one or more certificates that are required to trust the Gateway and Discovery
Service

Authentication for API ML services

• API Gateway

• API Gateway currently does not handle authentication.
• Requests are sent to the API services that need to handle authentication

• API Catalog

• API Catalog is accessed by users and requires protection by a login
• Protected access is performed by the Authentication and Authorization Service

• Discovery Service

• Discovery Service is accessed by API Services
• This access (reading information and registration) requires protection needs by a client certificate
• (Optional) Access can be granted to users (administrators)

• API Services

• Authentication is service-dependent
• Recommended to use the Authentication and Authorization Service for authentication

Authorization

Authorization is a method used to determine access rights of an entity.

In the API ML, authorization is performed by the z/OS security manager (CA ACF2, IBM RACF, CA Top Secret).
An authentication token is used as proof of valid authentication. The authorization checks, however, are always
performed by the z/OS security manager.

API ML truststore and keystore

A keystore is a repository of security certificates consisting of either authorization certificates or public key
certificates with corresponding private keys (PK), used in TLS encryption. A keystore can be stored in Java specific
format (JKS) or use the standard format (PKCS12). The Zowe API ML uses PKCS12 to enable the keystores to be
used by other technologies used in Zowe (Node.js).

The API ML local certificate authority (CA)

• The API ML local CA contains a local CA certificate and a private key that needs to be securely stored
• Used to sign certificates of services
• The API ML local CA certificate is trusted by API services and clients

The API ML keystore

• Server certificate of the Gateway (with PK). This can be signed by the local CA or an external CA
• Server certificate of the Discovery Service (with PK). This can be signed by the local CA
• Server certificate of the Catalog (with PK). This can be signed by the local CA
• The API ML keystore is used by API ML services

The API ML truststore

• The API ML truststore contains a local CA public certificate

https://www.ca.com/us/products/ca-acf2.html
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_042.htm
https://www.ca.com/us/products/ca-top-secret.html

 | Extending | 85

• Contains an external CA public certificate (optional)
• Can contain self-signed certificates of API Services that are not signed by the local or external CA
• Used by API ML services

Zowe core services

• Services can use the same keystore and truststore as APIML for simpler installation and management
• Alternatively, services can have individual stores for higher security

API service keystore (for each service)

• Contains a server and client certificate signed by the local CA

API service truststore (for each service)

• (Optional) Contains a local CA and external CA certificates

Client certificates

• A client certificate is a certificate that is used for validation of the HTTPS client. The client certificate of a
Discovery Service client can be the same certificate as the server certificate of the services which the Discovery
Service client uses.

Authentication to the Discovery Service

The Discovery Service has the following types of users that require authentication:

• Administrators and developers who need to log in to the homepage of the Discovery Service

These users need to provide valid user ID and password to the z/OS system where Zowe is installed
• Services that need to register to the Discovery Service

These services are not users that have a user ID and password but are other services. They authenticate using
client certificate. The client certificate is the same TLS certificate that the service uses for HTTPS communication.

Certificate management in Zowe API Mediation Layer
Running on localhost
How to start API ML on localhost with full HTTPS

The https://github.com/zowe/api-layer repository already contains pre-generated certificates that can be used to start
API ML with HTTPS on your computer. The certificates are not trusted by your browser so you can either ignore the
security warning or generate your own certificates and add them to the truststore of your browser or system.

The certificates are described in more detail in the https://github.com/zowe/api-layer/blob/master/keystore/
README.md.

Certificate management script

Zowe API Mediation Layer provides a script that can used on Windows, Mac, Linux, and z/OS to generate a
certificate and keystore for the local CA, API Mediation Layer, and services.

This script is stored in scripts/apiml_cm.sh. It is a UNIX shell script that can be executed by Bash or z/OS Shell. For
Windows, install Bash by going to the following link: cmder.

Generate certificates for localhost

Use the following script in the root of the api-layer repository to generate certificates for localhost:

scripts/apiml_cm.sh --action setup

This script creates the certificates and keystore for the API Mediation Layer in your current workspace.

Generate a certificate for a new service on localhost

To generate a certificate for a new service on localhost, see https://github.com/zowe/api-layer/blob/master/keystore/
README.md#generating-certificate-for-a-new-service-on-localhost

https://github.com/zowe/api-layer/blob/master/scripts/apiml_cm.sh
http://cmder.net/

 | Extending | 86

Add a service with an existing certificate to API ML on localhost

The instructions are described at: https://github.com/zowe/api-layer/blob/master/keystore/README.md#trust-
certificates-of-other-services

Log in to Discovery Service on localhost

To access Discovery Service on localhost provide a valid client certificate.

The certificate is stored in the keystore/localhost/localhost.keystore.p12 keystore.

Some utilities including HTTPie require the certificate to be in PEM format. You can find it in keystore/
localhost/localhost.pem.

Since the Discovery Service is using HTTPS, your client also requires verification of the validity of its certificate.
Verification is performed by trusting the local CA certificate which is store at keystore/local_ca/
localca.cer.

The following is an example of how to access Discovery Service from CLI with full certificate validation:

http --cert=keystore/localhost/localhost.pem --verify=keystore/local_ca/
localca.cer -j GET https://localhost:10011/eureka/apps/

Zowe runtime on z/OS
Certificates for z/OS installation from the Zowe PAX file

Certificates for the API ML local CA and API ML service are automatically generated by installing the Zowe runtime
on z/OS from the PAX file. Following the instructions in Installing the Zowe runtime on z/OS

These certificates are generated by the certificate management script apiml_cm.sh that is installed to
$ZOWE_ROOT_DIR/api-mediation/scripts/apiml_cm.sh.

$ZOWE_ROOT_DIR is the directory where you installed the Zowe runtime.

The certificates are generated to the directory $ZOWE_ROOT_DIR/api-mediation/keystore.

API ML keystore and truststore:

• $ZOWE_ROOT_DIR/api-mediation/keystore/local/localhost.keystore.p12

• used for the HTTPS servers
• contains the APIML server certificate signed by the local CA and private key for the server

• $ZOWE_ROOT_DIR/api-mediation/keystore/local/localhost.truststore.p12

• use to validate trust when communicating with the services that are registered to the APIML
• contains the root certificate of the local CA (not the server certificate)
• contains the local CA public certificate
• can contain additional certificate to trust services that are not signed by local CA

API ML keystores and truststores needs be accessible by the user ID that executes the Zowe runtime.

Local CA:

• $ZOWE_ROOT_DIR/api-mediation/keystoree/local_ca/localca.cer

• public certificate of local CA
• $ZOWE_ROOT_DIR/api-mediation/keystore/local_ca/localca.keystore.p12

• private key of the local CA

The local CA keystore is only accessible by the user that is installs and manages the Zowe runtime.

Import the local CA certificate to your browser

Trust in the API ML server is a necessary precondition to properly encrypt traffic between web browsers and REST
API client applications. Ensure this trust through the installation of a Certificate Authority (CA) public certificate.
By default, API ML creates a local CA. Import the CA public certificate to the truststore for REST API clients and to
your browser. You can also import the certificate to your root certificate store.

https://zowe.github.io/docs-site/latest/user-guide/install-zos.html

 | Extending | 87

Note: The public certificate in the PEM format is stored at $ZOWE_ROOT_DIR/api-mediation/keystore/
local_ca/localca.cer where $ZOWE_ROOT_DIR is the directory that was used for the Zowe runtime during
installation.

The certificate is stored in UTF-8 encoding so you need to transfer it as a binary file. Since this is the certificate that
your browser is going to trust, it is recommended to use a secure connection for transfer.

Follow these steps:

1. Download the local CA certificate to your computer. Use one of the following methods to download the local CA
certificate to your computer:

• Use Zowe CLI (Recommended) Issue teh following command:

zowe zos-files download uss-file --binary $ZOWE_ROOT_DIR/api-mediation/
keystore/local_ca/localca.cer

• Use sftp Issue the following command:

sftp <system>
get $ZOWE_ROOT_DIR/api-mediation/keystore/local_ca/localca.cer

To verify that the file has been transferred correctly, open the file. The following heading and closing shoulf
appear:

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

2. Import the certificate to your root certificate store and trust it.

• For Windows Run the following command:

certutil -enterprise -f -v -AddStore "Root" localca.cer

Note: Ensure that you open the terminal as administrator. This will install the certificate to the Trusted Root
Certification Authorities.

• For macOS Run the following command:

$ sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/
System.keychain localca.cer

• For Firefox You can manually import your root certificate via the Firefox settings, or force Firefox to use the
Windows truststore:

Note: Firefox uses its own certificate truststore.

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files (x86)\Mozilla
Firefox\defaults\pref with the following content:

/* Enable experimental Windows truststore support */
pref("security.enterprise_roots.enabled", true);

Generate a keystore and truststore for a new service on z/OS

You can generate a keystore and truststore for a new service by calling the apiml_cm.sh script in the directory
with API Mediation Layer:

cd $ZOWE_ROOT_DIR/api-mediation
scripts/apiml_cm.sh --action new-service --service-alias <alias> --service-
ext <ext> \
--service-keystore <keystore_path> --service-truststore <truststore_path> \
--service-dname <dname> --service-password <password> --service-validity
 <days> \

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://github.com/zowe/zowe-cli#zowe-cli--

 | Extending | 88

--local-ca-filename $ZOWE_ROOT_DIR/api-mediation/keystore/local_ca/localca

The service-alias is an unique string to identify the key entry. All keystore entries (key and trusted certificate
entries) are accessed via unique aliases. Since the keystore will have only one certificate, you can omit this parameter
and use the default value localhost.

The service-keystore is a repository of security certificates plus corresponding private keys. The
<keystore_path> is the path excluding the extension to the keystore that will be generated. It can be an absolute
path or a path relative to the current working directory. The key store is generated in PKCS12 format with .p12
extension. It should be path in an existing directory where your service expects the keystore. For example: /opt/
myservice/keystore/service.keystore.

The service-truststore contains certificates from other parties that you expect to communicate with, or from
Certificate Authorities that you trust to identify other parties. The <truststore_path> is the path excluding the
extension to the trust store that will be generated. It can be an absolute path or a path relative to the current working
directory. The truststore is generated in PKCS12 format.

The service-ext specifies the X.509 extension that should be the Subject Alternate Name (SAN). The SAN has
contain host names that are used to access the service. You need specify the same hostname that is used by the service
during API Mediation Layer registration. For example:

"SAN=dns:localhost.localdomain,dns:localhost,ip:127.0.0.1"

Note: For more information about SAN, see SAN or SubjectAlternativeName at Java Keytool - Common Options.

The service-dname is the X.509 Distinguished Name and is used to identify entities, such as those which are
named by the subject and issuer (signer) fields of X.509 certificates. For example:

"CN=Zowe Service, OU=API Mediation Layer, O=Zowe Sample, L=Prague, S=Prague,
C=CZ"

The service-validity is the number of days after that the certificate will expire.

The service-password is the keystore password. The purpose of the password is the integrity check. The access
protection for the keystore and keystore need to be achieved by making them accessible only by the ZOVESVR user
ID and the system administrator.

The local-ca-filename is the path to the keystore that is used to sign your new certificate with the local CA
private key. If you an in the $ZOWE_RUNTIME/api-mediation-directory, you can omit this parameter. It
should point to the $ZOWE_ROOT_DIR/api-mediation/keystore/local_ca/localca.

Add a service with an existing certificate to API ML on z/OS

The API Mediation Layer requires validatation of the certificate of each service that it accessed by the API Mediation
Layer. The API Mediation Layer requires validatation of the full certificate chain. Use one of the following methods:

• Import the public certificate of the root CA that has signed the certificate of the service to the APIML truststore.
• Ensure that your service has its own certificate. If it was signed by intermediate CA all intermediate CA

certificates ensure that all certificates are in its keystore.

Note: If the service does not provide intermediate CA certificates to the APIML then the validation fails. This can
be circumvented by importing the intermediate CA certificates to the API ML truststore.

Import a public certificate to the APIML truststore by calling in the directory with API Mediation Layer:

cd $ZOWE_ROOT_DIR/api-mediation
scripts/apiml_cm.sh --action trust --certificate <path-to-certificate-in-
PEM-format> --alias <alias>

Procedure if the service is not trusted

If you access a service that is not trusted, for example, by issuing a REST API request to it:

http --verify=keystore/local_ca/localca.cer GET https://<gatewayHost>:<port></
port>/api/v1/<untrustedService>/greeting

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/keytoolDocs/commonoptions.html

 | Extending | 89

You will receive a similar response:

 HTTP/1.1 502
 Content-Type: application/json;charset=UTF-8

 {
 "messages": [
 {
 "messageContent": "The certificate
 of the service accessed by HTTPS using URI '/api/v1/
<untrustedService>/greeting' is not trusted by the API Gateway:
 sun.security.validator.ValidatorException: PKIX path building failed:
 sun.security.provider.certpath.SunCertPathBuilderException: unable to find
 valid certification path to requested target",
 "messageKey": "apiml.common.tlsError",
 "messageNumber": "AML0105",
 "messageType": "ERROR"
 }
]
 }

The response has the HTTP status code 502 Bad Gateway and a JSON response in the standardized format for error
messages. The message has key apiml.common.tlsError and the message number AML0105 and content that
explains details about the message.

If you receive this message, import the certificate of your service or the CA that has signed it to the truststore of the
API Mediation Layer as described above.

Trust a z/OSMF certificate

The Zowe installation script tries to import z/OSMF public certificates to the truststore of API Mediation Layer
automatically. This requires the user ID that is doing the installation to be able to read the z/OSMF keyring.

If it is not possible, you will see following error message:

WARNING: z/OSMF is not trusted by the API Mediation Layer.

To allow apiml_cm.sh to run, it should be sufficient to give CONTROL access for the user
of IRR.DIGTCERT.LIST (needed for a SITE certificate) and UPDATE access for the user of
IRR.DIGTCERT.LISTRING, but in some cases (for example, you have already created a certificate), you might
have to permit the user CONTROL access to IRR.DIGTCERT.**.

Follow these steps:

1. Add z/OSMF to the truststore manually as a user that has access rights to read the z/OSMF keyring. The read
access to z/OSMF keyring can be granted by the following commands:

• RACF:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(acid) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(acid) ACCESS(UPDATE)

• Top Secret:

TSS ADD(dept) IBMFAC(IRR.DIGTCERT)
TSS PER(acid) IBMFAC(IRR.DIGTCERT.LIST) ACCESS(CONTROL)
TSS PER(acid) IBMFAC(IRR.DIGTCERT.LISTRING) ACCESS(UPDATE)

• ACF2:

 ACF
 SET RESOURCE(FAC)
 RECKEY IRR ADD(DIGTCERT.LIST UID(acid) -
 SERVICE(CONTROL) ALLOW)
 RECKEY IRR ADD(DIGTCERT.LISTRING UID(acid) -

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

 | Extending | 90

 SERVICE(UPDATE) ALLOW)
 F ACF2,REBUILD(FAC)

where:

• acid is the user ID of the user that is installing Zowe.

1. Issue the following command to find the name of the z/OSMF keyring:

cat /var/zosmf/configuration/servers/zosmfServer/bootstrap.properties | grep
izu.ssl.key.store.saf.keyring

This will return a line like the following one:

izu.ssl.key.store.saf.keyring=IZUKeyring.IZUDFLT

2. Run following commands as a superuser to import z/OSMF certificates:

Note: This should be the same keyring name as specified in the PARMLIB member for z/OSMF. For example, in
SYS1.PARMLIB(IZUPRMxx) you will see a line like this:

KEYRING_NAME('IZUKeyring.IZUDFLT')

3. Substitute the value of the z/OSMF keyring that is obtained above from bootstrap.properties in the value
of the --zosmf-keyring parameter:

 su
 cd $ZOWE_RUNTIME/api-mediation
 scripts/apiml_cm.sh --action trust-zosmf --zosmf-keyring
 IZUKeyring.IZUDFLT --zosmf-userid IZUSVR

If the import is successful, restart the Zowe server to make the changes effective.

If the import is not successful, you may receive an error such as the following error:

keytool error (likely untranslated): java.io.IOException: The private key of
 IZUDFLT is not available or no authority to access the private key
It is not possible to read z/OSMF keyring IZUSVR/IZUKeyring.IZUDFLT. The
 effective user ID was: acid. You need to run this command as user that has
 access to the z/OSMF keyring:

Verify that you receive these messages in the log:

ICH408I USER(acid) GROUP(group) NAME(name)
 IRR.DIGTCERT.GENCERT CL(FACILITY)
 INSUFFICIENT ACCESS AUTHORITY
 FROM IRR.DIGTCERT.** (G)
 ACCESS INTENT(CONTROL) ACCESS ALLOWED(NONE)

If you receive these messages, permit the user to have CONTROL access to IRR.DIGTCERT.** with the following
RACF command or the equivalent command for ACF2 or Top Secret:

PERMIT IRR.DIGTCERT.** CLASS(FACILITY) ID(acid) ACCESS(CONTROL)

If the import is successful, restart the Zowe server to make the changes effective.

Disable certificate validation

To use Zowe without setting up certificates, disable the validation of the TLS/SSL certificates by the API Mediation
Layer.

Update the following property:

-Dapiml.security.verifySslCertificatesOfServices=false

in following shell scripts:

 | Extending | 91

• $ZOWE_RUNTIME/api-mediation/scripts/api-mediation-start-catalog.sh

• $ZOWE_RUNTIME/api-mediation/scripts/api-mediation-start-discovery.sh

• $ZOWE_RUNTIME/api-mediation/scripts/api-mediation-start-gateway.sh

Java REST APIs with Spring Boot

Zowe API Mediation Layer (API ML) provides a single point of access for mainframe service REST APIs. For a
high-level overview of this component, see API Mediation Layer on page 8.

Note: Spring is a Java-based framework that lets you build web and enterprise applications. For more information,
see the Spring website.

As an API developer, use this guide to onboard your REST API service into the Zowe API Mediation Layer. This
article outlines a step-by-step process to make your API service available in the API Mediation Layer.

1. Prepare an existing Spring Boot REST API for onboarding on page 91
2. Add Zowe API enablers to your service on page 91
3. Add API ML onboarding configuration on page 93
4. Externalize API ML configuration parameters on page 101
5. Test your service on page 101
6. Review the configuration examples of the discoverable client on page 102

Prepare an existing Spring Boot REST API for onboarding

The Spring Boot API onboarding process follows these general steps. Further detail about how to perform these steps
is described later in this article.

Follow these steps:

1. Add enabler annotations to your service code and update the build scripts:

• @EnableApiDiscovery

This annotation exposes your Swagger (OpenAPI) documentation in the Zowe ecosystem to enable/make your
micro service discoverable in the Zowe ecosystem.

Note: The @EnableApiDiscovery annotation uses the Spring Fox library. If your service uses this library
already, some fine tuning may be necessary.

• @ComponentScan({"com.ca.mfaas.enable", "com.ca.mfaas.product"})

This annotation makes an API documentation endpoint visible within the Spring context.
2. Update your service configuration file to include Zowe API Mediation Layer specific settings.
3. Externalize the API ML site-specific configuration settings.
4. Test your changes.

Add Zowe API enablers to your service

In order to onboard a REST API with the Zowe ecosystem, you add the Zowe Artifactory repository definition to the
list of repositories, then add the Spring enabler to the list of your dependencies, and finally add enabler annotations to
your service code. Enablers prepare your service for discovery and swagger documentation retrieval.

Follow these steps:

1. Add the Zowe Artifactory repository definition to the list of repositories in Gradle or Maven build systems. Use
the code block that corresponds to your build system.

• In a Gradle build system, add the following code to the build.gradle file into the repositories block.

Note: Ensure that zou are using valid Zowe Artifactory credentials.

maven {
 url 'https://gizaartifactory.jfrog.io/gizaartifactory/libs-release'
 credentials {

https://spring.io/

 | Extending | 92

 username 'apilayer-build'
 password 'lHj7sjJmAxL5k7obuf80Of+tCLQYZPMVpDob5oJG1NI='
 }
}

Note: You can define the gradle.properties file where you can set your username, password, and the
read-only repo URL for access to the Zowe Artifactory. By defining the gradle.properties, you do not
need to hardcode the username, password, and read-only repo URL in your gradle.build file.

Example:

 # Artifactory repositories for builds
 artifactoryMavenRepo=https://gizaartifactory.jfrog.io/
gizaartifactory/libs-release

 # Artifactory credentials for builds (not publishing):
 mavenUser=apilayer-build
 mavenPassword=lHj7sjJmAxL5k7obuf80Of+tCLQYZPMVpDob5oJG1NI=

• In a Maven build system, follow these steps:

a) Add the following code to the pom.xml file:

<repository>
 <id>Gizaartificatory</id>
 <url>https://gizaartifactory.jfrog.io/gizaartifactory/libs-
release</url>
</repository>

b) Create a settings.xml file and copy the following XML code block which defines the login credentials
for the Zowe Artifactory. Use valid credentials.

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>Gizaartificatory</id>
 <username>{artifactoryUser}</username>
 <password>{artifactoryPassword}</password>
 </server>
</servers>
</settings>

c) Copy the settings.xml file inside the ${user.home}/.m2/ directory.
2. Add a JAR package to the list of dependencies in Gradle or Maven build systems. Zowe API Mediation Layer

supports Spring Boot versions 1.5.9 and 2.0.4.

• If you use Spring Boot release 1.5.x in a Gradle build system, add the following code to the build.gradle file
into the dependencies block:

 compile group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
spring-v1-springboot-1.5.9.RELEASE', version: '0.3.0-SNAPSHOT'

• If you use Spring Boot release 1.5.x in a Maven build system, add the following code to the pom.xml file:

 <dependency>
 <groupId>com.ca.mfaas.sdk</groupId>

 | Extending | 93

 <artifactId>mfaas-integration-enabler-spring-v1-
springboot-1.5.9.RELEASE</artifactId>
 <version>0.3.0-SNAPSHOT</version>
 </dependency>

• If you use the Spring Boot release 2.0.x in a Gradle build system, add the following code to the
build.gradle file into the dependencies block:

compile group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
spring-v2-springboot-2.0.4.RELEASE', version: '0.3.0-SNAPSHOT'

• If you use the Spring Boot release 2.0.x in a Maven build system, add the following code to the pom.xml file:

<dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-spring-v2-
springboot-2.0.4.RELEASE</artifactId>
 <version>0.3.0-SNAPSHOT</version>
</dependency>

3. Add the following annotations to the main class of your Spring Boot, or add these annotations to an extra Spring
configuration class:

• @ComponentScan({"com.ca.mfaas.enable", "com.ca.mfaas.product"})

• @EnableApiDiscovery

Example:

 package com.ca.mfaas.DiscoverableClientSampleApplication;
 ..
 import com.ca.mfaas.enable.EnableApiDiscovery;
 import org.springframework.context.annotation.ComponentScan;
 ..
 @EnableApiDiscovery
 @ComponentScan({"com.ca.mfaas.enable", "com.ca.mfaas.product"})
 ...
 public class DiscoverableClientSampleApplication {...

You are now ready to build your service to include the code pieces that make it discoverable in the API Mediation
Layer and to add Swagger documentation.

Add API ML onboarding configuration

As an API service developer, you set multiple configuration settings in your application.yml that correspond to the
API ML. These settings enable an API to be discoverable and included in the API catalog. Some of the settings
in the application.yml are internal and are set by the API service developer. Some settings are externalized and
set by the customer system administrator. Those external settings are service parameters and are in the format:
${environment.*}.

Important! Spring Boot configuration can be externalized in multiple ways. For more information see: Externalized
configuration. This Zowe onboarding documentation applies to API services that use an application.yml file for
configuration. If your service uses a different configuration option, transform the provided configuration sample to
the format that your API service uses.

Tip: For information about how to set your configuration when running a Spring Boot application under an external
servlet container (TomCat), see the following short stackoverflow article: External configuration for spring-boot
application.

Follow these steps:

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application

 | Extending | 94

1. Add the following #MFAAS configuration section in your application.yml:

 ##
 # MFAAS configuration section

 ##
 mfaas:
 discovery:
 serviceId: ${environment.serviceId}
 locations: ${environment.discoveryLocations}
 enabled: ${environment.discoveryEnabled:true}
 endpoints:
 statusPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/info
 healthPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/health
 homePage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
 info:
 serviceTitle: ${environment.serviceTitle}
 description: ${environment.serviceDescription}
 # swaggerLocation:
 resource_location_of_your_static_swagger_doc.json
 fetchRegistry: false
 region: default
 service:
 hostname: ${environment.hostname}
 ipAddress: ${environment.ipAddress}
 catalog-ui-tile:
 id: yourProductFamilyId
 title: Your API service product family title in the API catalog
 dashboard tile
 description: Your API service product family description in the
 API catalog dashboard tile
 version: 1.0.0
 server:
 scheme: http
 port: ${environment.port}
 contextPath: /yourServiceUrlPrefix

 eureka:
 instance:
 appname: ${mfaas.discovery.serviceId}
 hostname: ${mfaas.service.hostname}
 statusPageUrlPath: ${mfaas.discovery.endpoints.statusPage}
 healthCheckUrl: ${mfaas.discovery.endpoints.healthPage}
 homePageUrl: ${mfaas.discovery.endpoints.homePage}
 metadata-map:
 routed-services:
 api_v1:
 gateway-url: "api/v1"
 service-url: ${mfaas.server.contextPath}

 api-doc:
 gateway-url: "api/v1/api-doc"
 service-url: ${mfaas.server.contextPath}/api-doc
 mfaas:
 api-info:
 apiVersionProperties:
 v1:

 | Extending | 95

 title: Your API title for swagger JSON which
 is displayed in API Catalog / service / API Information
 description: Your API description for
 swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers
 # apiPattern: /v1/.* # alternative to
 basePackage for exposing endpoints which match the regex pattern to
 swagger JSON
 discovery:
 catalogUiTile:
 id: ${mfaas.catalog-ui-tile.id}
 title: ${mfaas.catalog-ui-tile.title}
 description: ${mfaas.catalog-ui-
tile.description}
 version: ${mfaas.catalog-ui-tile.version}
 enableApiDoc:
 ${mfaas.discovery.info.enableApiDoc:true}
 service:
 title: ${mfaas.discovery.info.serviceTitle}
 description: ${mfaas.discovery.info.description}
 client:
 enabled: ${mfaas.discovery.enabled}
 healthcheck:
 enabled: true
 serviceUrl:
 defaultZone: ${mfaas.discovery.locations}
 fetchRegistry: ${mfaas.discovery.fetchRegistry}
 region: ${mfaas.discovery.region}

 ##
 # Application configuration section

 ##
 server:
 # address: ${mfaas.service.ipAddress}
 port: ${mfaas.server.port}
 servlet:
 contextPath: ${mfaas.server.contextPath}

 spring:
 application:
 name: ${mfaas.discovery.serviceId}

Important: Add this configuration also to the application.yml used for testing. Failure to add this
configuration to the application.yml will cause your tests to fail.

 | Extending | 96

2. Change the MFaaS parameters to correspond with your API service specifications. Most of these internal
parameters contain "your service" text.

Note: ${mfaas.*} variables are used throughout the application.yml sample to reduce the number of
required changes.

Tip: When existing parameters set by the system administrator are already present in your configuration file (for
example, hostname, address, contextPath, and port), we recommend that you replace them with
the corresponding MFaaS properties.

a. Discovery Parameters

• mfaas.discovery.serviceId

Specifies the service instance identifier to register in the API ML installation. The service ID is used in the
URL for routing to the API service through the gateway. The service ID uniquely identifies instances of a
microservice in the API ML. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

• The same service ID should be set for only multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.
• The service ID must match the spring.application.name parameter.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API
Gateway appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/endpoint1/...

• If the customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/endpoint1/...

• mfaas.discovery.locations

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

http://eureka:password@141.202.65.33:10311/eureka/

• mfaas.discovery.enabled

Specifies whether the API service instance is to be discovered in the API ML. The system administrator at the
customer site defines this parameter. Set this parameter to true if the API ML is installed and configured.
Otherwise, you can set this parameter to false to exclude an API service instances from the API ML.

• mfaas.discovery.fetchRegistry

Specifies whether the API service is to receive regular update notifications from the discovery service. Under
most circumstances, you can accept the default value of false for the parameter.

• mfaas.discovery.region

Specifies the geographical region. This parameter is required by the Discovery client. Under most
circumstances you can accept the value default for the parameter.

 | Extending | 97

b. Service and Server Parameters

• mfaas.service.hostname

Specifies the hostname of the system where the API service instance runs. This parameter is externalized and
is set by the customer system administrator. The administrator ensures the hostname can be resolved by DSN
to the IP address that is accessible by applications running on their z/OS systems.

• mfaas.service.ipAddress

Specifies the local IP address of the system where the API service instance runs. This IP address may or may
not be a public IP address. This parameter is externalized and set by the customer system administrator.

• mfaas.server.scheme

Specifies whether the API service is using the HTTPS protocol. This value can be set to https or http
depending on whether your service is using SSL.

• mfaas.server.port

Specifies the port that is used by the API service instance. This parameter is externalized and set by the
customer system administrator.

• mfaas.server.contextPath

Specifies the prefix that is used within your API service URL path.

Examples:

• If your API service does not use an extra prefix in the URL (for example, http://host:port/
endpoint1/), set this value to /.

• If your API service uses an extra URL prefix set the parameter to that prefix value. For the URL:
http://host:port/filemaster/endpoint1/, set this parameter to /filemaster.

• In both examples, the API service URL appears as the following URL when routed through the Gateway:

http://gateway:port/serviceId/endpoint1/

c. API Catalog Parameters

These parameters are used to populate the API Catalog. The API Catalog contains information about every
registered API service. The Catalog also groups related APIs. Each API group has its own name and description.

 | Extending | 98

Catalog groups are constructed in real-time based on information that is provided by the API services. Each group
is displayed as a tile in the API Catalog UI dashboard.

• mfaas.catalog-ui-tile.id

Specifies the unique identifier for the API services product family. This is the grouping value used by the API
ML to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog
UI dashboard tile. Specify a value that does not interfere with API services from other products.

• mfaas.catalog-ui-tile.title

Specifies the title of the API services product family. This value is displayed in the API Catalog UI dashboard
as the tile title

• mfaas.catalog-ui-tile.description

Specifies the detailed description of the API services product family. This value is displayed in the API
Catalog UI dashboard as the tile description

• mfaas.catalog-ui-tile.version

Specifies the semantic version of this API Catalog tile. Increase the version when you introduce new changes
to the API services product family details (title and description).

• mfaas.discovery.info.serviceTitle

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API Catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
• mfaas.discovery.info.description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1". This value is
displayed in the API Catalog when a specific API service instance is selected. This parameter is externalized
and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
Describe the service so that the end user knows the function of the service.

• mfaas.discovery.info.swaggerLocation

Specifies the location of a static swagger document. The JSON document contained in this file is displayed
instead of the automatically generated API documentation. The JSON file must contain a valid OpenAPI 2.x
Specification document. This value is optional and commented out by default.

Note: Specifying a swaggerLocation value disables the automated JSON API documentation generation
with the SpringFox library. By disabling auto-generation, you need to keep the contents of the manual swagger

 | Extending | 99

definition consistent with your endpoints. We recommend to use auto-generation to prevent incorrect endpoint
definitions in the static swagger documentation.

d. Metadata Parameters

The routing rules can be modified with parameters in the metadata configuration code block.

Note: If your REST API does not conform to Zowe API Mediation layer REST API Building codes, configure
routing to transform your actual endpoints (serviceUrl) to gatewayUrl format. For more information see: REST
API Building Codes

• eureka.instance.metadata-map.routed-services.<prefix>

Specifies a name for routing rules group. This parameter is only for logical grouping of further parameters.
You can specify an arbitrary value but it is a good development practice to mention the group purpose in the
name.

Examples:

api-doc
api_v1
api_v2

• eureka.instance.metadata-map.routed-services.<prefix>.gatewayUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

• metadata-map.routed-services.<prefix>.serviceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

Important! Ensure that each of the values for gatewayUrl parameter are unique in the configuration.
Duplicate gatewayUrl values may cause requests to be routed to the wrong service URL.

Note: The endpoint /api-doc returns the API service Swagger JSON. This endpoint is introduced by the
@EnableMfaasInfo annotation and is utilized by the API Catalog.

e. Swagger Api-Doc Parameters

Configures API Version Header Information, specifically the InfoObject section, and adjusts Swagger
documentation that your API service returns. Use the following format:

api-info:
 apiVersionProperties:
 v1:
 title: Your API title for swagger JSON which is displayed in API
 Catalog / service / API Information
 description: Your API description for swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers

https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://swagger.io/specification/#infoObject

 | Extending | 100

 # apiPattern: /v1/.* # alternative to basePackage for exposing
 endpoints which match the regex pattern to swagger JSON

The following parameters describe the function of the specific version of an API. This information is included in
the swagger JSON and displayed in the API Catalog:

• v1

Specifies the major version of your service API: v1, v2, etc.
• title

Specifies the title of your service API.
• description

Specifies the high-level function description of your service API.
• version

Specifies the actual version of the API in semantic format.
• basePackage

Specifies the package where the API is located. This option only exposes endpoints that are defined in a
specified java package. The parameters basePackage and apiPattern are mutually exclusive. Specify
only one of them and remove or comment out the second one.

• apiPattern

This option exposes any endpoints that match a specified regular expression. The parameters basePackage
and apiPattern are mutually exclusive. Specify just one of them and remove or comment out the second
one.

Tip: You have three options to make your endpoints discoverable and exposed: basePackage,
apiPattern, or none (if you do not specify a parameter). If basePackage or apiPattern are not
defined, all endpoints in the Spring Boot app are exposed.

Setup keystore with the service certificate

To register with the API Mediation Layer, a service is required to have a certificate that is trusted by API Mediation
Layer.

Follow these steps:

1. Follow instructions at Generating certificate for a new service on localhost

When a service is running on localhost, the command can have the following format:

<api-layer-repository>/scripts/apiml_cm.sh --action new-service --service-
alias localhost --service-ext SAN=dns:localhost.localdomain,dns:localhost
 --service-keystore keystore/localhost.keystore.p12 --service-truststore
 keystore/localhost.truststore.p12 --service-dname "CN=Sample REST API
 Service, OU=Mainframe, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-
password password --service-validity 365 --local-ca-filename <api-layer-
repository>/keystore/local_ca/localca

Alternatively, for the purpose of local development, copy or use the <api-layer-repository>/
keystore/localhost.truststore.p12 in your service without generating a new certificate.

https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost

 | Extending | 101

2. Update the configuration of your service application.yml to contain the HTTPS configuration by adding the
following code:

 server:
 ssl:
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password

Note: You need to define both keystore and truststore even if your server is not using HTTPS port.

Externalize API ML configuration parameters

The following list summarizes the API ML parameters that are set by the customer system administrator:

• mfaas.discovery.enabled: ${environment.discoveryEnabled:true}

• mfaas.discovery.locations: ${environment.discoveryLocations}

• mfaas.discovery.serviceID: ${environment.serviceId}

• mfaas.discovery.info.serviceTitle: ${environment.serviceTitle}

• mfaas.discovery.info.description: ${environment.serviceDescription}

• mfaas.service.hostname: ${environment.hostname}

• mfaas.service.ipAddress: ${environment.ipAddress}

• mfaas.server.port: ${environment.port}

Tip: Spring Boot applications are configured in the application.yml and bootstrap.yml files that
are located in the USS file system. However, system administrators prefer to provide configuration through the
mainframe sequential data set (or PDS member). To override Java values, use Spring Boot with an external YML file,
environment variables, and Java System properties. For Zowe API Mediation Layer applications, we recommend that
you use Java System properties.

Java System properties are defined using -D options for Java. Java System properties can override any configuration.
Those properties that are likely to change are defined as ${environment.variableName}:

IJO="$IJO -Denvironment.discoveryEnabled=.."
IJO="$IJO -Denvironment.discoveryLocations=.."

IJO="$IJO -Denvironment.serviceId=.."
IJO="$IJO -Denvironment.serviceTitle=.."
IJO="$IJO -Denvironment.serviceDescription=.."
IJO="$IJO -Denvironment.hostname=.."
IJO="$IJO -Denvironment.ipAddress=.."
IJO="$IJO -Denvironment.port=.."

The discoveryLocations (public URL of the discovery service) value is found in the API Meditation Layer
configuration, in the *.PARMLIB(MASxPRM) member and assigned to the MFS_EUREKA variable.

Example:

MFS_EUREKA="http://eureka:password@141.202.65.33:10011/eureka/")

Test your service

To test that your API instance is working and is discoverable, use the following validation tests:

 | Extending | 102

Validate that your API instance is still working

Follow these steps:

1. Disable discovery by setting discoveryEnabled=false in your API service instance configuration.
2. Run your tests to check that they are working as before.

Validate that your API instance is discoverable

Follow these steps:

1. Point your configuration of API instance to use the following Discovery Service:

http://eureka:password@localhost:10011/eureka

2. Start up the API service instance.
3. Check that your API service instance and each of its endpoints are displayed in the API Catalog

https://localhost:10010/ui/v1/caapicatalog/

4. Check that you can access your API service endpoints through the Gateway.

Example:

https://localhost:10010/api/v1/

1. Check that you can still access your API service endpoints directly outside of the Gateway.

Review the configuration examples of the discoverable client

Refer to the Discoverable Client API Sample Service in the API ML git repository.

Java REST APIs service without Spring Boot

As an API developer, use this guide to onboard a Java REST API service that is built without Spring Boot with the
Zowe API Mediation Layer. This article outlines a step-by-step process to onboard a Java REST API application with
the API Mediation Layer. More detail about each of these steps is described later in this article.

Follow these steps:

1. Get enablers from the Artifactory on page 103

• Gradle guide on page 103
• Maven guide on page 103

2. (Optional) Add Swagger API documentation to your project on page 104
3. Add endpoints to your API for API Mediation Layer integration on page 105
4. Add configuration for Discovery client on page 106
5. Add a context listener on page 110

a. Add a context listener class on page 110
b. Register a context listener on page 110

6. Run your service on page 111
7. (Optional) Validate discovery of the API service by the Discovery Service on page 111

Notes:

• This onboarding procedure uses the Spring framework for implementation of a REST API service, and describes
how to generate Swagger API documentation using a Springfox library.

• If you use another framework that is based on a Servlet API, you can use ServletContextListener that is
described later in this article.

• If you use a framework that does not have a ServletContextListener class, see the add context listener
section in this article for details about how to register and unregister your service with the API Mediation Layer.

https://github.com/zowe/api-layer

 | Extending | 103

Prerequisites

• Ensure that your REST API service that is written in Java.
• Ensure that your service has an endpoint that generates Swagger documentation.

Get enablers from the Artifactory

The first step to onboard a Java REST API into the Zowe ecosystem is to get enabler annotations from the
Artifactory. Enablers prepare your service for discovery in the API Mediation Layer and for the retrieval of Swagger
documentation.

You can use either Gradle or Maven build automation systems.

Gradle guide

Use the following procedure if you use Gradle as your build automation system.

Follow these steps:

1. Create a gradle.properties file in the root of your project.
2. In the gradle.properties file, set the following URL of the repository. Use the values provided in the following

code block for user credentials to access the Artifactory:

Repository URL for getting the enabler-java artifact
artifactoryMavenRepo=https://gizaartifactory.jfrog.io/gizaartifactory/
libs-release

Artifactory credentials for builds:
mavenUser=apilayer-build
mavenPassword=lHj7sjJmAxL5k7obuf80Of+tCLQYZPMVpDob5oJG1NI=

This file specifies the URL of the repository of the Artifactory. The enabler-java artifacts are downloaded from
this repository.

3. Add the following Gradle code block to the build.gradle file:

ext.mavenRepository = {
 maven {
 url artifactoryMavenSnapshotRepo
 credentials {
 username mavenUser
 password mavenPassword
 }
 }
}

repositories mavenRepositories

The ext object declares the mavenRepository property. This property is used as the project repository.
4. In the same build.gradle file, add the following code to the dependencies code block to add the enabler-java

artifact as a dependency of your project:

compile(group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-java',
 version: '0.2.0')

5. In your project directory, run the gradle build command to build your project.

Maven guide

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

 | Extending | 104

1. Add the following xml tags within the newly created pom.xml file:

<repositories>
 <repository>
 <id>libs-release</id>
 <name>libs-release</name>
 <url>https://gizaartifactory.jfrog.io/gizaartifactory/libs-
release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
</repositories>

This file specifies the URL of the repository of the Artifactory where you download the enabler-java artifacts.
2. In the same pom.xml file, copy the following xml tags to add the enabler-java artifact as a dependency of your

project:

<dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-java</artifactId>
 <version>0.2.0</version>
</dependency>

3. Create a settings.xml file and copy the following xml code block which defines the credentials for the
Artifactory:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>libs-release</id>
 <username>apilayer-build</username>
 <password>lHj7sjJmAxL5k7obuf80Of+tCLQYZPMVpDob5oJG1NI=</password>
 </server>
</servers>
</settings>

4. Copy the settings.xml file inside the ${user.home}/.m2/ directory.
5. In the directory of your project, run the mvn package command to build the project.

(Optional) Add Swagger API documentation to your project

If your application already has Swagger API documentation enabled, skip this step. Use the following procedure if
your application does not have Swagger API documentation.

Follow these steps:

1. Add a Springfox Swagger dependency.

• For Gradle add the following dependency in build.gradle:

compile "io.springfox:springfox-swagger2:2.8.0"

• For Maven add the following dependency in pom.xml:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>

 | Extending | 105

 <version>2.8.0</version>
</dependency>

2. Add a Spring configuration class to your project:

package com.ca.mfaas.hellospring.configuration;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import
 org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.service.ApiInfo;
import springfox.documentation.service.Contact;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

import java.util.ArrayList;

@Configuration
@EnableSwagger2
@EnableWebMvc
public class SwaggerConfiguration extends WebMvcConfigurerAdapter {
 @Bean
 public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any())
 .build()
 .apiInfo(new ApiInfo(
 "Spring REST API",
 "Example of REST API",
 "1.0.0",
 null,
 null,
 null,
 null,
 new ArrayList<>()
));
 }
}

3. Customize this configuration according to your specifications. For more information about customization
properties, see Springfox documentation.

Add endpoints to your API for API Mediation Layer integration

To integrate your service with the API Mediation Layer, add the following endpoints to your application:

• Swagger documentation endpoint

The endpoint for the Swagger documentation.
• Health endpoint

The endpoint used for health checks by the Discovery Service.
• Info endpoint

The endpoint to get information about the service.

The following java code is an example of these endpoints added to the Spring Controller:

https://springfox.github.io/springfox/docs/snapshot/#configuring-springfox

 | Extending | 106

Example:

package com.ca.mfaas.hellospring.controller;

import com.ca.mfaas.eurekaservice.model.*;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ResponseBody;
import springfox.documentation.annotations.ApiIgnore;

@Controller
@ApiIgnore
public class MfaasController {

 @GetMapping("/api-doc")
 public String apiDoc() {
 return "forward:/v2/api-docs";
 }

 @GetMapping("/application/health")
 public @ResponseBody Health getHealth() {
 return new Health("UP");
 }

 @GetMapping("/application/info")
 public @ResponseBody ResponseEntity<EmptyJsonResponse>
 getDiscoveryInfo() {
 HttpHeaders headers = new HttpHeaders();
 headers.add("Content-Type", "application/json");
 return new ResponseEntity(new EmptyJsonResponse(), headers,
 HttpStatus.OK);
 }
}

Add configuration for Discovery client

After you add API Mediation Layer integration endpoints, you are ready to add service configuration for Discovery
client.

Follow these steps:

1. Create the file service-configuration.yml in your resources directory.
2. Add the following configuration to your service-configuration.yml:

serviceId: hellospring
title: HelloWorld Spring REST API
description: POC for exposing a Spring REST API
baseUrl: http://localhost:10020/hellospring
homePageRelativeUrl:
statusPageRelativeUrl: /application/info
healthCheckRelativeUrl: /application/health
discoveryServiceUrls:
 - http://eureka:password@localhost:10011/eureka
routedServices:
- gatewayUrl: api/v1
 serviceUrl: /hellospring/api/v1

- gatewayUrl: api/v1/api-doc
 serviceUrl: /hellospring/api-doc
apiInfo:
 title: HelloWorld Spring
 description: REST API for a Spring Application
 version: 1.0.0

 | Extending | 107

catalogUiTile:
 id: helloworld-spring
 title: HelloWorld Spring REST API
 description: Proof of Concept application to demonstrate exposing a
 REST API in the MFaaS ecosystem
 version: 1.0.0

3. Customize your configuration parameters to correspond with your API service specifications.

The following list describes the configuration parameters:

• serviceId

Specifies the service instance identifier that is registered in the API Mediation Layer installation. The service
ID is used in the URL for routing to the API service through the gateway. The service ID uniquely identifies

 | Extending | 108

instances of a microservice in the API Mediation Layer. The system administrator at the customer site defines
this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

• The same service ID should be set only for multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API
Gateway appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/endpoint1/...

• If a customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/endpoint1/...

• title

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API Catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of the title. Use a title that describes the
service instance so that the end user knows the specific purpose of the service instance.

• description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1".

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.
• baseUrl

Specifies the URL to your service to the REST resource. It will be the prefix for the following URLs:

• homePageRelativeUrl
• statusPageRelativeUrl
• healthCheckRelativeUrl.

Examples:

• http://host:port/servicename for HTTP service
• https://host:port/servicename for HTTPS service

• homePageRelativeUrl

Specifies the relative path to the home page of your service. The path should start with /. If your service has
no home page, leave this parameter blank.

Examples:

• homePageRelativeUrl: The service has no home page
• homePageRelativeUrl: / The service has home page with URL ${baseUrl}/

 | Extending | 109

• statusPageRelativeUrl

Specifies the relative path to the status page of your service. This is the endpoint that you defined in the
MfaasController controller in the getDiscoveryInfo method. Start this path with /.

Example:

• statusPageRelativeUrl: /application/info the result URL will be ${baseUrl}/
application/info

• healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service. This is the endpoint that you defined in
the MfaasController controller in the getHealth method. Start this URL with /.

Example:

• healthCheckRelativeUrl: /application/health. This results in the URL: ${baseUrl}/
application/health

• discoveryServiceUrls

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

• http://eureka:password@141.202.65.33:10311/eureka/

• routedServices

The routing rules between the gateway service and your service.

• routedServices.gatewayUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

• routedServices.serviceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

• apiInfo.title

Specifies the title of your service API.
• apiInfo.description

Specifies the high-level function description of your service API.
• apiInfo.version

Specifies the actual version of the API in semantic format.
• catalogUiTile.id

Specifies the unique identifier for the API services product family. This is the grouping value used by the API
Mediation Layer to group multiple API services together into "tiles". Each unique identifier represents a single
API Catalog UI dashboard tile. Specify a value that does not interfere with API services from other products.

• catalogUiTile.title

Specifies the title of the API services product family. This value is displayed in the API catalog UI dashboard
as the tile title.

• catalogUiTile.description

Specifies the detailed description of the API services product family. This value is displayed in the API catalog
UI dashboard as the tile description.

• catalogUiTile.version

Specifies the semantic version of this API Catalog tile. Increase the number of the version when you introduce
new changes to the product family details of the API services including the title and description.

 | Extending | 110

Add a context listener

The context listener invokes the apiMediationClient.register(config) method to register the
application with the API Mediation Layer when the application starts. The context listener also invokes the
apiMediationClient.unregister() method before the application shuts down to unregister the application
in API Mediation Layer.

Note: If you do not use a Java Servlet API based framework, you can still call the same methods for
apiMediationClient to register and unregister your application.

Add a context listener class

Add the following code block to add a context listener class:

package com.ca.mfaas.hellospring.listener;

import com.ca.mfaas.eurekaservice.client.ApiMediationClient;
import com.ca.mfaas.eurekaservice.client.config.ApiMediationServiceConfig;
import com.ca.mfaas.eurekaservice.client.impl.ApiMediationClientImpl;
import
 com.ca.mfaas.eurekaservice.client.util.ApiMediationServiceConfigReader;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class ApiDiscoveryListener implements ServletContextListener {
 private ApiMediationClient apiMediationClient;

 @Override
 public void contextInitialized(ServletContextEvent sce) {
 apiMediationClient = new ApiMediationClientImpl();
 String configurationFile = "/service-configuration.yml";
 ApiMediationServiceConfig config = new
 ApiMediationServiceConfigReader(configurationFile).readConfiguration();
 apiMediationClient.register(config);
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {
 apiMediationClient.unregister();
 }
}

Register a context listener

Register a context listener to start Discovery client. Add the following code block to the deployment descriptor
web.xml to register a context listener:

<listener>
 <listener-class>com.ca.mfaas.hellospring.listener.ApiDiscoveryListener</
listener-class>
</listener>

Setup key store with the service certificate

All API services require a certificate that is trusted by API Mediation Layer in order to register with it.

Follow these steps:

 | Extending | 111

1. Follow instructions at Generating certificate for a new service on localhost

If the service runs on localhost, the command uses the following format:

<api-layer-repository>/scripts/apiml_cm.sh --action new-service --service-
alias localhost --service-ext SAN=dns:localhost.localdomain,dns:localhost
 --service-keystore keystore/localhost.keystore.p12 --service-truststore
 keystore/localhost.truststore.p12 --service-dname "CN=Sample REST API
 Service, OU=Mainframe, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-
password password --service-validity 365 --local-ca-filename <api-layer-
repository>/keystore/local_ca/localca

Alternatively, copy or use the <api-layer-repository>/keystore/localhost.truststore.p12
in your service without generating a new certificate, for local development.

2. Update the configuration of your service service-configuration.yml to contain the HTTPS
configuration by adding the following code:

 ssl:
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password

Note: You need to define both key store and trust store even if your server is not using HTTPS port.

Run your service

After you add all configurations and controllers, you are ready to run your service in the API Mediation Layer
ecosystem.

Follow these steps:

1. Run the following services to onboard your application:

• Gateway Service
• Discovery Service
• API Catalog Service

Tip: For more information about how to run the API Mediation Layer locally,

see Running the API Mediation Layer on Local Machine.
2. Run your Java application.

Tip: Wait for the Discovery Service to discover your service. This process may take a few minutes.
3. Go to the following URL to reach the API Catalog through the Gateway (port 10010):

https://localhost:10010/ui/v1/apicatalog/

You successfully onboarded your Java application with the API Mediation Layer if your service is running and you
can access the API documentation.

(Optional) Validate discovery of the API service by the Discovery Service

If your service is not visible in the API Catalog, you can check if your service is discovered by the Discovery Service.

Follow these steps:

https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

 | Extending | 112

1. Go to http://localhost:10011.
2. Enter eureka as a username and password as a password.
3. Check if your application appears in the Discovery Service UI.

If your service appears in the Discovery Service UI but is not visible in the API Catalog, check to ensure that your
configuration settings are correct.

Java Jersey REST APIs

As an API developer, use this guide to onboard your Java Jersey REST API service into the Zowe API Mediation
Layer. This article outlines a step-by-step process to make your API service available in the API Mediation Layer.

The following procedure is an overview of steps to onboard a Java Jersey REST API application with the API
Mediation Layer.

Follow these steps:

1. Get enablers from the Artifactory on page 112
2. Externalize parameters on page 114
3. Download Apache Tomcat and enable SSL on page 115
4. Run your service on page 116

Get enablers from the Artifactory

The first step to onboard a Java Jersey REST API into the Zowe ecosystem is to get enabler annotations from the
Artifactory. Enablers prepare your service for discovery and for the retrieval of Swagger documentation.

You can use either Gradle or Maven build automation systems.

Gradle guide

Use the following procedure if you use Gradle as your build automation system.

Tip: To migrate from Maven to Gradle, go to your project directory and run gradle init. This converts the
Maven build to a Gradle build by generating a setting.gradle file and a build.gradle file.

Follow these steps:

1. Create a gradle.properties file in the root of your project.
2. In the gradle.properties file, set the following URL of the repository and customize the values of your credentials

to access the repository.

Repository URL for getting the enabler-jersey artifact (`integration-
enabler-java`)
artifactoryMavenRepo=https://gizaartifactory.jfrog.io/gizaartifactory/
libs-release

Artifactory credentials for builds:
mavenUser={username}
mavenPassword={password}

This file specifies the URL for the repository of the Artifactory. The enabler-jersey artifact is downloaded from
this repository.

3. Add the following Gradle code block to the build.gradle file:

ext.mavenRepository = {
maven {
 url artifactoryMavenSnapshotRepo
 credentials {
 username mavenUser
 password mavenPassword
 }
 }

 | Extending | 113

}

repositories mavenRepositories

The ext object declares the mavenRepository property. This property is used as the project repository.
4. In the same build.gradle file, add the following code to the dependencies code block to add the enabler-jersey

artifact as a dependency of your project:

 compile(group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
java', version: '0.2.0')

5. In your project directory, run the gradle build command to build your project.

Maven guide

Use the following procedure if you use Maven as your build automation system.

Tip: To migrate from Gradle to Maven, go to your project directory and run gradle install. This command
automatically generates a pom-default.xml inside the build/poms subfolder where all of the dependencies are
contained.

Follow these steps:

1. Add the following xml tags within the newly created pom.xml file:

 <repositories>
 <repository>
 <id>libs-release</id>
 <name>libs-release</name>
 <url>https://gizaartifactory.jfrog.io/gizaartifactory/libs-
release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

This file specifies the URL for the repository of the Artifactory where you download the enabler-jersey artifact.
2. In the same file, copy the following xml tags to add the enabler-jersey artifact as a dependency of your project:

 <dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-java</artifactId>
 <version>0.2.0</version>
 </dependency>

3. Create a settings.xml file and copy the following xml code block which defines the credentials for the Artifactory:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>libs-release</id>
 <username>{username}</username>
 <password>{password}</password>
 </server>
</servers>
</settings>

4. Copy the settings.xml file inside ${user.home}/.m2/ directory.

 | Extending | 114

5. In the directory of your project, run the mvn package command to build the project.

Externalize parameters

In order to externalize parameters, you have to create a ServletContextListener. To create your own
ServletContextListener, register a ServletContextListener and enable it to read all the properties
defined inside the .yml file.

Follow these steps:

1. Define parameters that you want to externalize in a .yml file. Ensure that this file is placed in the WEB-INF
folder located in the module of your service. Check the ApiMediationServiceConfig.java class inside
com.ca.mfaas.eurekaservice.client.config package in the integration-enabler-java to
see the mapped parameters and make sure that the yml file follows the correct structure. The following example
shows the structure of the 'yml' file:

Example:

 serviceId:
 eureka:
 hostname:
 ipAddress:
 port:
 title:
 description:
 defaultZone:
 baseUrl:
 homePageRelativeUrl:
 statusPageRelativeUrl:
 healthCheckRelativeUrl:
 discoveryServiceUrls:

 ssl:
 verifySslCertificatesOfServices: true
 protocol: TLSv1.2
 keyAlias: localhost
 keyPassword: password
 keyStore: ../keystore/localhost/localhost.keystore.p12
 keyStorePassword: password
 keyStoreType: PKCS12
 trustStore: ../keystore/localhost/localhost.truststore.p12
 trustStorePassword: password
 trustStoreType: PKCS12
 routes:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 apiInfo:
 title:
 description:
 version:
 catalogUiTile:
 id:
 title:
 description:
 version:

 | Extending | 115

2. Before the web application is started (Tomcat), create a ServletContextListener to run the defined code.

Example:

 package com.ca.hwsjersey.listener;

 import com.ca.mfaas.eurekaservice.client.ApiMediationClient;
 import
 com.ca.mfaas.eurekaservice.client.config.ApiMediationServiceConfig;
 import
 com.ca.mfaas.eurekaservice.client.impl.ApiMediationClientImpl;
 import
 com.ca.mfaas.eurekaservice.client.util.ApiMediationServiceConfigReader;

 import javax.servlet.ServletContextEvent;
 import javax.servlet.ServletContextListener;

 public class ApiDiscoveryListener implements
 ServletContextListener {
 private ApiMediationClient apiMediationClient;

 @Override
 public void contextInitialized(ServletContextEvent sce) {
 apiMediationClient = new ApiMediationClientImpl();
 String configurationFile = "/service-
configuration.yml";
 ApiMediationServiceConfig config = new
 ApiMediationServiceConfigReader(configurationFile).readConfiguration();
 apiMediationClient.register(config);
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {
 apiMediationClient.unregister();
 }
 }

3. Register the listener. Use one of the following two options:

• Add the @WebListener annotation to the servlet.
• Reference the listener by adding the following code block to the deployment descriptor web.xml.

Example:

<listener>
 <listener-class>your.class.package.path</listener-class>
</listener>

Download Apache Tomcat and enable SSL

To run Helloworld Jersey, requires the nstallation of Apache Tomcat. As the service uses HTTPS, configure Tomcat
to use SSL/TLS protocol.

Follow these steps:

1. Download Apache Tomcat 8.0.39 and install it.
2. Build Helloworld Jersey through IntelliJ or by running gradlew helloworld-jersey:build in the

terminal.

 | Extending | 116

3. Enable HTTPS for Apache Tomcat. There are few additional steps to enable HTTPS for Apache Tomcat.

a) Go to the apache-tomcat-8.0.39-windows-x64\conf directory

Note: (the full path depends on where you decided to install Tomcat)

b) Open the server.xml file with a text editor as Administrator and add the following xml block: xml
<Connector port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" keystoreFile="{your-project-
directory}\api-layer\keystore\localhost\localhost.keystore.p12"
keystorePass="password" /> Be also sure to comment the HTTP connector which uses the same port.
c) Navigate to the WEB-INF/ located in helloworld-jersey module and add the following xml block to the
web.xml file. This should be added right below the <servlet-mapping> tag:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protected resource</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Run your service

After you externalize the parameters to make them readable through Tomcat and enable SSL, you are ready to run
your service in the APIM Ecosystem.

Note: The following procedure uses localhost testing.

Follow these steps:

1. Run the following services to onboard your application:

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation
Layer on Local Machine.

• Gateway Service
• Discovery Service
• API Catalog Service

2. Run gradlew tomcatRun with these additional parameters: -
Djavax.net.ssl.trustStore="<your-project-directory>\api-
layer\keystore\localhost\localhost.truststore.p12" -
Djavax.net.ssl.trustStorePassword="password". If you need some more information about SSL
configuration status while deploying, use this parameter -Djavax.net.debug=SSL.

Tip: Wait for the services to be ready. This process may take a few minutes.
3. Navigate to following URL:

https://localhost:10011

Enter eureka as a username and password as a password and check if the service is registered to the discovery
service.

Go to the following URL to reach the API Catalog through the Gateway (port 10010) and check if the API
documentation of the service is retrieved:

https://localhost:10010/ui/v1/apicatalog/#/dashboard

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

 | Extending | 117

You successfully onboarded your Java Jersey application if see your service running and can access the API
documentation.

REST APIs without code changes required

As a user of Zowe API Mediation Layer, onboard a REST API service with the Zowe API Mediation Layer without
changing the code of the API service. The following procedure is an overview of steps to onboard an API service
through the API Gateway in the API Mediation Layer.

Follow these steps:

1. Identify the API that you want to expose on page 117
2. Route your API on page 117
3. Define your service and API in YAML format on page 118
4. Configuration parameters on page 119
5. Add and validate the definition in the API Mediation Layer running on your machine on page 121
6. Add a definition in the API Mediation Layer in the Zowe runtime on page 122
7. (Optional) Check the log of the API Mediation Layer on page 122
8. (Optional) Reload the services definition after the update when the API Mediation Layer is already started on page

123

Identify the API that you want to expose

Onboard an API service through the API Gateway without making code changes.

Tip: For more information about the structure of APIs and which APIs to expose in the Zowe API Mediation Layer,
see Onboarding Overview on page 78.

Follow these steps:

1. Identify the following parameters of your API service:

• Hostname
• Port
• (Optional) base path where the service is available. This URL is called base URL of the service.

Example:

In the sample service described earlier, the URL of the service is: http://localhost:8080.
2. Identify all APIs that this service provides that you want to expose through the API Gateway.

Example:

In the sample service, this REST API is the one available at the path /v2 relative to base URL of the service. This
API is version 2 of the Pet Store API.

3. Choose the service ID of your service. The service ID identifies the service in the API Gateway. The service ID is
an alphanumeric string in lowercase ASCII.

Example:

In the sample service, the service ID is petstore.
4. Decide which URL to use to make this API available in the API Gateway. This URL is refered to as the gateway

URL and is composed of the API type and the major version.

Example:

In the sample service, we provide a REST API. The first segment is /api. To indicate that this is version 2, the
second segment is /v2.

Route your API

After you identify the APIs you want to expose, define the routing of your API. Routing is the process of sending
requests from the API gateway to a specific API service. Route your API by using the same format as in the following
petstore example.

 | Extending | 118

Note: The API Gateway differentiates major versions of an API.

Example:

To access version 2 of the petstore API use the following gateway URL:

https://gateway-host:port/api/v2/petstore

The base URL of the version 2 of the petstore API is:

http://localhost:8080/v2

The API Gateway routes REST API requests from the gateway URL https://gateway:port/api/v2/
petstore to the service http://localhost:8080/v2. This method provides access to the service in the API
Gateway through the gateway URL.

Note: This method enables you to access the service through a stable URL and move the service to another machine
without changing the gateway URL. Accessing a service through the API Gateway also enables you to have multiple
instances of the service running on different machines to achieve high-availability.

Define your service and API in YAML format

Define your service and API in YAML format in the same way as presented in the following sample petstore
service example.

Example:

To define your service in YAML format, provide the following definition in a YAML file as in the following sample
petstore service:

services:
 - serviceId: petstore
 catalogUiTileId: static
 title: Petstore Sample Service
 description: This is a sample server Petstore service
 instanceBaseUrls:
 - http://localhost:8080
 routes:
 - gatewayUrl: api/v2
 serviceRelativeUrl: /v2
 apiInfo:
 - apiId: io.swagger.petstore
 gatewayUrl: api/v2
 swaggerUrl: http://localhost:8080/v2/swagger.json
 version: 2.0.0

catalogUiTiles:
 static:
 title: Static API services
 description: Services which demonstrate how to make an API service
 discoverable in the APIML ecosystem using YAML definitions

In this example, a suitable name for the file is petstore.yml.

Notes:

• The filename does not need to follow specific naming conventions but it requires the .yml extension.
• The file can contain one or more services defined under the services: node.
• Each service has a service ID. In this example, the service ID is petstore. The service can have one or more

instances. In this case, only one instance http://localhost:8080 is used.
• A service can provide multiple APIs that are routed by the API Gateway. In this case, requests with the relative

base path api/v2 at the API Gateway (full gateway URL: https://gateway:port/api/v2/...) are
routed to the relative base path /v2 at the full URL of the service (http://localhost:8080/v2/...).

Tips:

 | Extending | 119

• There are more examples of API definitions at this link.
• For more details about how to use YAML format, see this link

Configuration parameters

The following list describes the configuration parameters:

• serviceId

Specifies the service instance identifier that is registered in the API Mediation Layer installation. The service ID is
used in the URL for routing to the API service through the gateway. The service ID uniquely identifies the service
in the API Mediation Layer. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API gateway considers the services to be clones (two
instances for the same service). An incoming API request can be routed to either of them.

• The same service ID should be set only for multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API Gateway
appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/...

• If customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/...
• title

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of the title. Use a title that describes the service
instance so that the end user knows the specific purpose of the service instance.

• description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1".

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.

https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

 | Extending | 120

• instanceBaseUrls

Specifies a list of base URLs to your service to the REST resource. It will be the prefix for the following URLs:

• homePageRelativeUrl
• statusPageRelativeUrl
• healthCheckRelativeUrl

Examples:

• - http://host:port/filemasterplus for an HTTP service
• - https://host:port/endevor for an HTTPS service

You can provide one URL if your service has one instance. If your service provides multiple instances for the
high-availability then you can provide URLs to these instances.

- https://host1:port1/endevor
 https://host2:port2/endevor

• homePageRelativeUrl

Specifies the relative path to the homepage of your service. The path should start with /. If your service has no
homepage, omit this parameter.

Examples:

• homePageRelativeUrl: / The service has homepage with URL ${baseUrl}/
• homePageRelativeUrl: /ui/ The service has homepage with URL ${baseUrl}/ui/
• homePageRelativeUrl: The service has homepage with URL ${baseUrl}

• statusPageRelativeUrl

Specifies the relative path to the status page of your service. Start this path with /. If you service has not a status
page, omit this parameter.

Example:

• statusPageRelativeUrl: /application/info the result URL will be ${baseUrl}/
application/info

• healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service. Start this URL with /. If your service does
not have a health check endpoint, omit this parameter.

Example:

• healthCheckRelativeUrl: /application/health. This results in the URL: ${baseUrl}/
application/health

• routes

The routing rules between the gateway service and your service.

• routes.gatewayUrl

Both gatewayUrl and serviceUrl parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gatewayUrl parameter sets the target endpoint on the gateway.

• routes.serviceUrl

Both gatewayUrl and serviceUrl parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The serviceUrl parameter points to the target endpoint on the gateway.

• apiInfo

This section defines APIs that are provided by the service. Currently, only one API is supported.

 | Extending | 121

• apiInfo.apiId

Specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple service. The API ID
can be used to locate same APIs that are provided by different services. The creator of the API defines this ID.
The API ID needs to be string up to 64 characters that is using lowercase alphanumeric characters and a dot: .. It
is recommended to use your organization as the prefix.

Examples:

• org.zowe.file

• com.ca.sysview

• com.ibm.zosmf

• apiInfo.gatewayUrl

The base path at the API gateway where the API is available. It should be the same as a gatewayUrl value in the
routes sections.

• apiInfo.swaggerUrl

(Optional) Specifies the HTTP or HTTPS address where the Swagger JSON document that provides the API
documentation for this API is available.

• apiInfo.documentationUrl

(Optional) Specifies a URL to a website where external documentation is provided. This can be used when
swaggerUrl is not provided.

• apiInfo.version

(Optional) Specifies the actual version of the API in semantic versioning format. This can be used when
swaggerUrl is not provided.

• catalogUiTileId

Specifies the unique identifier for the API services group. This is the grouping value used by the API Mediation
Layer to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog
UI dashboard tile. Specify the value based on the ID of the defined tile.

• catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that has its tile ID as a key. A tile can be
used by multiple services.

catalogUiTiles:
 tile1:
 title: Tile 1
 description: This is the first tile with ID tile1
 tile2:
 title: Tile 2
 description: This is the second tile with ID tile2

• catalogUiTile.{tileId}.title

Specifies the title of the API services product family. This value is displayed in the API catalog UI dashboard as
the tile title.

• catalogUiTile.{tileId}.description

Specifies the detailed description of the API Catalog UI dashboard tile. This value is displayed in the API catalog
UI dashboard as the tile description.

Add and validate the definition in the API Mediation Layer running on your machine

After you define the service in YAML format, you are ready to add your service definition to the API Mediation
Layer ecosystem.

The following procedure describes how to add your service to the API Mediation Layer on your local machine.

https://semver.org/

 | Extending | 122

Follow these steps:

1. Copy or move your YAML file to the config/local/api-defs directory in the directory with API
Mediation layer.

2. Start the API Mediation Layer services.

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation
Layer on Local Machine.

3. Run your Java application.

Tip: Wait for the services to be ready. This process may take a few minutes.
4. Go to the following URL to reach the API Gateway (port 10010) and see the paths that are routed by the API

Gateway:

https://localhost:10010/application/routes

The following line should appear:

/api/v2/petstore/**: "petstore"

This line indicates that requests to relative gateway paths that start with /api/v2/petstore/ are routed to the
service with the service ID petstore.

You successfully defined your Java application if your service is running and you can access the service
endpoints. The following example is the service endpoint for the sample application:

https://localhost:10010/api/v2/petstore/pets/1

Add a definition in the API Mediation Layer in the Zowe runtime

After you define and validate the service in YAML format, you are ready to add your service definition to the API
Mediation Layer running as part of the Zowe runtime installation.

Follow these steps:

1. Locate the Zowe runtime directory. The Zowe runtime directory is chosen during Zowe installation. The location
of the directory is in the zowe-install.yaml file in the variable install:rootDir.

Note: We use the ${zoweRuntime} symbol in following instructions.
2. Copy your YAML file to the ${zoweRuntime}/api-mediation/api-defs directory.
3. Run your application.
4. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the update when

the API Mediation Layer is already started on page 123.
5. Go to the following URL to reach the API Gateway (default port 7554) and see the paths that are routed by the

API Gateway: https://${zoweHostname}:${gatewayHttpsPort}/application/routes

The following line should appear:

/api/v2/petstore/**: "petstore"

This line indicates that requests to the relative gateway paths that start with /api/v2/petstore/ are routed to
the service with service ID petstore.

You successfully defined your Java application if your service is running and you can access its
endpoints. The endpoint displayed for the sample application is: https://l${zoweHostname}:
${gatewayHttpsPort}/api/v2/petstore/pets/1

(Optional) Check the log of the API Mediation Layer

The API Mediation Layer prints the following messages to its log when the API definitions are processed:

    ```
        Scanning directory with static services definition: config/local/
api-defs

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md


 | Extending | 123

        Static API definition file: /Users/plape03/workspace/api-layer/
config/local/api-defs/petstore.yml
        Adding static instance STATIC-localhost:petstore:8080 for service ID
 petstore mapped to URL http://localhost:8080
        ```

(Optional) Reload the services definition after the update when the API Mediation Layer is already
started

The following procedure enables you to refresh the API definitions after you change the definitions when the API
Mediation Layer is already running.

Follow these steps:

1. Use a REST API client to issue a POST request to the Discovery Service (port 10011):

http://localhost:10011/discovery/api/v1/staticApi

The Discovery Service requires authentication by a client certificate. If the API Mediation Layer is running on
your local machine, the certificate is stored at keystore/localhost/localhost.pem.

This example uses the HTTPie command-line HTTP client:

```
       http --cert=keystore/localhost/localhost.pem --verify=keystore/
local_ca/localca.cer -j POST https://localhost:10011/discovery/api/v1/
staticApi
       ```

2. Check if your updated definition is effective.

Notes:

• It can take up to 30 seconds for the API Gateway to pick up the new routing.
• The basic authentication will be replaced by client certificates when the Discovery Service is updated to use

HTTPS.

Developing for Zowe CLI

Developing for Zowe CLI

You can extend Zowe CLI by developing plug-ins and contributing code to the base Zowe CLI or existing plug-ins.

Note: You can also Extending Zowe CLI on page 65.

• How can I contribute? on page 123
• Getting started on page 124

How can I contribute?

You can contribute to Zowe CLI in the following ways:

1. Add new commands, options, or other improvements to the base CLI.
2. Develop a plug-in that users can install to Zowe CLI.

See Getting started on page 124 to get started with development today!

You might want to contribute to Zowe CLI to accomplish the following:

• Provide new scriptable functionality for yourself, your organization, or to a broader community.
• Make use of Zowe CLI infrastructure (profiles and programmatic APIs).
• Participate in the Zowe CLI community space.

The following plug-in projects have been developed:

https://httpie.org

 | Extending | 124

• Zowe CLI Plug-in for IBM Db2
• Zowe CLI Plug-in for IBM CICS

Getting started

If you want to start working with the code immediately, check out the Zowe CLI core repository and the contribution
guidelines.

The zowe-cli-sample-plugin GitHub repository contains a sample plug-in that adheres to the guidelines for
contributing to Zowe CLI projects. Follow the associated Tutorials on page 124 to learn about how to work with
our sample plug-in, build new commands, or build a new Zowe CLI plug-in.

Tutorials

Follow these tutorials to get started working with the sample plug-in:

1. Setting up your development environment on page 125 - Clone the project and prepare your local
environment.

2. Installing the sample plug-in on page 126 - Install the sample plug-in to Zowe CLI and run as-is.
3. Extending a plug-in on page 128 - Extend the sample plug-in with a new by creating a programmatic API,

definition, and handler.
4. Developing a new plug-in on page 131 - Create a new CLI plug-in that uses Zowe CLI programmatic APIs

and a diff package to compare two data sets.
5. Implementing profiles in a plug-in on page 136 - Implement user profiles with the plug-in.

Plug-in Development Overview

At a high level, a plug-in must have imperative-framework configuration (sample here). This configuration is
discovered by imperative-framework through the package.json imperative key.

In addition to the configuration, a Zowe CLI plug-in will minimally contain the following:

1. Programmatic API - Node.js programmatic APIs to be called by your handler or other Node.js applications.
2. Command definition - The syntax definition for your command.
3. Handler implementation - To invoke your programmatic API to display information in the format that you

defined in the definition.

Developer Documentation and Guidelines

In addition to the Tutorials on page 124, the following guidelines and documentation will assist you during
development:

Imperative CLI Framework Documentation

Imperative CLI Framework documentation is a key source of information to learn about the features of Imperative
CLI Framework (the code framework that you use to build plug-ins for Zowe CLI). Refer to these supplementary
documents during development to learn about specific features such as:

• Auto-generated help
• JSON responses
• User profiles
• Logging, progress bars, experimental commands, and more!

Contribution Guidelines

The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CLI plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining automated tests,
developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly:

For more information about ... See:

General guidelines that apply to contributing to Zowe
CLI and Plug-ins

Contribution Guidelines

https://github.com/zowe/zowe-cli-db2-plugin
https://github.com/zowe/zowe-cli-cics-plugin
https://github.com/zowe/zowe-cli
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli-sample-plugin
https://github.com/zowe/zowe-cli-sample-plugin/src/imperative.ts
https://github.com/zowe/zowe-cli-sample-plugin/package.json
https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md

 | Extending | 125

For more information about ... See:

Conventions and best practices for creating packages and
plug-ins for Zowe CLI

Package and Plug-in Guidelines

Guidelines for running tests on Zowe CLI Testing Guidelines

Guidelines for running tests on the plug-ins that you
build

Plug-in Testing Guidelines

Versioning conventions for Zowe CLI and Plug-ins Versioning Guidelines

Setting up your development environment

Before you follow the development tutorials for creating a Zowe CLI plug-in, follow these steps to set up your
environment.

Prequisites

Methods to install Zowe CLI on page 39.

Initial setup

To create your development space, you will clone and build zowe-cli-sample-plugin from source.

Before you clone the repository, create a local development folder named zowe-tutorial. You will clone and
build all projects in this folder.

Clone zowe-cli-sample-plugin and build from source

Clone the repository into your development folder to match the following structure:

zowe-tutorial
zowe-cli-sample-plugin

Follow these steps:

1. cd to your zowe-tutorial folder.
2. git clone https://github.com/zowe/zowe-cli-sample-plugin

3. cd to your zowe-cli-sample-plugin folder.
4. npm install

5. npm run build

The first time that you build, the script will interactively ask you for the location of your Zowe CLI directory.
Subsequent builds will not ask again.

The build script creates symbolic links. On Windows, you might need to have Administrator privileges to create
those symbolic links.

(Optional) Run the automated tests

We recommend running automated tests on all code changes. Follow these steps:

1. cd to the __tests__/__resources__/properties folder.
2. Copy example_properties.yaml to custom_properties.yaml.
3. Edit the properties within custom_properties.yaml to contain valid system information for your site.
4. cd to your zowe-cli-sample-plugin folder
5. npm run test

Next steps

After you complete your setup, follow the Installing the sample plug-in on page 126 tutorial to install this sample
plug-in to Zowe CLI.

https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md
https://github.com/zowe/zowe-cli-sample-plugin

 | Extending | 126

Installing the sample plug-in

Before you begin, Setting up your development environment on page 125 your local environment to install a plug-
in.

Overview

This tutorial covers installing and running this bundled Zowe CLI plugin as-is (without modification), which will
display your current directory contents.

The plug-in adds a command to the CLI that lists the contents of a directory on your computer.

Installing the sample plug-in to Zowe CLI

To begin, cd into your zowe-tutorial folder.

Issue the following commands to install the sample plug-in to Zowe CLI:

zowe plugins install ./zowe-cli-sample-plugin

Viewing the installed plug-in

Issue zowe --help in the command line to return information for the installed zowe-cli-sample command
group:

 | Extending | 127

Figure 1: Installed Sample Plugin

Using the installed plug-in

To use the plug-in functionality, issue: zowe zowe-cli-sample list directory-contents:

 | Extending | 128

Figure 2: Sample Plugin Output

Testing the installed plug-in

To run automated tests against the plug-in, cd into your zowe-tutorial/zowe-cli-sample-plugin folder.

Issue the following command:

• npm run test

Next steps

You successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in on page 128 tutorial to learn
about developing new commands for this plug-in.

Extending a plug-in

Before you begin, be sure to complete the Installing the sample plug-in on page 126 tutorial.

Overview

This tutorial demonstrates how to extend the plug-in that is bundled with this sample by:

1. Creating a new programmatic API
2. Creating a new command definition
3. Creating a new handler

We'll do this by using @brightside/imperative infrastructure to surface REST API data on our Zowe CLI
plug-in.

Specifically, we're going to show data from this URI by Typicode. Typicode serves sample REST JSON data for
testing purposes.

At the end of this tutorial, you will be able to use a new command from the Zowe CLI interface: zowe zowe-cli-
sample list typicode-todos

Completed source for this tutorial can be found on the typicode-todos branch of the zowe-cli-sample-plugin
repository.

https://jsonplaceholder.typicode.com/todos
https://jsonplaceholder.typicode.com/

 | Extending | 129

Creating a Typescript interface for the Typicode response data

First, we'll create a Typescript interface to map the response data from a server.

Within zowe-cli-sample-plugin/src/api, create a folder named doc to contain our interface (sometimes
referred to as a "document" or "doc"). Within the doc folder, create a file named ITodo.ts.

The ITodo.ts file will contain the following:

export interface ITodo {
 userId: number;
 id: number;
 title: string;
 completed: boolean;
}

Creating a programmatic API

Next, we'll create a Node.js API that our command handler uses. This API can also be used in any Node.js
application, because these Node.js APIs make use of REST APIs, Node.js APIs, other NPM packages, or custom
logic to provide higher level functions than are served by any single API.

Adjacent to the existing file named zowe-cli-sample-plugin/src/api/Files.ts, create a file
Typicode.ts.

Typicode.tsshould contain the following:

import { ITodo } from "./doc/ITodo";
import { RestClient, AbstractSession, ImperativeExpect, Logger } from
 "@brightside/imperative";

export class Typicode {

 public static readonly TODO_URI = "/todos";

 public static getTodos(session: AbstractSession): Promise<ITodo[]> {
 Logger.getAppLogger().trace("Typicode.getTodos() called");
 return RestClient.getExpectJSON<ITodo[]>(session,
 Typicode.TODO_URI);
 }

 public static getTodo(session: AbstractSession, id: number):
 Promise<ITodo> {
 Logger.getAppLogger().trace("Typicode.getTodos() called with id " +
 id);
 ImperativeExpect.toNotBeNullOrUndefined(id, "id must be provided");
 const resource = Typicode.TODO_URI + "/" + id;
 return RestClient.getExpectJSON<ITodo>(session, resource);
 }
}

The Typicode class provides two programmatic APIs, getTodos and getTodo, to get an array of ITodo
objects or a specific ITodo respectively. The Node.js APIs use @brightside/imperative infrastructure to
provide logging, parameter validation, and to call a REST API. See the Imperative CLI Framework documentation for
more information.

Exporting interface and programmatic API for other Node.js applications

Update zowe-cli-sample-plugin/src/index.ts to contain the following:

export * from "./api/doc/ITodo";
export * from "./api/Typicode";

https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli-sample-plugin/src/index.ts

 | Extending | 130

A sample invocation of your API might look similar to the following, if it were used by a separate, standalone Node.js
application:

import { Typicode } from "@brightside/zowe-cli-sample-plugin";
import { Session, Imperative } from "@brightside/imperative";
import { inspect } from "util";

const session = new Session({ hostname: "jsonplaceholder.typicode.com"});
(async () => {
 const firstTodo = await Typicode.getTodo(session, 1);
 Imperative.console.debug("First todo was: " + inspect(firstTodo));
})();

Checkpoint

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. At this point in this
tutorial, you have a programmatic API that will be used by your handler or another Node.js application. Next you'll
define the command syntax for the command that will use your programmatic Node.js APIs.

Defining command syntax

Within Zowe CLI, the full command that we want to create is zowe zowe-cli-sample list typicode-
todos. Navigate to zowe-cli-sample-plugin/src/cli/list and create a folder typicode-todos.
Within this folder, create TypicodeTodos.definition.ts. Its content should be as follows:

import { ICommandDefinition } from "@brightside/imperative";
export const TypicodeTodosDefinition: ICommandDefinition = {
 name: "typicode-todos",
 aliases: ["td"],
 summary: "Lists typicode todos",
 description: "List typicode REST sample data",
 type: "command",
 handler: __dirname + "/TypicodeTodos.handler",
 options: [
 {
 name: "id",
 description: "The todo to list",
 type: "number"
 }
]
};

This describes the syntax of your command.

Defining command handler

Also within the typicode-todos folder, create TypicodeTodos.handler.ts. Add the following code to
the new file:

import { ICommandHandler, IHandlerParameters, TextUtils, Session } from
 "@brightside/imperative";
import { Typicode } from "../../../api/Typicode";
export default class TypicodeTodosHandler implements ICommandHandler {

 public static readonly TYPICODE_HOST = "jsonplaceholder.typicode.com";
 public async process(params: IHandlerParameters): Promise<void> {

 const session = new Session({ hostname:
 TypicodeTodosHandler.TYPICODE_HOST});
 if (params.arguments.id) {
 const todo = await Typicode.getTodo(session,
 params.arguments.id);
 params.response.data.setObj(todo);

 | Extending | 131

 params.response.console.log(TextUtils.prettyJson(todo));
 } else {
 const todos = await Typicode.getTodos(session);
 params.response.data.setObj(todos);
 params.response.console.log(TextUtils.prettyJson(todos));
 }
 }
}

The if statement checks if a user provides an --id flag. If yes, we call getTodo. Otherwise, we call getTodos.
If the Typicode API throws an error, the @brightside/imperative infrastructure will automatically surface
this.

Defining command to list group

Within the file zowe-cli-sample-plugin/src/cli/list/List.definition.ts, add the following
code below other import statements near the top of the file:

import { TypicodeTodosDefinition } from "./typicode-todos/
TypicodeTodos.definition";

Then add TypicodeTodosDefinition to the children array. For example:

children: [DirectoryContentsDefinition, TypicodeTodosDefinition]

Checkpoint

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. You now have a
handler, definition, and your command has been defined to the list group of the command.

Using the installed plug-in

Issue the command: zowe zowe-cli-sample list typicode-todos

Refer to zowe zowe-cli-sample list typicode-todos --help for more information about your
command and to see how text in the command definition is presented to the end user. You can also see how to use
your optional --id flag:

Summary

You extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a command
definition with a handler. For an official plugin, you would also add JSDoc to your code and create automated tests.

Next steps

Try the Developing a new plug-in on page 131 tutorial next to create a new plug-in for Zowe CLI.

Developing a new plug-in

Before you begin this tutorial, make sure that you completed the Extending a plug-in on page 128 tutorial.

http://usejsdoc.org/

 | Extending | 132

Overview

This tutorial demonstrates how to create a brand new Zowe CLI plug-in that uses Zowe CLI Node.js programmatic
APIs.

At the end of this tutorial, you will have created a data set diff utility plug-in for Zowe CLI, from which you can pipe
your plugin's output to a third-party utility for a side-by-side diff of data set member contents.

Completed source for this tutorial can be found on the develop-a-plugin branch of the zowe-cli-sample-plugin
repository.

Cloning the sample plug-in source

Clone the sample repo, delete the irrelevant source, and create a brand new plug-in. Follow these steps:

1. cd into your zowe-tutorial folder
2. git clone https://github.com/zowe/zowe-cli-sample-plugin files-util

3. cd files-util

4. Delete the .git (hidden) folder.
5. Delete all content within the src/api, src/cli, and docs folders.
6. Delete all content within the __tests__/__system__/api, __tests__/__system__/cli,

__tests__/api, and __tests__/cli folders
7. git init

8. git add .

9. git commit -m "initial"

Changing package.json

Use a unique npm name for your plugin. Change package.json name field as follows:

 "name": "@brightside/files-util",

Issue the command npm install against the local repository.

Adjusting Imperative CLI Framework configuration

Change imperative.ts to contain the following:

import { IImperativeConfig } from "@brightside/imperative";

const config: IImperativeConfig = {
 commandModuleGlobs: ["**/cli/*/*.definition!(.d).*s"],
 rootCommandDescription: "Files utilty plugin for Zowe CLI",
 envVariablePrefix: "FILES_UTIL_PLUGIN",

 | Extending | 133

 defaultHome: "~/.files_util_plugin",
 productDisplayName: "Files Util Plugin",
 name: "files-util"
};

export = config;

Here we adjusted the description and other fields in the imperative JSON configuration to be relevant to this
plug-in.

Adding third-party packages

We'll use the following packages to create a programmatic API:

• npm install --save diff

• npm install -D @types/diff

Creating a Node.js programmatic API

In files-util/src/api, create a file named DataSetDiff.ts. The content of DataSetDiff.ts should
be the following:

import { AbstractSession } from "@brightside/imperative";
import { Download, IDownloadOptions, IZosFilesResponse } from "@brightside/
core";
import * as diff from "diff";
import { readFileSync } from "fs";

export class DataSetDiff {

 public static async diff(session: AbstractSession, oldDataSet: string,
 newDataSet: string) {

 let error;
 let response: IZosFilesResponse;

 const options: IDownloadOptions = {
 extension: "dat",
 };

 try {
 response = await Download.dataSet(session, oldDataSet, options);
 } catch (err) {
 error = "oldDataSet: " + err;
 throw error;
 }

 try {
 response = await Download.dataSet(session, newDataSet, options);
 } catch (err) {
 error = "newDataSet: " + err;
 throw error;
 }

 const regex = /\.|\(/gi; // Replace . and (with /
 const regex2 = /\)/gi; // Replace) with .

 // convert the old data set name to use as a path/file
 let file = oldDataSet.replace(regex, "/");
 file = file.replace(regex2, ".") + "dat";
 // Load the downloaded contents of 'oldDataSet'
 const oldContent = readFileSync(`${file}`).toString();

 // convert the new data set name to use as a path/file

 | Extending | 134

 file = newDataSet.replace(regex, "/");
 file = file.replace(regex2, ".") + "dat";
 // Load the downloaded contents of 'oldDataSet'
 const newContent = readFileSync(`${file}`).toString();

 return diff.createTwoFilesPatch(oldDataSet, newDataSet, oldContent,
 newContent, "Old", "New");
 }
}

Exporting your API

In files-util/src, change index.ts to contain the following:

export * from "./api/DataSetDiff";

Checkpoint

At this point, you should be able to rebuild the plug-in without errors via npm run build. You included third
party dependencies, created a programmatic API, and customized this new plug-in project. Next, you'll define the
command to invoke your programmatic API.

Defining commands

In files-util/src/cli, create a folder named diff. Within the diff folder, create a file
Diff.definition.ts. Its content should be as follows:

import { ICommandDefinition } from "@brightside/imperative";
import { DataSetsDefinition } from "./data-sets/DataSets.definition";
const IssueDefinition: ICommandDefinition = {
 name: "diff",
 summary: "Diff two data sets content",
 description: "Uses open source diff packages to diff two data sets
 content",
 type: "group",
 children: [DataSetsDefinition]
};

export = IssueDefinition;

Also within the diff folder, create a folder named data-sets. Within the data-sets folder create
DataSets.definition.ts and DataSets.handler.ts.

DataSets.definition.ts should contain:

import { ICommandDefinition } from "@brightside/imperative";

export const DataSetsDefinition: ICommandDefinition = {
 name: "data-sets",
 aliases: ["ds"],
 summary: "data sets to diff",
 description: "diff the first data set with the second",
 type: "command",
 handler: __dirname + "/DataSets.handler",
 positionals: [
 {
 name: "oldDataSet",
 description: "The old data set",
 type: "string"
 },
 {
 name: "newDataSet",
 description: "The new data set",

 | Extending | 135

 type: "string"
 }
],
 profile: {
 required: ["zosmf"]
 }
};

DataSets.handler.ts should contain the following:

import { ICommandHandler, IHandlerParameters, TextUtils, Session } from
 "@brightside/imperative";
import { DataSetDiff } from "../../../api/DataSetDiff";

export default class DataSetsDiffHandler implements ICommandHandler {
 public async process(params: IHandlerParameters): Promise<void> {

 const profile = params.profiles.get("zosmf");
 const session = new Session({
 type: "basic",
 hostname: profile.host,
 port: profile.port,
 user: profile.user,
 password: profile.pass,
 base64EncodedAuth: profile.auth,
 rejectUnauthorized: profile.rejectUnauthorized,
 });
 const resp = await DataSetDiff.diff(session,
 params.arguments.oldDataSet, params.arguments.newDataSet);
 params.response.console.log(resp);
 }
}

Trying your command

Be sure to build your plug-in via npm run build.

Install your plug-in into Zowe CLI via zowe plugins install.

Issue the following command. Replace the data set names with valid mainframe data set names on your system:

The raw diff output is displayed as a command response:

 | Extending | 136

Bringing together new tools!

The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for combining
different developer tools for new and interesting uses.

diff2html is a free tool to generate HTML side-by-side diffs to help see actual differences in diff output.

Install the diff2html CLI via npm install -g diff2html-cli. Then, pipe your Zowe CL plugin's output
into diff2html to generate diff HTML and launch a web browser that contains the content in the screen shot at the
Overview on page 132.

• zowe files-util diff data-sets "kelda16.work.jcl(iefbr14)"
"kelda16.work.jcl(iefbr15)" | diff2html -i stdin

Next steps

Try the Implementing profiles in a plug-in on page 136 tutorial to learn about using profiles with your plug-in.

Implementing profiles in a plug-in

You can use this profile template to create a profile for your product.

The profile definition is placed in the imperative.ts file.

someproduct will be the profile name that you might require on various commands to have credentials loaded
from a secure credential manager and retain host/port information (so that you can easily swap to different servers)
from the CLI).

By default, if your plug-in is installed into Zowe CLI that contains a profile definition like this, commands will
automatically be created under zowe profiles ... to create, validate, set default, list, etc... for your profile.

profiles: [
 {
 type: "someproduct",
 schema: {
 type: "object",
 title: "Configuration profile for SOME PRODUCT",
 description: "Configuration profile for SOME PRODUCT ",
 properties: {
 host: {
 type: "string",
 optionDefinition: {
 type: "string",
 name: "host",
 alias:["H"],
 required: true,
 description: "Host name of your SOME PRODUCT REST API server"
 }
 },
 port: {
 type: "number",
 optionDefinition: {
 type: "number",
 name: "port",
 alias:["P"],
 required: true,
 description: "Port number of your SOME PRODUCT REST API
 server"
 }
 },
 user: {
 type: "string",
 optionDefinition: {
 type: "string",

https://diff2html.xyz/

 | Extending | 137

 name: "user",
 alias:["u"],
 required: true,
 description: "User name to authenticate to your SOME PRODUCT
 REST API server"
 },
 secure: true
 },
 password: {
 type: "string",
 optionDefinition: {
 type: "string",
 name: "password",
 alias:["p"],
 required: true,
 description: "Password to authenticate to your SOME PRODUCT
 REST API server"
 },
 secure: true
 },
 },
 required: ["host", "port", "user", "password"],
 },
 createProfileExamples: [
 {
 options: "spprofile --host zos123 --port 1234 --user ibmuser --
password myp4ss",
 description: "Create a SOME PRODUCT profile named 'spprofile' to
 connect to SOME PRODUCT at host zos123 and port 1234"
 }
]
 }
]

Next steps

If you completed all previous tutorials, you now understand the basics of extending and developing plug-ins for
Zowe CLI. Next, we recommend reviewing the project Contribution Guidelines on page 124 and Imperative CLI
Framework Documentation on page 124 to learn more.

Developing for Zowe Application Framework

Extending the Zowe Application Framework (zLUX)

You can create plug-ins to extend the capabilities of the Zowe Application Framework.

Creating application plug-ins

An application plug-in is an installable set of files that present resources in a web-based user interface, as a set of
RESTful services, or in a web-based user interface and as a set of RESTful services.

Before you build an application plug-in, you must set the UNIX environment variables that support the plug-in
environment.

Setting the environment variables for plug-in development

To set up the environment, the node must be accessible on the PATH. To determine if the node is already on the
PATH, issue the following command from the command line:

node --version

 | Extending | 138

If the version is returned, the node is already on the PATH.

If nothing is returned from the command, you can set the PATH using the NODE_HOME variable. The
NODE_HOME variable must be set to the directory of the node install. You can use the export command to set the
directory. For example:

export NODE_HOME=node_installation_directory

Using this directory, the node will be included on the PATH in nodeServer.sh. (nodeServer.sh is located in
zlux-app-server/bin).

Using the sample application plug-in

You can experiment with the sample application plug-in called sample-app that is provided.

To build the sample application plug-in, node and npm must be included in the PATH. You can use the npm run
build or npm start command to build the sample application plug-in. These commands are configured in
package.json.

Note:

• If you change the source code for the sample application, you must rebuild it.
• If you want to modify sample-app, you must run _npm install_ in the Zowe Desktop and the sample-

app/webClient. Then, you can run _npm run build_ in sample-app/webClient.
• Ensure that you set the MVD_DESKTOP_DIR system variable to the Zowe Desktop plug-in location. For example:

<ZLUX_CAP>/zlux-app-manager/virtual-desktop.

1. Add an item to sample-app. The following figure shows an excerpt from app.component.ts:

 export class AppComponent {
 items = ['a', 'b', 'c', 'd']
 title = 'app';
 helloText: string;
 serverResponseMessage: string;

2. Save the changes to app.component.ts.
3. Issue one of the following commands:

• To rebuild the application plug-in, issue the following command:

 npm run build

• To rebuild the application plug-in and wait for additional changes to app.component.ts, issue the
following command:

 npm start

4. Reload the web page.
5. If you make changes to the sample application source code, follow these steps to rebuild the application:

a. Navigate to the sample-app subdirectory where you made the source code changes.
b. Issue the following command:

 npm run build

c. Reload the web page.

Plug-ins definition and structure

The Zowe Application Server (zlux-server-framework) enables extensiblity with application plug-ins.
Application plug-ins are a subcategory of the unit of extensibility in the server called a plug-in.

The files that define a plug-in are located in the pluginsDir directory.

 | Extending | 139

Application plug-in filesystem structure

An application plug-in can be loaded from a filesystem that is accessible to the Zowe Application Server, or it can be
loaded dynamically at runtime. When accessed from a filesystem, there are important considerations for the developer
and the user as to where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application plug-in directory contains the following files and directories.

pluginDefinition.json

This file describes an application plug-in to the Zowe Application Server. (A plug-in is the unit of extensibility for the
Zowe Application Server. An application plug-in is a plug-in of the type "Application", the most common and visible
type of plug-in.) A definition file informs the server whether the application plug-in has server-side dataservices,
client-side web content, or both.

Dev and source content

Aside from demonstration or open source application plug-ins, the following directories should not be visible on a
deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application plug-in has router-type dataservices, they are interpreted by the Zowe Application Server by
attaching them as ExpressJS routers. It is recommended that you write application plug-ins using Typescript, because
it facilitates well-structured code. Use of Typescript results in build steps because the pre-transpilation Typescript
content is not to be consumed by NodeJS. Therefore, keep server-side source code in the nodeServer directory. At
runtime, the server loads router dataservices from the lib directory.

webClient

When an application plug-in has the webContent attribute in its definition, the server serves static content for a
client. To optimize loading of the application plug-in to the user, use Typescript to write the application plug-in and
then package it using Webpack. Use of Typescript and Webpack result in build steps because the pre-transpilation
Typescript and the pre-webpack content are not to be consumed by the browser. Therefore, separate the source code
from the served content by placing source code in the webClient directory.

Runtime content

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the Zowe Application Server. If the JS
files that are loaded from the lib directory require NodeJS modules, which are not provided by the server base (the
modules zlux-server-framework requires are added to NODE_PATH at runtime), then you must include these
modules in lib/node_modules for local directory lookup or ensure that they are found on the NODE_PATH
environment variable. nodeServer/node_modules is not automatically accessed at runtime because it is a dev
and build directory.

web

The web directory is where the server serves static content for an application plug-in that includes the webContent
attribute in its definition. Typically, this directory contains the output of a webpack build. Anything you place in this
directory can be accessed by a client, so only include content that is intended to be consumed by clients.

Location of plug-in files

The files that define a plug-in are located in the pluginsDir directory.

pluginsDir directory

At startup, the server reads from the pluginsDir directory. The server loads the valid plug-ins that are found by
the information that is provided in the JSON files.

 | Extending | 140

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to locate
a plug-in on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-app-server/bin/
nodeServer.sh) at which a pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a plug-in, which must match what is in the
pluginDefinition.json file.

Plug-in definition file

pluginDefinition.json is a file that describes a plug-in. Each plug-in requires this file, because it defines
how the server will register and use the backend of an application plug-in (called a plug-in in the terminology of the
proxy server). The attributes in each file are dependent upon the pluginType attribute. Consider the following
pluginDefinition.json file from sample-app:

{
 "identifier": "com.rs.mvd.myplugin",
 "apiVersion": "1.0",
 "pluginVersion": "1.0",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "helloWorldTitle",
 "pluginShortNameDefault": "Hello World",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "MyPluginDescription",
 "descriptionDefault": "Base MVD plugin template",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 400,
 "height": 300
 }
 },
 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",
 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]
}

Plug-in attributes

There are two categories of attributes: General and Application.

General attributes

identifier

Every application plug-in must have a unique string ID that associates it with a URL space on the server.

apiVersion

The version number for the pluginDefinition scheme and application plug-in or dataservice requirements. The default
is 1.0.0.

pluginVersion

 | Extending | 141

The version number of the individual plug-in.

pluginType

A string that specifies the type of plug-in. The type of plug-in determines the other attributes that are valid in the
definition.

• application: Defines the plug-in as an application plug-in. Application plug-ins are composed of a collection
of web content for presentation in the Zowe web component (such as the Zowe Desktop), or a collection of
dataservices (REST and websocket), or both.

• library: Defines the plug-in as a library that serves static content at a known URL space.
• node authentication: Authentication and Authorization handlers for the Zowe Application Server.

Application attributes

When a plug-in is of pluginType application, the following attributes are valid:

webContent

An object that defines several attributes about the content that is shown in a web UI.

dataServices

An array of objects that describe REST or websocket dataservices.

configurationData

An object that describes the resource structure that the application plug-in uses for storing user, group, and server
data.

Application web content attributes

An application that has the webContent attribute defined provides content that is displayed in a Zowe web UI.

The following attributes determine some of this behavior:

framework

States the type of web framework that is used, which determines the other attributes that are valid in webContent.

• angular2: Defines the application as having an Angular (2+) web framework component. This is the standard for
a "native" framework Zowe application.

• iframe: Defines the application as being external to the native Zowe web application environment, but instead
embedded in an iframe wrapper.

launchDefinition

An object that details several attributes for presenting the application in a web UI.

• pluginShortNameDefault: A string that gives a name to the application when i18n is not present. When i18n is
present, i18n is applied by using the pluginShortNameKey.

• descriptionDefault: A longer string that specifies a description of the application within a UI. The description is
seen when i18n is not present. When i18n is present, i18n is applied by using the descriptionKey.

• imageSrc: The relative path (from /web) to a small image file that represents the application icon.

defaultWindowStyle

An object that details the placement of a default window for the application in a web UI.

• width: The default width of the application plug-in window, in pixels.
• height: The default height of the application plug-in window, in pixels.

IFrame application web content

In addition to the general web content attributes, when the framework of an application is "iframe", you must specify
the page that is being embedded in the iframe. To do so, incude the attribute startingPage within webContent.
startingPage is relative to the application's /web directory.

 | Extending | 142

Specify startingPage as a relative path rather than an absolute path because the pluginDefinition.json file is
intended to be read-only, and therefore would not work well when the hostname of a page changes.

Within an IFrame, the application plug-in still has access to the globals that are used by Zowe for application-to-
application communication; simply access window.parent.ZoweZLUX.

Dataservices

Dataservices are a dynamic component of the backend of a Zowe application. Dataservices are optional, because the
proxy server might only serve static content for a particular application. However, when included in an application, a
dataservice defines a URL space for which the server will run the extensible code from the application. Dataservices
are primarily intended to be used to create REST APIs and Websocket channels.

Defining a dataservice

Within the sample-app repository, in the top directory, you will find a pluginDefinition.json file. Each
application requires this file, because it defines how the server registers and uses the backend of an application (called
a plug-in in the terminology of the proxy server).

Within the JSON file, there is a top level attribute, dataServices:

 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",
 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]

Dataservices defined in pluginDefinition

The following attributes are valid for each dataservice in the dataServices array:

type

Specify one of the following values:

• router: Router dataservices are dataservices that run under the proxy server, and use ExpressJS Routers for
attaching actions to URLs and methods.

• service: Service dataservices are dataservices that run under ZSS, and utilize the API of ZSS dataservices for
attaching actions to URLs and methods.

name

The name of the service that must be unique for each pluginDefinition.json file. The name is used to
reference the dataservice during logging and it is also is used in the construction of the URL space that the dataservice
occupies.

serviceLookupMethod

Specify external unless otherwise instructed.

fileName

The name of the file that is the entry point for construction of the dataservice, relative to the application's /lib
directory. In the case of sample-app, upon transpilation of the typescript code, javascript files are placed into the /
lib directory.

routerFactory (Optional)

 | Extending | 143

When you use a router dataservice, the dataservice is included in the proxy server through a require() statement.
If the dataservice's exports are defined such that the router is provided through a factory of a specific name, you must
state the name of the exported factory using this attribute.

dependenciesIncluded

Must be true for anything in the pluginDefinition.json file. (This setting is false only when adding
dataservices to the server dynamically.)

Dataservice API

The API for a dataservice can be categorized as Router-based or ZSS-based, and Websocket or not.

Note: Each Router dataservice can safely import express, express-ws, and bluebird without requiring the modules
to be present, because these modules exist in the proxy server's directory and the NODE_MODULES environment
variable can include this directory.

Router-based dataservices
HTTP/REST router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For
more information, see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root '/' path, as
the paths specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pluginDefinition
specification for routerFactory above, or by the module constructor.

An example is available in sample-app/nodeServer/ts/helloWorld.ts

Websocket router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for Websockets is not significantly different.

Here, the express-ws package is used, which adds websockets through the ws package to ExpressJS.
The two changes between a websocket-based router and a normal router are that the method is 'ws', as in
router.ws(<url>,<callback>), and the callback provides the websocket on which you must define event
listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for
websocket router dataservices is primarily provided in these packages.

An example is available in zlux-server-framework/plugins/terminal-proxy/lib/
terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions of its
surroundings and the functions that are helpful. The following items are present in the Context object:

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within a plug-in.

makeSublogger

A function to create a Zowe Logger with a new name, which is appended to the unique name of the dataservice.

addBodyParseMiddleware

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://www.npmjs.com

 | Extending | 144

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

• pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.
• server: An object that contains information about the server's configuration such as:

• app: Information about the product, which includes the productCode (for example: ZLUX).
• user: Configuration information of the server, such as the port on which it is listening.

Zowe Desktop and window management

The Zowe Desktop is a web component of Zowe, which is an implementation of MVDWindowManagement, the
interface that is used to create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in.
Application plug-ins are plug-ins of the type "application", and therefore the Zowe Desktop operates around a
collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window
management, such as application-to-application communication, Logging, URI lookup, and Auth are not described
here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application. The GET call returns
a JSON list of all application plug-ins that are on the server, which can be accessed by the user. Application plug-ins
can be composed of dataservices, web content, or both. Application plug-ins that have web content are presented in
the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon
with a description. The icon that is used, and the description that is presented are based on the application plug-in's
PluginDefinition's webContent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager.
Use the Plugin Manager to determine whether a plug-in is present before you act upon the existence of that plug-in.
When the Zowe Desktop is running, you can access the Plugin Manager through ZoweZLUX.PluginManager

The following are the functions you can use on the Plugin Manager:

• getPlugin(pluginID: string)

• Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object (DesktopPluginDefinition)
that is associated with it, if found.

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager.
The Application Manager can facilitate communication between application plug-ins, but formal application-to-
application communication should be performed by calls to the Dispatcher. The Application Manager is not normally
directly accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:

 | Extending | 145

Function Description

spawnApplication(plugin:
DesktopPluginDefinition,
launchMetadata: any):
Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window Manager,
with or without context on what actions it should
perform after creation.

killApplication(plugin:ZLUX.Plugin,
appId:MVDHosting.InstanceId): void;

Removes an application instance from the Window
Manager.

showApplicationWindow(plugin:
DesktopPluginDefinitionImpl): void;

Makes an open application instance visible within the
Window Manager.

isApplicationRunning(plugin:
DesktopPluginDefinitionImpl): boolean;

Determines if any instances of the application are open in
the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is started
and presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance
of an application plug-in's web content within Zowe is given context and can listen on events about the Viewport
and Window it exists within, regardless of whether the Window Manager implementation utilizes these constructs
visually. It is possible to create a Window Manager that only displays one application plug-in at a time, or to have a
drawer-and-panel UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its framework
type. The following are valid framework types:

• "angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework
objects are given through @injectables and imports.

• "iframe": The web content can be written using any framework, but is included through an iframe tag. Application
plug-ins within an iframe can access framework objects through parent.RocketMVD and callbacks.

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the UI (they
do not present Chrome as a Window does). Each instance of an application plug-in is associated with a viewport,
and operations to act upon a particular application plug-in instance should be done by specifying a viewport for an
application plug-in, to differentiate which instance is the target of an action. Actions performed against viewports
should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

Function Description

createViewport(providers:
ResolvedReflectiveProvider[]):
MVDHosting.ViewportId;

Creates a viewport into which an application plug-in's
webcontent can be embedded.

registerViewport(viewportId:
MVDHosting.ViewportId, instanceId:
MVDHosting.InstanceId): void;

Registers a previously created viewport to an application
plug-in instance.

destroyViewport(viewportId:
MVDHosting.ViewportId): void;

Removes a viewport from the Window Manager.

getApplicationInstanceId(viewportId:
MVDHosting.ViewportId):
MVDHosting.InstanceId | null;

Returns the ID of an application plug-in's instance from
within a viewport within the Window Manager.

 | Extending | 146

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs.
iframe application plug-ins indirectly benefit from some of these hooks due to the wrapper acting upon them, but
Angular application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

@Inject(Angular2InjectionTokens.PLUGIN_DEFINITION) private pluginDefinition:
 ZLUX.ContainerPluginDefinition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to gain
context about the application plug-in. It can also be used by the application plug-in with other application plug-in
framework objects to perform a contextual action.

Logger

@Inject(Angular2InjectionTokens.LOGGER) private logger: ZLUX.ComponentLogger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

@Inject(Angular2InjectionTokens.LAUNCH_METADATA) private launchMetadata: any

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default
view.

Viewport Events

@Inject(Angular2InjectionTokens.VIEWPORT_EVENTS) private viewportEvents:
 Angular2PluginViewportEvents

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Window Events

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

restored: Subject<void> Fires when the Window is restored from a minimized
state.

moved: Subject<{top: number, left:
number}>

Fires when the Window is moved.

resized: Subject<{width: number,
height: number}>

Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

 | Extending | 147

Window Actions

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void Closes the Window of the application plug-in instance.

maximize(): void Maximizes the Window of the application plug-in
instance.

minimize(): void Minimizes the Window of the application plug-in
instance.

restore(): void Restores the Window of the application plug-in instance
from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number,
left: number, width: number, height:
number}): void

Sets the position of the Window on the page and the size
of the window.

spawnContextMenu(xPos: number, yPos:
number, items: ContextMenuItem[]):
void

Opens a context menu on the application plug-in
instance, which uses the Context Menu framework.

registerCloseHandler(handler: () =>
Promise<void>): void

Registers a handler, which is called when the Window
and application plug-in instance are closed.

Configuration Dataservice

The Configuration Dataservice is an essential component of the Zowe Application Framework, which acts as a JSON
resource storage service, and is accessible externally by REST API and internally to the server by dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges
within a Zowe ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration
Dataservice works with data for plug-ins. Every resource that is stored in the Configuration Service is stored for a
particular plug-in, and valid resources to be accessed are determined by the definition of each plug-in in how it uses
the Configuration Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-
in lists the valid resources, and the administrators can set permissions for the users who can view or modify these
resources.

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the
Dataservice is to facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes
that encompass the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access privilege to update
within that Scope.

Scope is one of the following:

Product

 | Extending | 148

Configuration defaults that come with the product. Cannot be modified.

Site

Data that can be used between multiple instances of the Zowe Application Server.

Instance

Data within an individual Zowe Application Server.

Group

Data that is shared between multiple users in a group.(Pending)

User

Data for an individual user.(Pending)

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User
and Group scope queries will be rejected if not logged in due to the requirement to pull resources from a specific
user. Because of this, User and Group scopes will not be functional until the Security Framework is merged into the
mainline.

Where Product is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the
authentication of the session. This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is to use the
REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance,
then the data in Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might
have only been the settings they saved within their own User scope (if the broader scopes do not have data for the
resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action
will be rejected because of the preferences set by the administrator to disallow changes to the Instance scope by
ordinary users.

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired
operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin ID>/<Scope>/<resource>/
<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the query
parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources too.

Listing (boolean)

 | Extending | 149

When performing a GET against a resource with content subresources, listing=true will provide the names of
the subresources rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

• This returns JSON with the attribute "content" being a JSON resource that is the entire configuration that was
requested. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

The parts of the URL are:

• Plugin: org.openmainframe.zowe.codeeditor
• Scope: user
• Resource: sessions
• Subresource: default
• Element = tabs

The response body is a JSON config:

{
 "_objectType" : "com.rs.config.resource",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "contents" : {
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"
 }
]
 }
}

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

This returns JSON with the attribute content being a JSON object that has each attribute being another JSON
object, which is a single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

 | Extending | 150

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation policies,
depending on the user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

Body:

{
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"
 }, {
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".emacs",
 "filePath" : "/u/tsspg/.emacs"
 }
]
}

Response:

{
 "_objectType" : "com.rs.config.resourceUpdate",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "result" : "Replaced item."
}

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

Deletes a single file in a leaf resource.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

• Deletes all files in a leaf resource.
• Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might
be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User, such
as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different.
Compare the following two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

 | Extending | 151

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope, the user is
checked to see if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/
<resource>

Gets the content for the given group, if the user is authorized.

Application API

Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope:
string, resourcePath:string, resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information,
is simply to "consume" it. It "asks" for configurations using the User scope, and allows the configuration service to
decide which configuration information to retrieve and how to aggregate it. (See below on how the configuration
service evaluates what to return for this type of request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin,
resourcePath:string, resourceName:string): string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored
within the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the deploy directory of a Zowe installation, each plug-in might optionally have an _internal directory.
An example of such a path is:

deploy/instance/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

• services/<servicename>: Configuration resources for the specific service.
• plugin: Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context
Object.

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource
structure to make use of the Configuration Dataservice. The resource structure definition is included in the plug-in's
pluginDefinition.json file.

For each resource and subresource, you can define an aggregationPolicy to control how the data of a broader
scope alters the resource data that is returned to a user when requesting a resource from a narrower Scope.

For example:

 "configurationData": { //is a direct attribute of the pluginDefinition
 JSON
 "resources": { //always required
 "preferences": {
 "locationType": "relative", //this is the only option for now, but
 later absolute paths may be accepted
 "aggregationPolicy": "override" //override and none for now, but
 more in the future

 | Extending | 152

 },
 "sessions": { //the name at this level represents the name
 used within a URL, such as /plugins/com.rs.configjs/services/data/
org.openmainframe.zowe.codeeditor/user/sessions
 "aggregationPolicy": "none",
 "subResources": {
 "sessionName": {
 "variable": true, //if variable=true is present, the resource
 must be the only one in that group but the name of the resource is
 substituted for the name given in the REST request, so it represents more
 than one
 "aggregationPolicy": "none"
 }
 }
 }
 }
 }

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes
together when a user requests a resource. If the user requests a resource from the User scope, the data from the User
scope might replace or be merged with the data from a broader scope such as Instance, to make a combined resource
object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as
the attribute aggregationPolicy within a resource.

The following policies are currently implemented:

• NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there
are no user-saved settings for the query, in which case the dataservice attempts to send data that is found at a
broader scope.

• OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level
found, and joins the resource's properties from narrower scopes, overriding broader attributes with narrower ones,
when found.

URI Broker

The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe
Application Server by constructing URIs that use the context from the calling application plug-in.

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible
through iframe. This is because it is attached to a global when within the Zowe Desktop. For more information, see
Zowe Desktop and window management on page 144. Access the URI Broker through one of two locations:

Natively:

window.ZoweZLUX.uriBroker

In an iframe:

window.parent.ZoweZLUX.uriBroker

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to
call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices on page 142.

 | Extending | 153

HTTP Dataservice URI

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string):
string

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string):
string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the
Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string,
resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string,
resourcePath:string, resourceName?:string): string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be accessed
through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure on page 139.

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you
must access on that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

Server queries

A client can find different information about a server's configuration or the configuration as seen by the current user
by accessing specific APIs.

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as "Application"
or "all".

 | Extending | 154

Application-to-application communication

Zowe application plug-ins can opt-in to various application framework abilities, such as the ability to have a Logger,
use of a URI builder utility, and more. One ability that is unique to a Zowe environment with multiple application
plug-ins is the ability for one application plug-in to communicate with another. The application framework provides
constructs that facilitate this ability. The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the
features that utilize them such as the framework's Context menu.

1. Why use application-to-application communication? on page 154
2. Actions on page 154
3. Recognizers on page 156
4. Dispatcher on page 157

Why use application-to-application communication?

When working with a computer, people often use multiple applications to accomplish a task, for example checking a
dashboard before using a detailed program or checking email before opening a bank statement in a browser. In many
environments, the relationship between one program and another is not well defined (you might open one program
to learn of a situation, which you solve by opening another program and typing or pasting in content). Or perhaps
a hyperlink is provided or an attachment, which opens a program using a lookup table of which the program is the
default for handling a certain file extension. The application framework attempts to solve this problem by creating
structured messages that can be sent from one application plug-in to another. An application plug-in has a context of
the information that it contains. You can use this context to invoke an action on another application plug-in that is
better suited to handle some of the information discovered in the first application plug-in. Well-structured messages
facilitate knowing what application plug-in is "right" to handle a situation, and explain in detail what that application
plug-in should do. This way, rather than finding out that the attachment with the extension ".dat" was not meant for
a text editor, but instead for an email client, one application plug-in might instead be able to invoke an action on an
application plug-in, which can handle opening of an email for the purpose of forwarding to others (a more specific
task than can be explained with filename extensions).

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the application
framework, the unit of application-to-application communication is an Action. The typescript definition of an Action
is as follows:

export class Action implements ZLUX.Action {
 id: string; // id of action itself.
 i18nNameKey: string; // future proofing for I18N
 defaultName: string; // default name for display purposes, w/o I18N
 description: string;
 targetMode: ActionTargetMode;
 type: ActionType; // "launch", "message"
 targetPluginID: string;
 primaryArgument: any;

 constructor(id: string,
 defaultName: string,
 targetMode: ActionTargetMode,
 type: ActionType,
 targetPluginID: string,
 primaryArgument:any) {
 this.id = id;
 this.defaultName = defaultName;
 // proper name for ID/type
 this.targetPluginID = targetPluginID;
 this.targetMode = targetMode;
 this.type = type;
 this.primaryArgument = primaryArgument;
 }

 | Extending | 155

 getDefaultName():string {
 return this.defaultName;
 }
}

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a specific
target to receive the data. The Action is dispatched to the target in one of several modes, for example: to target a
specific instance of an application plug-in, an instance, or to create a new instance. The Action can be less detailed
than a message. It can be a request to minimize, maximize, close, launch, and more. Finally, all of this information is
related to a unique ID and localization string such that it can be managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application
plug-in you are targeting. You can instruct the framework how to target the application plug-in with a target mode
from the ActionTargetMode enum:

export enum ActionTargetMode {
 PluginCreate, // require pluginType
 PluginFindUniqueOrCreate, // required AppInstance/ID
 PluginFindAnyOrCreate, // plugin type
 //TODO PluginFindAnyOrFail
 System, // something that is always present
}

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action.
The behavior can be quite different, from simple messaging to requesting that an application plug-in be minimized.
The types are defined by an enum:

export enum ActionType { // not all actions are meaningful for all
 target modes
 Launch, // essentially do nothing after target mode
 Focus, // bring to fore, but nothing else
 Route, // sub-navigate or "route" in target
 Message, // "onMessage" style event to plugin
 Method, // Method call on instance, more strongly
 typed
 Minimize,
 Maximize,
 Close, // may need to call a "close handler"
}

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string,
defaultName: string, targetMode: ActionTargetMode, type: ActionType,
targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "actions": [
 {
 "id":"org.zowe.explorer.openmember",
 "defaultName":"Edit PDS in MVS Explorer",

 | Extending | 156

 "type":"Launch",
 "targetMode":"PluginCreate",
 "targetId":"org.zowe.explorer",
 "arg": {
 "type": "edit_pds",
 "pds": {
 "op": "deref",
 "source": "event",
 "path": [
 "full_path"
]
 }
 }
 }
]
}

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging
window if you have no one to message. Recognizers are objects within the application framework that use the context
that the application plug-in provides to determine if there is a condition for which it makes sense to execute an
Action. Each recognizer has statements about what condition to recognize, and upon that statement being met, which
Action can be executed at that time. The invocation of the Action is not handled by the Recognizer; it simply detects
that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

export class RecognitionRule {
 predicate:RecognitionClause;
 actionID:string;

 constructor(predicate:RecognitionClause, actionID:string){
 this.predicate = predicate;
 this.actionID = actionID;
 }
}

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The following
operations are supported:

export enum RecognitionOp {
 AND,
 OR,
 NOT,
 PROPERTY_EQ,
 SOURCE_PLUGIN_TYPE, // syntactic sugar
 MIME_TYPE, // ditto
}

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers
saved on the system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause,
actionID:string):void

 | Extending | 157

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "recognizers": [
 {
 "id":"<actionID>",
 "clause": {
 <clause>
 }
 }
]
}

clause can take on one of two shapes:

"prop": ["<keyString>", <"valueString">]

Or,

"op": "<op enum as string>",
"args": [
 {<clause>}
]

Where this one can again, have subclauses.

Recognizer example

Recognizers can be simple or complex. The following is an example to illustrate the mechanism:

{
 "recognizers":[
 {
 "id":"org.zowe.explorer.openmember",
 "clause": {
 "op": "AND",
 "args": [
 {"prop":["sourcePluginID","com.rs.mvd.tn3270"]},{"prop":
["screenID","ISRUDSM"]}
]
 }
 }
]
}

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember
Action when the TN3270 Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing PDS
members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object
at runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime. You can register
Actions and Recognizers on it, and later, invoke an Action through it. The dispatcher handles how the Action's effects
should be carried out, acting in combination with the Window Manager and application plug-ins to provide a channel
of communication.

 | Extending | 158

Registry

The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object
at runtime. It contains information about which application plug-ins are present in the environment, and the abilities
of each application plug-in. This is important to application-to-application communication, because a target might not
be a specific application plug-in, but rather an application plug-in of a specific category, or with a specific featureset,
capable of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and Recognizers
that are saved on the system. Actions and Recognizers are loaded at login, and then later, through a form of
automation or by a user action, Recognizers can be polled to determine if there is an Action that can be executed.
All of this is handled by the Dispatcher, but the description of the behavior lies in the Action and Recognizer that
are used. In the Action and Recognizer descriptions above, there are two JSON definitions: One is a Recognizer that
recognizes when the Terminal application plug-in is in a certain state, and another is an Action that instructs the MVS
Explorer to load a PDS member for editing. When you put the two together, a practical application is that you can
launch the MVS Explorer to edit a PDS member that you have selected within the Terminal application plug-in.

Error reporting UI

The zLUX Widgets repository contains shared widget-like components of the Zowe Desktop, including Button,
Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across all applications,
use, reuse, and customize existing widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an
error occurs from misconfigured user settings. A user might request an action or command that requires certain
prerequisites, for example: a proper ZSS-Server configuration. If the program or method fails, the program should
notify the user through the UI about the error and how to fix it. For the purposes of this discussion, we will use the
Workflow application plug-in in the zlux-workflow repository.

ZluxPopupManagerService

The ZluxPopupManagerService is a standard popup widget that can, through its reportError() method,
be used to display errors with attributes that specify the title or error code, severity, text, whether it should block the
user from proceeding, whether it should output to the logger, and other options you want to add to the error dialog.
ZluxPopupManagerService uses both ZluxErrorSeverity and ErrorReportStruct.

`export declare class ZluxPopupManagerService {`

 eventsSubject: any;
 listeners: any;
 events: any;
 logger: any;
 constructor();
 setLogger(logger: any): void;
 on(name: any, listener: any): void;
 broadcast(name: any, ...args: any[]): void;
 processButtons(buttons: any[]): any[];
 block(): void;
 unblock(): void;
 getLoggerSeverity(severity: ZluxErrorSeverity): any;
 reportError(severity: ZluxErrorSeverity, title: string, text: string,
 options?: any): Rx.Observable<any>;
`}`

 | Extending | 159

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following types: error,
warning, and information. Each type has its own visual style. To accurately indicate the type of issue to the user, the
error or pop-up should be classified accordingly.

`export declare enum ZluxErrorSeverity {`

 ERROR = "error",
 WARNING = "warning",
 INFO = "info",
`}`

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of reportError()
together.

`export interface ErrorReportStruct {`

 severity: string;
 modal: boolean;
 text: string;
 title: string;
 buttons: string[];
`}`

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using additional
services with your error prompt, import those too (for example, LoggerService to print to the logger or
GlobalVeilService to create a visible semi-transparent gray veil over the program and pause background
tasks). Here, widgets is imported from node_modules\@zlux\ so you must ensure zLUX widgets is used in your
package-lock.json or package.json and you have run npm install.

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the Workflow
application plug-in under \zlux-workflow\src\app\app\zosmf-server-config.component.ts is
a ZosmfServerConfigComponent class with the pop-up manager service variable. To automatically report the
error to the console, you must set a logger.

`export class ZosmfServerConfigComponent {`

 constructor(
 private popupManager: ZluxPopupManagerService,)
 { popupManager.setLogger(logger); } //Optional
`}`

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method.
The following example describes an instance of the reload() method in Workflow that catches an error when the
program attempts to retrieve a configuration from a configService and set it to the program's this.config.
This method fails when the user has a faulty zss-Server configuration and the error is caught and then sent to the class'
popupManager variable from the constructor above.

`reload(): void {`

 this.globalVeilService.showVeil();

 | Extending | 160

 this.configService
 .getConfig()
 .then(config => (this.config = config))
 .then(_ => setTimeout(() => this.test(), 0))
 .then(_ => this.globalVeilService.hideVeil())
 .catch(err => {
 this.globalVeilService.hideVeil()
 let errorTitle: string = "Error";
 let errorMessage: string = "Server configuration not found. Please
 check your zss server.";
 const options = {
 blocking: true
 };
 this.popupManager.reportError(ZluxErrorSeverity.ERROR,
 errorTitle.toString()+": "+err.status.toString(), errorMessage
+"\n"+err.toString(), options);
 });
`}`

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all types of
errors that might occur from that method. The specifics of the error are then generated dynamically and are printed
with the err.toString(), which contains the more specific information that is used to pinpoint the problem.
The this.popupManager.report() method triggers the error prompt to display. The error severity is set
with ZluxErrorSeverity.ERROR and the err.status.toString() describes the status of the error
(often classified by a code, for example: 404). The optional parameters in options specify that this error will
block the user from interacting with the application plug-in until the error is closed or it until goes away on its own.
globalVeilService is optional and is used to create a gray veil on the outside of the program when the error
is caused. You must import globalVeilService separately (see the zlux-workflow repository for more
information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do
this.popupManager.report() without adding the component to your template, the error will not be
displayed. Navigate to your component's .html file. On the Workflow application plug-in, this file will be in
\zlux-workflow\src\app\app\zosmf-server-config.component.html and the only item left is to
add the popup manager component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If you
want the error dialog to overlap other UI elements, place it at the end of the .html file. You can also create custom
styling through a CSS template, and add it within the scope of your application plug-in.

 | Extending | 161

Logging utility

The zlux-shared repository provides a logging utility for use by dataservices and web content for an application
plug-in.

Logging objects

The logging utility is based on the following objects:

• Component Loggers: Objects that log messages for an individual component of the environment, such as a REST
API for an application plug-in or to log user access.

• Destinations: Objects that are called when a component logger requests a message to be logged. Destinations
determine how something is logged, for example, to a file or to a console, and what formatting is applied.

• Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe application plug-ins have unique identifiers, both dataservices and an application plug-in's web content
are provided with a component logger that knows this unique ID such that messages that are logged can be prefixed
with the ID. With the association of logging to IDs, you can control verbosity of logs by setting log verbosity by ID.

Accessing logger objects
Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to: global.COM_RS_COMMON_LOGGER

Web

Browsers use window as the global object, so the logger is attached to: window.COM_RS_COMMON_LOGGER

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the
application plug-in framework to create these loggers for you. An application plug-in's component logger is presented
to dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic Dataservices on page 142.

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management on page 144.

Logger API

The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComponentLogger function Creates a component logger
- Automatically done by
the application framework
for dataservices and web
content

componentIDString

setLogLevelForComponentNamefunction Sets the verbosity of an
existing component logger

componentIDString,
logLevel

Component Logger API

The following constants and functions are available to each component logger.

 | Extending | 162

Attribute Type Description Arguments

SEVERE const Is a const for logLevel

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

FINE const Is a const for logLevel

FINER const Is a const for logLevel

FINEST const Is a const for logLevel

log function Used to write a log,
specifying the log level

logLevel,
messageString

severe function Used to write a SEVERE
log.

messageString

warn function Used to write a WARNING
log.

messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

makeSublogger function Creates a new component
logger with an ID appended
by the string given

componentNameSuffix

Log Levels

An enum, LogLevel, exists for specifying the verbosity level of a logger. The mapping is:

Level Number

SEVERE 0

WARNING 1

INFO 2

FINE 3

FINER 4

FINEST 5

Note: The default log level for a logger is INFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity a log message should be visible. You
can configure the server or client to show more or less verbose messages by using the core logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging
information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set default
verbosity for, such that you can easily turn logging on or off.

 | Extending | 163

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute logLevel, which
takes key-value pairs where the key is a regex pattern for component IDs, and the value is an integer for the log
levels.

For example:

"logLevel": {
 "com.rs.configjs.data.access": 2,
 //the string given is a regex pattern string, so .* at the end here will
 cover that service and its subloggers.
 "com.rs.myplugin.myservice.*": 4
 //
 // '_' char reserved, and '_' at beginning reserved for server. Just as
 we reserve
 // '_internal' for plugin config data for config service.
 // _unp = universal node proxy core logging
 //"_unp.dsauth": 2
 },

For more information about the server configuration file, see Zowe Application Framework configuration on page 43.

Stand up a local version of the Example Zowe Application Server

The zlux-app-server repository is an example of a server built upon the application framework. Within the
repository, you will find a collection of build, deploy, and run scripts and configuration files that will help you to
configure a simple Zowe Application Server with a few applications included.

Server layout

At the core of the application infrastructure backend is an extensible server, written for nodeJS and utilizing
expressJS for routing. It handles the backend components of an application, and can serve as a proxy for requests
from applications to additional servers, as needed. One such proxy destination is the ZSS, the Zowe Application
Framework backend component for Z Secure Services, a so called agent for the Zowe Application Server. If you
want to set up a Zowe Application Framework installation, contact Rocket to obtain the ZSS binary to use in the
installation process.

ZSS and Zowe Application Server overlap

The Zowe Application Server and ZSS utilize the same deployment and Application/Plugin structure, and share some
configuration parameters. It is possible to run ZSS and the Zowe Application Server from the same system, in which
case you would be running under z/OS USS. This configuration requires that IBM's version of nodeJS is installed
beforehand.

Another way to set up Zowe Application Framework is to have the Zowe Application Server running under LUW,
while keeping ZSS under USS. This is the configuration scenario presented below. In this scenario, you must clone
these github repositories to two different systems, and they will require compatible configurations. If this is your
initial setup, it is fine to have identical configuration files and /plugins folders to get started.

First-time Installation and Use

Getting started with the server requires the following steps:

1. 0. (Optional) Install git for z/OS on page 164
2. 1. Acquire the source code on page 164
3. 2. Acquire external components on page 164
4. 3. Set the server configuration on page 164
5. 4. Build application plug-ins on page 164
6. 5. Deploy server configuration files on page 165
7. 6. Run the server on page 165

 | Extending | 164

8. 7. Connect in a browser on page 166

Follow each step and you will be on your way to your first Zowe Application Server instance.

0. (Optional) Install git for z/OS

Because all of the code is on github, yet ZSS must run on z/OS and the Zowe Application Server can optionally run
on z/OS as well, having git on z/OS is the most convenient way to work with the source code. The alternative would
be to utilize FTP or another method to transfer contents to z/OS. If you'd like to go this route, you can find git for z/
OS free of charge here: http://www.rocketsoftware.com/product-categories/mainframe/git-for-zos

1. Acquire the source code

To get started, first clone or download the GitHub capstone repository https://github.com/zowe/zlux.

Note: Make sure that you have your SSH key set up and added to GitHub. For how to do this, see Generating SSH
keys.

Because we will be configuring ZSS on z/OS's USS, and the Zowe Application Server on a LUW host, you will need
to place the contents on both systems. If you are using git, use the following commands.

git clone --recursive git@github.com:zowe/zlux.git
cd zlux
git submodule foreach "git checkout master"
cd zlux-build

At this point, you have the latest code from each repository on your system. Continue from within zlux-app-
server.

2. Acquire external components

Applications and external servers can require contents that are not in the Zowe github repositories. In the case of the
zlux-app-server, there is a a ZSS binary component which cannot be found in the repositories. To obtain the
ZSS binary component, contact the Zowe project.

After you obtain the ZSS binary component, you should receive zssServer. This must be placed within zlux-build/
externals/Rocket, on the z/OS host. For example:

mkdir externals
mkdir externals/Rocket

//(on z/OS only)
mv zssServer externals/Rocket

3. Set the server configuration

Read the Configuration wiki page for a detailed explanation of the primary items that you will want to configure for
your first server.

In short, ensure that within the config/zluxserver.json file, node.http.port or node.https.port and the other
HTTPS parameters are set to your liking on the LUW host, and that zssPort is set on the z/OS host.

Before you continue, if you intend to use the terminal, at this time (temporarily) it must be pre-configured to know
the destination host. Edit ../tn3270-ng2/_defaultTN3270.json to set host and port to a valid TN3270 server telnet host
and port and then save the file. Edit ../vt-ng2/_defaultVT.json to set host and port to a valid ssh host and port and then
save the file.

4. Build application plug-ins

Prerequisites:

• NPM is used when building application plug-ins. The version of NPM needed for the build to succeed should be at
least 5.4. You can update NPM by executing npm install -g npm.

• You must have ant and ant-contrib installed.

https://github.com/zowe/zlux
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://github.com/zowe/zlux/wiki/Configuration-for-zLUX-App-Server-&-ZSS

 | Extending | 165

Application plug-ins can contain server and web components. The web components must be built, as webpack
is involved in optimized packaging. Server components are also likely to need building if they require external
dependencies from NPM, use native code, or are written in typescript.

This example server only needs transpilation and packaging of web components, and therefore we do not need any
special build steps for the host running ZSS.

Instead, on the host that runs the Zowe Application Server, run the script that will automatically build all included
application plug-ins. Simply,

//Windows
build.bat

//Otherwise
build.sh

This will take some time to complete.

5. Deploy server configuration files

If you are running the Zowe Application Server separate from ZSS, ensure the ZSS installation configuration is
deployed. You can accomplish this through:

ant deploy

On the other hand, if you are running ZSS and the Zowe Application Server on the same host, build.sh and build.bat
execute deploy and therefore this task was accomplished in 4. Build application plug-ins on page 164.

However, if you need to change the server configuration files or if you want to add more application plug-ins
to be included at startup, you must update the deploy content to reflect this. Simply running deploy.bat or
deploy.sh will accomplish this, but files such as zluxserver.json are only read at startup, so a reload of the
Zowe Application Server and ZSS would be required.

6. Run the server

At this point, all server files have been configured and the application plug-ins built, so ZSS and the Zowe
Application Server are ready to run. First, from the z/OS system, start ZSS.

cd ../zlux-app-server/bin
./zssServer.sh

If the zssServer server did not start, two common sources of error are:

1. The zssPort chosen is already occupied. To fix this, edit config/zluxserver.json to choose a new one, and re-run
build/deploy.sh to make the change take effect.

2. The zssServer binary does not have the APF bit set. Because this server is meant for secure services, it is required.
To fix this, execute extattr +a zssServer. Note that you might need to alter the execute permissions
of zssServer.sh in the event that the previous command is not satisfactory (for example: chmod +x
zssServer.sh)

Second, from the system with the Zowe Application Server, start it with a few parameters to hook it to ZSS.

cd ../zlux-app-server/bin

// Windows:
nodeServer.bat <parameters>

// Others:
nodeServer.sh <parameters>

Valid parameters for nodeServer are as follows:

• -h: Specifies the hostname where ZSS can be found. Use as -h \<hostname\>

 | Extending | 166

• -P: Specifies the port where ZSS can be found. Use as -P \<port\>. This overrides zssPort from the
configuration file.

• -p: Specifies the HTTP port to be used by the Zowe Application Server. Use as -p <port>. This overrides
node.http.port from the configuration file.

• -s: Specifies the HTTPS port to be used by the Zowe Application Server. Use as -s <port>. This overrides
node.https.port from the configuration file.

• --noChild: If specified, tells the server to ignore and skip spawning of child processes defined as
node.childProcesses in the configuration file.

In the example where we run ZSS on a host named mainframe.zowe.com, running on zssPort = 19997, the Zowe
Application Server running on Windows could be started with the following:

nodeServer.bat -h mainframe.zowe.com -P 19997 -p 19998

After which we would be able to connect to the Zowe Application Server at port 19998.

NOTE: the parameter parsing is provided by argumentParser.js, which allows for a few variations of input,
depending on preference. For example, the following are all valid ways to specify the ZSS host:

• -h myhost.com
• -h=myhost.com
• --hostServer myhost.com
• --hostServer=myhost.com

When the Zowe Application Server has started, one of the last messages you will see as bootstrapping completes is
that the server is listening on the HTTP/s port. At this time, you should be able to use the server.

7. Connect in a browser

Now that ZSS and the Zowe Application Server are both started, you can access this instance by pointing your web
browser to the Zowe Application Server. In this example, the address you will want to go to first is the location of the
window management application: the Zowe Desktop. The URL is:

http(s)://<zLUX App Server>:<node.http(s).port>/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

Once here, a Login window opens with a few example application plug-ins in the taskbar at the bottom of the
window. To try the application plug-ins to see how they interact with the framework, can login with your mainframe
credentials.

• tn3270-ng2: This application communicates with the Zowe Application Server to enable a TN3270 connection in
the browser.

• z/OS Subsystems: This application shows various z/OS subsystems installed on the host the ZSS runs on. This is
accomplished through discovery of these services by the application's portion running in the ZSS context.

• sample-angular-app: A simple app that show how a zLUX application frontend (here, Angular) component can
communicate with an App backend (REST) component.

• sample-react-app: Similar to the Angular application, but using React instead to show how you have the flexibility
to use a framework of your choice.

• sample-iframe-app: Similar in functionality to the Angular and React sample application, but presented by means
of inclusion of an iframe, to show that pre-existing pages can be included.

Deploy example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 install.
 "rootDir":"../deploy",
 "productDir":"../deploy/product",
 "siteDir":"../deploy/site",
 "instanceDir":"../deploy/instance",
 "groupsDir":"../deploy/instance/groups",

https://github.com/zowe/zlux-proxy-server/blob/master/js/argumentParser.js

 | Extending | 167

 "usersDir":"../deploy/instance/users"

Application plug-in configuration

This section does not cover dynamic runtime inclusion of application plug-ins, but rather application plug-ins that
are defined in advance. In the configuration file, a directory can be specified which contains JSON files that tell the
server what application plug-in to include and where to find it on disk. The backend of these application plug-ins use
the Server's Plugin structure, so much of the server-side references to application plug-ins use the term "Plugin".

To include application plug-ins, be sure to define the location of the Plugins directory in the configuration file,
through the top-level attribute pluginsDir

NOTE: In this repository, the directory for these JSON files is /plugins. To separate configuration files from
runtime files, the zlux-app-server repository copies the contents of this folder into /deploy/instance/
ZLUX/plugins. So, the example configuration file uses the latter directory.

Plugins directory example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 install.
//...
 "pluginsDir":"../deploy/instance/ZLUX/plugins",

ZSS Configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are:rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the Zowe
Application Server, but if the Zowe Application Server and ZSS are not run from the same location, then these
directories can be different.

The zssPort attribute is specific to ZSS. This is the TCP port on which ZSS will listen to be contacted by the Zowe
Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting Zowe Application Server to ZSS

When running the Zowe Application Server, simply specify a few flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

• -h: Declares the host where ZSS can be found. Use as -h \<hostname\>
• -P: Declares the port at which ZSS is listening. Use as -P \<port\>

Zowe tutorials

The following Zowe tutorials are available in Github.

Sample Apps

:::tip Github Sample React App: sample-react-app :::

:::tip Github Sample Angular App: sample-angular-app :::

Internationalization in Angular Templates in Zowe zLUX

:::tip Github Sample Repo: sample-angular-app (Internationalization) :::

App to app communication

:::tip Github Sample Repo : sample-angular-app (App to app communication) :::

Using the Widgets Library

:::tip Github Sample Repo: sample-angular-app (Widgets) :::

https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md

 | Extending | 168

Configuring user preferences (configuration dataservice)

:::tip Github Sample Repo: sample-angular-app (configuration dataservice) :::

Starter Samples

This section contains companion apps for tutorials, boilerplate projects, and prerequisite samples.

User Database Browser Starter App

:::tip Github Sample Repo: workshop-starter-app :::

This sample is included as the first part of a tutorial detailing communication between separate Zowe apps.

It should be installed on your system before starting the User Browser Tutorial on page 168

The App's scenario is that it has been opened to submit a task report to a set of users who can handle the task. In this
case, it is a bug report. We want to find engineers who can fix this bug, but this App does not contain a directory
listing for engineers in the company, so we need to communicate with some App that does provide this information.
In this tutorial, you must build an App which is called by this App in order to list engineers, is able to be filtered by
the office that they work from, and is able to submit a list of engineers which would be able to handle the task.

After installing this app on your system, follow directions in the User Browser Tutorial on page 168 to enable app-
to-app communication.

User Browser Tutorial

This tutorial contains code snippets and descriptions that you can combine to build a complete application. It builds
off the project skeleton code found at the github project repo.

By the end of this tutorial, you will:

1. Know how to create an application that displays on the Zowe Desktop
2. Know how to create a Dataservice which implements a simple REST API
3. Be introduced to Typescript programming
4. Be introduced to simple Angular web development
5. Have experience in working with the Zowe Application Framework
6. Become familiar with one of the Zowe Application widgets: the grid widget

:::warning Before continuing, make sure you have completed the prerequisites for this tutorial:

• Setup up the Stand up a local version of the Example Zowe Application Server on page 163. :::

So, let's get started!

1. Constructing an App Skeleton on page 169

• Defining your first plugin on page 169
• Constructing a Simple Angular UI on page 169
• Packaging Your Web App on page 171
• Adding Your App to the Desktop on page 172

2. Building your first Dataservice on page 173

• Working with ExpressJS on page 174
• Adding your Dataservice to the Plugin Definition on page 175

3. Adding your first Widget on page 176

• Adding your Dataservice to the App on page 176
• Introducing ZLUX Grid on page 177

4. Adding Zowe App-to-App Communication on page 179

• Calling back to the Starter App on page 182

https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md
https://github.com/zowe/workshop-starter-app
https://github.com/zowe/workshop-user-browser-app

 | Extending | 169

Constructing an App Skeleton

Download the skeleton code from the project repository. Next, move the project into the zlux source folder created
in the prerequisite tutorial.

If you look within this repository, you'll see that a few boilerplate files already exist to help you get your first
application plug-in running quickly. The structure of this repository follows the guidelines for Zowe application plug-
in filesystem layout, which you can read more about on the wiki.

Defining your first plugin

Where do you start when making an application plug-in? In the Zowe Application Framework, an application plug-
in is a plug-in of type "Application". Every plug-in is bound by their pluginDefinition.json file, which
describes its properties. Let's start by creating this file.

Create a file, pluginDefinition.json, at the root of the workshop-user-browser-app folder. The file
should contain the following:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "apiVersion": "1.0.0",
 "pluginVersion": "0.0.1",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "userBrowser",
 "pluginShortNameDefault": "User Browser",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "userBrowserDescription",
 "descriptionDefault": "Browse Employees in System",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 1300,
 "height": 500
 }
 }
}

A description of the values that are placed into this file can be found on the wiki.

Note the following attributes:

• Our application has the unique identifier of org.openmainframe.zowe.workshop-user-browser,
which can be used to refer to it when running Zowe.

• The application has a webContent attribute, because it will have a UI component that is visible in a browser.

• The webContent section states that the application's code will conform to Zowe's Angular application
structure, due to it stating "framework": "angular2"

• The application plug-in has certain characteristics that the user will see, such as:

• The default window size (defaultWindowStyle),
• An application plug-in icon that we provided in workshop-user-browser-app/webClient/

src/assets/icon.png,
• That we should see it in the browser as an application plug-in named User Browser, the value of

pluginShortNameDefault.

Constructing a Simple Angular UI

Angular application plug-ins for Zowe are structured such that the source code exists within webClient/src/
app. In here, you can create modules, components, templates and services in any hierarchy. For the application plug-
in we are creating however, we will add three files:

https://github.com/zowe/workshop-user-browser-app
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux/wiki/Zlux-Plugin-Definition-&-Structure

 | Extending | 170

• userbrowser.module.ts
• userbrowser-component.html
• userbrowser-component.ts

At first, let's just build a shell of an application plug-in that can display some simple content. Fill in each file with the
following content.

userbrowser.module.ts

import { NgModule } from '@angular/core'
import { CommonModule } from '@angular/common'
import { FormsModule, ReactiveFormsModule } from '@angular/forms'
import { HttpModule } from '@angular/http'

import { UserBrowserComponent } from './userbrowser-component'

@NgModule({
 imports: [FormsModule, ReactiveFormsModule, CommonModule],
 declarations: [UserBrowserComponent],
 exports: [UserBrowserComponent],
 entryComponents: [UserBrowserComponent]
})
export class UserBrowserModule {}

userbrowser-component.html

<div class="parent col-11" id="userbrowserPluginUI">
{{simpleText}}
</div>

<div class="userbrowser-spinner-position">
 <i class="fa fa-spinner fa-spin fa-3x" *ngIf="resultNotReady"></i>
</div>

userbrowser-component.ts

import {
 Component,
 ViewChild,
 ElementRef,
 OnInit,
 AfterViewInit,
 Inject,
 SimpleChange
} from '@angular/core'
import { Observable } from 'rxjs/Observable'
import { Http, Response } from '@angular/http'
import 'rxjs/add/operator/catch'
import 'rxjs/add/operator/map'
import 'rxjs/add/operator/debounceTime'

import {
 Angular2InjectionTokens,
 Angular2PluginWindowActions,
 Angular2PluginWindowEvents
} from 'pluginlib/inject-resources'

@Component({
 selector: 'userbrowser',
 templateUrl: 'userbrowser-component.html',
 styleUrls: ['userbrowser-component.css']
})

 | Extending | 171

export class UserBrowserComponent implements OnInit, AfterViewInit {
 private simpleText: string
 private resultNotReady: boolean = false

 constructor(
 private element: ElementRef,
 private http: Http,
 @Inject(Angular2InjectionTokens.LOGGER) private log:
 ZLUX.ComponentLogger,
 @Inject(Angular2InjectionTokens.PLUGIN_DEFINITION)
 private pluginDefinition: ZLUX.ContainerPluginDefinition,
 @Inject(Angular2InjectionTokens.WINDOW_ACTIONS)
 private windowAction: Angular2PluginWindowActions,
 @Inject(Angular2InjectionTokens.WINDOW_EVENTS)
 private windowEvents: Angular2PluginWindowEvents
) {
 this.log.info(`User Browser constructor called`)
 }

 ngOnInit(): void {
 this.simpleText = `Hello World!`
 this.log.info(`App has initialized`)
 }

 ngAfterViewInit(): void {}
}

Packaging Your Web App

At this time, we've made the source for a Zowe application plug-in that should open in the Zowe Desktop with
a greeting to the planet. Before we're ready to use it however, we must transpile the typescript and package the
application plug-in. This will require a few build tools first. We'll make an NPM package in order to facilitate this.

Let's create a package.json file within workshop-user-browser-app/webClient. While a
package.json can be created through other means such as npm init and packages can be added through
commands such as npm install --save-dev typescript@2.9.0, we'll opt to save time by just pasting
these contents in:

{
 "name": "workshop-user-browser",
 "version": "0.0.1",
 "scripts": {
 "start": "webpack --progress --colors --watch",
 "build": "webpack --progress --colors",
 "lint": "tslint -c tslint.json \"src/**/*.ts\""
 },
 "private": true,
 "dependencies": {},
 "devDependencies": {
 "@angular/animations": "~6.0.9",
 "@angular/common": "~6.0.9",
 "@angular/compiler": "~6.0.9",
 "@angular/core": "~6.0.9",
 "@angular/forms": "~6.0.9",
 "@angular/http": "~6.0.9",
 "@angular/platform-browser": "~6.0.9",
 "@angular/platform-browser-dynamic": "~6.0.9",
 "@angular/router": "~6.0.9",
 "@zlux/grid": "git+https://github.com/zowe/zlux-grid.git",
 "@zlux/widgets": "git+https://github.com/zowe/zlux-widgets.git",
 "angular2-template-loader": "~0.6.2",
 "copy-webpack-plugin": "~4.5.2",
 "core-js": "~2.5.7",

mailto:typescript@2.9.0

 | Extending | 172

 "css-loader": "~1.0.0",
 "exports-loader": "~0.7.0",
 "file-loader": "~1.1.11",
 "html-loader": "~0.5.5",
 "rxjs": "~6.2.2",
 "rxjs-compat": "~6.2.2",
 "source-map-loader": "~0.2.3",
 "ts-loader": "~4.4.2",
 "tslint": "~5.10.0",
 "typescript": "~2.9.0",
 "webpack": "~4.0.0",
 "webpack-cli": "~3.0.0",
 "webpack-config": "~7.5.0",
 "zone.js": "~0.8.26"
 }
}

Now we are ready to build.

Let's set up our system to automatically perform these steps every time we make updates to the application plug-in.

1. Open a command prompt to workshop-user-browser-app/webClient.
2. Set the environment variable MVD_DESKTOP_DIR to the location of zlux-app-manager/virtual-desktop. For

example, set MVD_DESKTOP_DIR=../../zlux-app-manager/virtual-desktop. This is needed
whenever building individual application web code due to the core configuration files being located in virtual-
desktop.

3. Execute npm install.
4. Execute npm run-script start.

After the first execution of the transpilation and packaging concludes, you should have workshop-user-
browser-app/web populated with files that can be served by the Zowe Application Server.

Adding Your App to the Desktop

At this point, your workshop-user-browser-app folder contains files for an application plug-in that could be added to
a Zowe instance. We will add this to our own Zowe instance. First, ensure that the Zowe Application Server is not
running. Then, navigate to the instance's root folder, /zlux-app-server.

Within, you'll see a folder, plugins. Take a look at one of the files in the folder. You can see that these are JSON
files with the attributes identifier and pluginLocation. These files are what we call Plugin Locators, since they point
to a plug-in to be included into the server.

Let's make one ourselves. Make a file /zlux-example-server/plugins/
org.openmainframe.zowe.workshop-user-browser.json, with the following contents:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "pluginLocation": "../../workshop-user-browser-app"
}

When the server runs, it will check for these types of files in its pluginsDir, a location known to the server
through its specification in the server configuration file. In our case, this is /zlux-app-server/deploy/
instance/ZLUX/plugins/.

You could place the JSON directly into that location, but the recommended way to place content into the deploy area
is through running the server deployment process. Simply:

1. Open up a (second) command prompt to zlux-build
2. ant deploy

Now you're ready to run the server and see your application plug-in.

1. cd /zlux-example-server/bin.

 | Extending | 173

2. ./nodeServer.sh.
3. Open your browser to https://hostname:port.
4. Login with your credentials.
5. Open the application plug-in on the bottom of the page with the green 'U' icon.

Do you see the Hello World message from Constructing a Simple Angular UI on page 169. If so, you're in good
shape! Now, let's add some content to the application plug-in.

Building your first Dataservice

An application plug-in can have one or more Dataservices. A Dataservice is a REST or Websocket endpoint that can
be added to the Zowe Application Server.

To demonstrate the use of a Dataservice, we'll add one to this application plug-in. The application plug-in needs
to display a list of users, filtered by some value. Ordinarily, this sort of data would be contained within a database,
where you can get rows in bulk and filter them in some manner. Retrieval of database contents, likewise, is a task that
is easily representable through a REST API, so let's make one.

1. Create a file, workshop-user-browser-app/nodeServer/ts/tablehandler.ts Add the
following contents:

import { Response, Request } from 'express'
import * as table from './usertable'
import { Router } from 'express-serve-static-core'

const express = require('express')
const Promise = require('bluebird')

class UserTableDataservice {
 private context: any
 private router: Router

 constructor(context: any) {
 this.context = context
 let router = express.Router()

 router.use(function noteRequest(req: Request, res: Response, next: any)
 {
 context.logger.info('Saw request, method=' + req.method)
 next()
 })

 router.get('/', function(req: Request, res: Response) {
 res.status(200).json({ greeting: 'hello' })
 })

 this.router = router
 }

 getRouter(): Router {
 return this.router
 }
}

exports.tableRouter = function(context): Router {
 return new Promise(function(resolve, reject) {
 let dataservice = new UserTableDataservice(context)
 resolve(dataservice.getRouter())
 })
}

https://github.com/zowe/zlux/wiki/ZLUX-Dataservices

 | Extending | 174

This is boilerplate for making a Dataservice. We lightly wrap ExpressJS Routers in a Promise-based structure where
we can associate a Router with a particular URL space, which we will see later. If you were to attach this to the
server, and do a GET on the root URL associated, you'd receive the {"greeting":"hello"} message.

Working with ExpressJS

Let's move beyond hello world, and access this user table.

1. Within workshop-user-browser-app/nodeServer/ts/tablehandler.ts, add a function for
returning the rows of the user table.

const MY_VERSION = '0.0.1'
const METADATA_SCHEMA_VERSION = '1.0'
function respondWithRows(rows: Array<Array<string>>, res: Response): void {
 let rowObjects = rows.map(row => {
 return {
 firstname: row[table.columns.firstname],
 mi: row[table.columns.mi],
 lastname: row[table.columns.lastname],
 email: row[table.columns.email],
 location: row[table.columns.location],
 department: row[table.columns.department]
 }
 })

 let responseBody = {
 _docType: 'org.openmainframe.zowe.workshop-user-browser.user-table',
 _metaDataVersion: MY_VERSION,
 metadata: table.metadata,
 resultMetaDataSchemaVersion: '1.0',
 rows: rowObjects
 }
 res.status(200).json(responseBody)
}

Because we reference the usertable file through import, we are able to refer to its metadata and columns attributes
here. This respondWithRows function expects an array of rows, so we'll improve the Router to call this function
with some rows so that we can present them back to the user.

1. Update the UserTableDataservice constructor, modifying and expanding upon the Router.

 constructor(context: any){
 this.context = context;
 let router = express.Router();
 router.use(function noteRequest(req: Request,res: Response,next: any) {
 context.logger.info('Saw request, method='+req.method);
 next();
 });
 router.get('/',function(req: Request,res: Response) {
 respondWithRows(table.rows,res);
 });

 router.get('/:filter/:filterValue',function(req: Request,res: Response)
 {
 let column = table.columns[req.params.filter];
 if (column===undefined) {
 res.status(400).json({"error":"Invalid filter specified"});
 return;
 }
 let matches = table.rows.filter(row=> row[column] ==
 req.params.filterValue);
 respondWithRows(matches,res);
 });

 | Extending | 175

 this.router = router;
 }

Zowe's use of ExpressJS Routers allows you to quickly assign functions to HTTP calls such as GET, PUT, POST,
DELETE, or even websockets, and provides you with easy parsing and filtering of the HTTP requests so that there is
very little involved in making a good API for users.

This REST API now allows for two GET calls to be made: one to root /, and the other to /filter/value. The behavior
here is as is defined in ExpressJS documentation for routers, where the URL is parameterized to give us arguments
that we can feed into our function for filtering the user table rows before giving the result to respondWithRows for
sending back to the caller.

Adding your Dataservice to the Plugin Definition

Now that the Dataservice is made, add it to our Plugin's definition so that the server is aware of it, and then build it so
that the server can run it.

1. Open a (third) command prompt to workshop-user-browser-app/nodeServer.
2. Install dependencies, npm install.
3. Invoke the NPM build process, npm run-script start.

a. If there are errors, go back to .(#building-your-first-dataservice) and make sure the files look correct.
4. Edit workshop-user-browser-app/pluginDefinition.json, adding a new attribute which declares

Dataservices.

"dataServices": [
 {
 "type": "router",
 "name": "table",
 "serviceLookupMethod": "external",
 "fileName": "tablehandler.js",
 "routerFactory": "tableRouter",
 "dependenciesIncluded": true
 "version": "1.0.0"
 }
],

Your full pluginDefinition.json should now be:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "apiVersion": "1.0.0",
 "pluginVersion": "0.0.1",
 "pluginType": "application",
 "dataServices": [
 {
 "type": "router",
 "name": "table",
 "serviceLookupMethod": "external",
 "fileName": "tablehandler.js",
 "routerFactory": "tableRouter",
 "dependenciesIncluded": true
 "version": "1.0.0"
 }
],
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "userBrowser",
 "pluginShortNameDefault": "User Browser",
 "imageSrc": "assets/icon.png"

https://expressjs.com/en/guide/routing.html#route-parameters

 | Extending | 176

 },
 "descriptionKey": "userBrowserDescription",
 "descriptionDefault": "Browse Employees in System",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 1300,
 "height": 500
 }
 }
}

There's a few interesting attributes about the Dataservice we have specified here. First is that it is listed as type:
router, which is because there are different types of Dataservices that can be made to suit the need. Second,
the name is table, which determines both the name seen in logs but also the URL this can be accessed at. Finally,
fileName and routerFactory point to the file within workshop-user-browser-app/lib where the code can
be invoked, and the function that returns the ExpressJS Router, respectively.

1. Adding Your App to the Desktop on page 172 (as was done when adding the application initially) to load this
new Dataservice. This is not always needed but done here for educational purposes.

2. Access https://host:port/ZLUX/plugins/org.openmainframe.zowe.workshop-user-
browser/services/table/ to see the Dataservice in action. It should return all of the rows in the user
table, as you did a GET to the root / URL that we just coded.

Adding your first Widget

Now that you can get this data from the server's new REST API, we need to make improvements to the web content
of the application plug-in to visualize this. This means not only calling this API from the application plug-in, but
presenting it in a way that is easy to read and extract information from.

Adding your Dataservice to the App

Let's make some edits to userbrowser-component.ts, replacing the UserBrowserComponent Class's ngOnInit
method with a call to get the user table, and defining ngAfterViewInit:

 ngOnInit(): void {
 this.resultNotReady = true;
 this.log.info(`Calling own dataservice to get user listing for filter=
${JSON.stringify(this.filter)}`);
 let uri = this.filter ?
 ZoweZLUX.uriBroker.pluginRESTUri(this.pluginDefinition.getBasePlugin(),
 'table', `${this.filter.type}/${this.filter.value}`) :
 ZoweZLUX.uriBroker.pluginRESTUri(this.pluginDefinition.getBasePlugin(),
 'table',null);
 setTimeout(()=> {
 this.log.info(`Sending GET request to ${uri}`);
 this.http.get(uri).map(res=>res.json()).subscribe(
 data=>{
 this.log.info(`Successful GET, data=${JSON.stringify(data)}`);
 this.columnMetaData = data.metadata;
 this.unfilteredRows = data.rows.map(x=>Object.assign({},x));
 this.rows = this.unfilteredRows;
 this.showGrid = true;
 this.resultNotReady = false;
 },
 error=>{
 this.log.warn(`Error from GET. error=${error}`);
 this.error_msg = error;
 this.resultNotReady = false;
 }
);
 },100);
 }

 | Extending | 177

 ngAfterViewInit(): void {
 // the flex table div is not on the dom at this point
 // have to calculate the height for the table by subtracting all
 // the height of all fixed items from their container
 let fixedElems =
 this.element.nativeElement.querySelectorAll('div.include-in-calculation');
 let height = 0;
 fixedElems.forEach(function (elem, i) {
 height += elem.clientHeight;
 });
 this.windowEvents.resized.subscribe(() => {
 if (this.grid) {
 this.grid.updateRowsPerPage();
 }
 });
 }

You might notice that we are referring to several instance variables that we have not declared yet. Let's add those
within the UserBrowserComponent Class too, above the constructor.

 private showGrid: boolean = false;
 private columnMetaData: any = null;
 private unfilteredRows: any = null;
 private rows: any = null;
 private selectedRows: any[];
 private query: string;
 private error_msg: any;
 private url: string;
 private filter:any;

Hopefully you are still running the command in the first command prompt, npm run-script start, which will
rebuild your web content for the application whenever you make changes. You might see some errors, which we will
resolve by adding the next portion of the application.

Introducing ZLUX Grid

When ngOnInit runs, it will call out to the REST Dataservice and put the table row results into our cache, but we
haven't yet visualized this in any way. We need to improve our HTML a bit to do that, and rather than reinvent the
wheel, we have a table visualization library we can rely on: ZLUX Grid.

If you inspect package.json in the webClient folder, you'll see that we've already included @zlux/grid as a
dependency (as a link to one of the Zowe github repositories) so it should have been pulled into the node_modules
folder during the npm install operation. We just need to include it in the Angular code to make use of it. To do
so, complete these steps:

1. Edit webClient/src/app/userbrowser.module.ts, adding import statements for the zlux widgets above and within
the @NgModule statement:

import { ZluxGridModule } from '@zlux/grid';
import { ZluxPopupWindowModule, ZluxButtonModule } from '@zlux/widgets'
//...
@NgModule({
imports: [FormsModule, HttpModule, ReactiveFormsModule, CommonModule,
 ZluxGridModule, ZluxPopupWindowModule, ZluxButtonModule],
//...

The full file should now be:

*
 This Angular module definition will pull all of your Angular files
 together to form a coherent App
*/

 | Extending | 178

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule, ReactiveFormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { ZluxGridModule } from '@zlux/grid';
import { ZluxPopupWindowModule, ZluxButtonModule } from '@zlux/widgets'

import { UserBrowserComponent } from './userbrowser-component';

@NgModule({
 imports: [FormsModule, HttpModule, ReactiveFormsModule, CommonModule,
 ZluxGridModule, ZluxPopupWindowModule, ZluxButtonModule],
 declarations: [UserBrowserComponent],
 exports: [UserBrowserComponent],
 entryComponents: [UserBrowserComponent]
})
export class UserBrowserModule { }

1. Edit userbrowser-component.html within the same folder. Previously, it was just meant for presenting a Hello
World message, so we should add some style to accommodate the zlux-grid element that we will also add to this
template through a tag.

<!-- In this HTML file, an Angular Template should be placed that will work
 together with your Angular Component to make a dynamic, modern UI -->

<div class="parent col-11" id="userbrowserPluginUI">
 <div class="fixed-height-child include-in-calculation">
 <button type="button" class="wide-button btn btn-default"
 value="Send">
 Submit Selected Users
 </button>
 </div>
 <div class="fixed-height-child height-40" *ngIf="!showGrid && !
viewConfig">
 <div class="">
 <p class="alert-danger">{{error_msg}}</p>
 </div>
 </div>
 <div class="container variable-height-child" *ngIf="showGrid">
 <zlux-grid [columns]="columnMetaData | zluxTableMetadataToColumns"
 [rows]="rows"
 [paginator]="true"
 selectionMode="multiple"
 selectionWay="checkbox"
 [scrollableHorizontal]="true"
 (selectionChange)="onTableSelectionChange($event)"
 #grid></zlux-grid>
 </div>
 <div class="fixed-height-child include-in-calculation" style="height:
 20px; order: 3"></div>
</div>

<div class="userbrowser-spinner-position">
 <i class="fa fa-spinner fa-spin fa-3x" *ngIf="resultNotReady"></i>
</div>

Note the key functions of this template:

• There is a button which when clicked will submit selected users (from the grid). We will implement this ability
later.

 | Extending | 179

• We show or hide the grid based on a variable ngIf="showGrid" so that we can wait to show the grid until
there is data to present.

• The zlux-grid tag pulls the ZLUX Grid widget into our application, and it has many variables that can be set for
visualization, as well as functions and modes.

• We allow the columns, rows, and metadata to be set dynamically by using the square bracket
template syntax, and allow our code to be informed when the user selection of rows changes through
(selectionChange)="onTableSelectionChange($event)"

1. Small modification to userbrowser-component.ts to add the grid variable, and set up the aforementioned table
selection event listener, both within the UserBrowserComponent Class:

@ViewChild('grid') grid; //above the constructor

onTableSelectionChange(rows: any[]):void{
 this.selectedRows = rows;
}

The previous section, Adding your Dataservice to the App on page 176 set the variables that are fed into the ZLUX
Grid widget, so at this point the application should be updated with the ability to present a list of users in a grid.

If you are still running npm run-script start in a command prompt, it should now show that the application
has been successfully built, and that means we are ready to see the results. Reload your browser's webpage and open
the user browser application once more. Do you see the list of users in columns and rows that can be sorted and
selected? If so, great, you've built a simple yet useful application within Zowe! Let's move on to the last portion of the
application tutorial where we hook the Starter application and the User Browser application together to accomplish a
task.

Adding Zowe App-to-App Communication

Applications in Zowe can be useful and provide insight all by themselves, but a big advantage to using the Zowe
Desktop is that applications can track and share context by user interaction. By having the foreground application
request the application best suited for a task, the requested application can perform the task with context regarding the
task data and purpose and you can accomplish a complex task by simple and intuitive means.

In the case of this tutorial, we are not only trying find a list of employees in a company (as was shown in the last step
where the Grid was added and populated with the REST API), but to filter that list to find those employees who are
best suited to the task we need to accomplish. So, our user browser application needs to be enhanced with two new
abilities:

• Filter the user list to show only those users that meet the filter
• Send the subset of users selected in the list back to the application that requested a user list.

How do we do either task? Application-to-application communication! Applications can communicate with other
applications in a few ways, but can be categorized into two interaction groups:

1. Launching an application with a context of what it should do
2. Messaging an application that is already open to a request or alert it of something

In either case, the application framework provides Actions as the objects to perform the communication. Actions
not only define what form of communication should happen, but between which applications. Actions are issued
from one application, and are fulfilled by a target application. But, because there might be more than one instance or
window of an application open, there are Target Modes:

• Open a new application window, where the message context is delivered in the form of a Launch Context
• Message a particular, or any of the currently open instances of the target application

Adding the Starter App

In order to facilitate app-to-app communication, we need another application with which to communicate. A 'starter'
application is provided which can be found on github.

https://github.com/zowe/workshop-starter-app

 | Extending | 180

As we did previously in the Adding Your App to the Desktop on page 172 section, we need to move the
application files to a location where they can be included in our zlux-app-server. We then need to add to the
plugins folder in the example server and re-deploy.

1. Clone or download the starter application under the zlux folder

• git clone https://github.com/zowe/workshop-starter-app.git

1. Navigate to starter application and build it as before.

• Install packages with cd webClient and then npm install
• Build the project using npm start

1. Next navigate to the zlux-app-server:

• create a new file under /zlux-app-server/plugins/org.openmainframe.zowe.workshop-
starter.json

• Edit the file to contain:

{
 "identifier": "org.openmainframe.zowe.workshop-starter",
 "pluginLocation": "../../workshop-starter-app"
}

1. Make sure the ./nodeServer is stopped before running ant deploy under zlux-build
2. Restart the ./nodeServer under zlux-app-server/bin with the appropriate parameters passed in.
3. Refresh the browser and verify that the app with a Green S is present in zLUX.

Enabling Communication

We've already done the work of setting up the application's HTML and Angular definitions, so in order to make our
application compatible with application-to-application communication, it only needs to listen for, act upon, and issue
Zowe application Actions. Let's edit the typescript component to do that. Edit the UserBrowserComponent Class's
constructor within userbrowser-component.ts to listen for the launch context:

 constructor(
 private element: ElementRef,
 private http: Http,
 @Inject(Angular2InjectionTokens.LOGGER) private log:
 ZLUX.ComponentLogger,
 @Inject(Angular2InjectionTokens.PLUGIN_DEFINITION) private
 pluginDefinition: ZLUX.ContainerPluginDefinition,
 @Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowAction:
 Angular2PluginWindowActions,
 @Inject(Angular2InjectionTokens.WINDOW_EVENTS) private windowEvents:
 Angular2PluginWindowEvents,
 //Now, if this is not null, we're provided with some context of what to
 do on launch.
 @Inject(Angular2InjectionTokens.LAUNCH_METADATA) private launchMetadata:
 any,
) {
 this.log.info(`User Browser constructor called`);

 //NOW: if provided with some startup context, act upon it... otherwise
 just load all.
 //Step: after making the grid... we add this to show that we can
 instruct an app to narrow its scope on open
 this.log.info(`Launch metadata provided=
${JSON.stringify(launchMetadata)}`);
 if (launchMetadata != null && launchMetadata.data) {
 /* The message will always be an Object, but format can be specific. The
 format we are using here is in the Starter App:

 | Extending | 181

 https://github.com/zowe/workshop-starter-app/blob/master/webClient/
src/app/workshopstarter-component.ts#L177
 */
 switch (launchMetadata.data.type) {
 case 'load':
 if (launchMetadata.data.filter) {
 this.filter = launchMetadata.data.filter;
 }
 break;
 default:
 this.log.warn(`Unknown launchMetadata type`);
 }
 } else {
 this.log.info(`Skipping launching in a context due to missing or
 malformed launchMetadata object`);
 }
}

Then, add a new method on the Class, provideZLUXDispatcherCallbacks, which is a web-framework-independent
way to allow the Zowe applications to register for event listening of Actions.

 /*
 I expect a JSON here, but the format can be specific depending on the
 Action - see the Starter App to see the format that is sent for the
 Workshop:
 https://github.com/zowe/workshop-starter-app/blob/master/webClient/src/
app/workshopstarter-component.ts#L225
 */
 zluxOnMessage(eventContext: any): Promise<any> {
 return new Promise((resolve,reject)=> {
 if (!eventContext || !eventContext.data) {
 return reject('Event context missing or malformed');
 }
 switch (eventContext.data.type) {
 case 'filter':
 let filterParms = eventContext.data.parameters;
 this.log.info(`Messaged to filter table by column=
${filterParms.column}, value=${filterParms.value}`);

 for (let i = 0; i < this.columnMetaData.columnMetaData.length; i++)
 {
 if (this.columnMetaData.columnMetaData[i].columnIdentifier ==
 filterParms.column) {
 //ensure it is a valid column
 this.rows = this.unfilteredRows.filter((row)=> {
 if (row[filterParms.column]===filterParms.value) {
 return true;
 } else {
 return false;
 }
 });
 break;
 }
 }
 resolve();
 break;
 default:
 reject('Event context missing or unknown data.type');
 };
 });
 }

 | Extending | 182

 provideZLUXDispatcherCallbacks(): ZLUX.ApplicationCallbacks {
 return {
 onMessage: (eventContext: any): Promise<any> => {
 return this.zluxOnMessage(eventContext);
 }
 }
}

At this point, the application should build successfully and upon reloading the Zowe page in your browser, you
should see that if you open the Starter application (the application with the green S), that clicking the Find Users
from Lookup Directory button should open the User Browser application with a smaller, filtered list of employees
rather than the unfiltered list we see if opening the application manually.

We can also see that once this application has been opened, the Starter application's button, Filter Results to Those
Nearby, becomes enabled and we can click it to see the open User Browser application's listing become filtered even
more, this time using the browsers Geolocation API to instruct the User Browser application to filter the list to those
employees who are closest to you!

Calling back to the Starter App

We are almost finished. The application can visualize data from a REST API, and can be instructed by other
applications to filter that data according to the situation. But, to complete this tutorial, we need the application
communication to go in the other direction - inform the Starter application which employees you have chosen in the
table!

This time, we will edit provideZLUXDispatcherCallbacks to issue Actions rather than to listen for them. We need
to target the Starter application, since it is the application that expects to receive a message about which employees
should be assigned a task. If that application is given an employee listing that contains employees with the wrong job
titles, the operation will be rejected as invalid, so we can ensure that we get the correct result through a combination
of filtering and sending a subset of the filtered users back to the starter application.

Add a private instance variable to the UserBrowserComponent Class:

 private submitSelectionAction: ZLUX.Action;

Then, create the Action template within the constructor:

this.submitSelectionAction = ZoweZLUX.dispatcher.makeAction(
 'org.openmainframe.zowe.workshop-user-browser.actions.submitselections',
 'Sorts user table in App which has it',
 ZoweZLUX.dispatcher.constants.ActionTargetMode.PluginFindAnyOrCreate,
 ZoweZLUX.dispatcher.constants.ActionType.Message,
 'org.openmainframe.zowe.workshop-starter',
 { data: { op: 'deref', source: 'event', path: ['data'] } }
)

So, we created an Action which targets an open window of the Starter application, and provides it with an Object with
a data attribute. We'll populate this object for the message to send to the application by getting the results from ZLUX
Grid (this.selectedRows will be populated from this.onTableSelectionChange).

For the final change to this file, add a new method to the Class:

 submitSelectedUsers() {
 let plugin =
 ZoweZLUX.PluginManager.getPlugin("org.openmainframe.zowe.workshop-
starter");
 if (!plugin) {
 this.log.warn(`Cannot request Workshop Starter App... It was not in
 the current environment!`);
 return;
 }

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

 | Extending | 183

 ZoweZLUX.dispatcher.invokeAction(this.submitSelectionAction,
 {'data':{
 'type':'loadusers',
 'value':this.selectedRows
 }}
);
}

And we'll invoke this through a button click action, which we will add into the Angular template, userbrowser-
component.html, by changing the button tag for "Submit Selected Users" to:

<button type="button" class="wide-button btn btn-
default" (click)="submitSelectedUsers()" value="Send">

Check that the application builds successfully, and if so, you've built the application for the tutorial! Try it out:

1. Open the Starter application.
2. Click the "Find Users from Lookup Directory" button.

a. You should see a filtered list of users in your user application.
3. Click the "Filter Results to Those Nearby" button on the Starter application.

a. You should now see the list be filtered further to include only one geography.
4. Select some users to send back to the Starter application.
5. Click the "Submit Selected Users" button on the User Browser application.

a. The Starter application should print a confirmation message that indicates success.

And that's it! Looking back at the beginning of this document, you should notice that we've covered all aspects of
application building - REST APIs, persistent settings storage, Creating Angular applications and using Widgets
within them, as well as having one application communicate with another. Hopefully you have learned a lot about
application building from this experience, but if you have questions or want to learn more, please reach out to those in
the Foundation so that we can assist.

Zowe Samples

Zowe allows extensions to be written in any UI framework through the use of an Iframe, or Angular and React
natively. In this section, code samples of various use-cases will provided with install instructions.

::: warning Troubleshooting Suggestions: As Zowe is still in beta, not everything works as expected yet. If you are
running into issues, try these suggestions:

• Restart the Zowe Server/ VM.
• Double check that the name in the plugins folder matches your identifier in pluginsDefinition.json

located in the Zowe root.
• After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to the "network" tab

to see what errors you are getting.
• Check each file with cat <filename> to be sure it wasn't corrupted while uploading. If files were corrupted,

try uploading using a different method like SCP or SFTP. :::

Add Iframe App to Zowe

:::tip Github Sample Repo: sample-iframe-app :::

This sample app showcases two important abilities of the Zowe Application Framework. The first is the ability
to bring web content into Zowe that is non-native, that is, not developed with Zowe in mind or written around an
unsupported framework (As opposed to Angular or other supported frameworks). This is accomplished by providing
a wrapper that brings web content into Zowe by utilizing an iframe wrapped in an Angular shell. Content within an
IFrame interacts with content in a webpage differently than content which isn't in an IFrame, so the second purpose
of this App is to show that even when in an IFrame, your content can still accomplish App-to-App communication as
made possible by the Zowe Application Framework.

https://github.com/zowe/sample-iframe-app

This app presents a few fields which allow you to launch another App, or communicate with an already open App
instance, in both cases with some context that the other App may interpret - and some action.

:::warning This App intentionally does not follow the typical dev layout of directories and content described in the
wiki in order to demonstrate that you can include content within the Zowe Application Framework that was not
intended for Zowe originally. :::

Add a Native Angular App to Zowe

:::tip Github Sample Repo: sample-app :::

This is an example of a base Zowe plugin written in Angular.

https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/sample-app

Chapter

4
Troubleshooting the installation

Topics:

• Troubleshooting z/OSMF
• Troubleshooting installing the

Zowe Application Framework
• Troubleshooting installing Zowe

CLI

The following topics contain information that can help you troubleshoot
problems when you encounter unexpected behavior installing Zowe.

 | Troubleshooting the installation | 186

Troubleshooting z/OSMF

z/OS Services are unavailable

Solution:

If the z/OS Services are unavailable, take the following corrective actions.

• Ensure that the z/OSMF REST API services are working. Check the z/OSMF IZUSVR1 task output for errors
and confirm that the z/OSMF RESTFILES services are started successfully. If no errors occur, you can see the
following message in the IZUSVR1 job output:

CWWKZ0001I: Application IzuManagementFacilityRestFiles started in n.nnn
 seconds.

To test z/OSMF REST APIs you can run curl scripts from your workstation.

curl --user <username>:<password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSMF-HEADER: true' "https://<z/os host
 name>:<securezosmfport>/zosmf/restjobs/jobs?prefix=*&owner=*

where the securezosmfport is 443 by default. You can verify the port number by checking the izu.https.port
variable assignment in the z/OSMF bootstrap.properties file.

If z/OSMF returns jobs correctly, you can test whether it is able to returns files by using the following curl scripts:

curl --user <username>:<password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSMF-HEADER: true' "https://<z/os host
 name>:<securezosmfport>/zosmf/restfiles/ds?dslevel=SYS1"

If the restfiles curl statement returns a TSO SERVLET EXCEPTION error, check that the the z/OSMF installation
step of creating a valid IZUFPROC procedure in your system PROCLIB has been completed. For more
information, see the z/OSMF Configuration Guide.

The IZUFPROC member resides in your system PROCLIB, which is similar to the following sample:

//IZUFPROC PROC ROOT='/usr/lpp/zosmf' /* zOSMF INSTALL ROOT */
//IZUFPROC EXEC PGM=IKJEFT01,DYNAMNBR=200
//SYSEXEC DD DISP=SHR,DSN=ISP.SISPEXEC
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//ISPLLIB DD DISP=SHR,DSN=SYS1.SIEALNKE
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPTLIB DD RECFM=FB,LRECL=80,SPACE=(TRK,(1,0,1))
// DD DISP=SHR,DSN=ISP.SISPTENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPROF DD DISP=NEW,UNIT=SYSDA,SPACE=(TRK,(15,15,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//IZUSRVMP DD PATH='&ROOT./defaults/izurf.tsoservlet.mapping.json'
//SYSOUT DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//

Note: You might need to change paths and data sets names to match your installation.

A known issue and workaround for RESTFILES API can be found at TSO SERVLET EXCEPTION
ATTEMPTING TO USE RESTFILE INTERFACE.

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278419?OpenDocument
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398

 | Troubleshooting the installation | 187

• Check your system console log for related error messages and respond to them.

Troubleshooting installing the Zowe Application Framework
To help Zowe research any problems you might encounter, collect as much of the following information as possible
and open an issue in GitHub with the collected information.

• Zowe version and release level
• z/OS release level
• Job output and dump (if any)

• Javascript console output (Web Developer toolkit accessible by pressing F12)
• Log output from the Zowe Application Server

• Error message codes
• Screenshots (if applicable)
• Other relevant information (such as the version of Node.js that is running on the Zowe Application Server and the

browser and browser version).

Troubleshooting installing Zowe CLI
The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior using Zowe CLI.

Command not found message displays when issuing npm install commands

Valid on all supported platforms

Symptom:

When you issue nmp commands to install Zowe CLI, the message command not found displays in your CLI.

Solution:

The command not found message displays because Node.js and NPM are not installed on your computer. To correct
this behavior, install Node.js and NPM and reissue the npm command to install Zowe CLI.

More Information: System requirements on page 17

npm install -g Command Fails Due to an EPERM Error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub
repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some
users also report success using the following workarounds:

• Issue the npm cache clean command.
• Uninstall and reinstall Zowe CLI. For more information, see Installing Zowe CLI on page 39.
• Add the --no-optional flag to the end of the npm install command.

Sudo syntax required to complete some installations

Valid on Linux and macOS

Symptom:

The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo before
the npm install -g command or the npm uninstall -g command. This step gives Node.js write access to
the installation directory.

npm install -g command fails due to npm ERR! Cannot read property 'pause'
of undefined error

Valid on Windows or Linux

Symptom:

You receive the error message npm ERR! Cannot read property 'pause' of undefined when you
attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert to a
previous version of npm that does not contain this defect. To revert to a previous version of npm, issue the following
command:

npm install npm@5.3.0 -g

Node.js commands do not respond as expected

Valid on Windows or Linux

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named node on your path. The Node.js installer automatically adds a program that is
named node to your path. When there are pre-existing programs that are named node on your computer, the program
that appears first in the path is used. To correct this behavior, change the order of the programs in the path so that
Node.js appears first.

Installation fails on Oracle Linux 6

Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with Oracle
Linux 6.

Chapter

5
How to contribute

Topics:

• Before you get started
• Contributing to documentation
• Documentation Style guide
• Word usage

:fireworks: :balloon: First off, thanks for taking the time to contribute!
:sparkler: :confetti_ball:

We provide you a set of guidelines for contributing to Zowe documentation,
which are hosted in the https://github.com/zowe/docs-site on GitHub. These
are mostly guidelines, not rules. Use your best judgment, and feel free to
propose content changes to this documentation.

:arrow_right: Before you get started

:arrow_right: Contributing to documentation

:arrow_right: Documentation style guide

:arrow_right: Word usage

https://github.com/zowe/docs-site

 | How to contribute | 190

Before you get started
The Zowe documentation is written in Markdown markup language. Not familiar with Markdown? https://
www.markdownguide.org/basic-syntax.

Contributing to documentation
You can use one of the following ways to contribute to documentation:

• Send a GitHub pull request to provide a suggested edit for the content by clicking the Propose content change in
GitHub link on each documentation page.

• Open an issue in GitHub to request documentation to be updated, improved, or clarified by providing a comment.

Sending a GitHub pull request

You can provide suggested edit to any documentation page by using the Propose content change in GitHub link on
each page. After you make the changes, you submit updates in a pull request for the Zowe content team to review and
merge.

Follow these steps:

1. Click Propose content change in GitHub on the page that you want to update.
2. Make the changes to the file.
3. Scroll to the end of the page and enter a brief description about your change.
4. Optional: Enter an extended description.
5. Select Propose file change.
6. Select Create pull request.

Opening an issue for the documentation

You can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by
opening an issue in GitHub for the Zowe content team to address. The content team tracks the issues and works to
address your feedback.

Follow these steps:

1. Click the GitHub link at the top of the page.
2. Select Issues.
3. Click New issue.
4. Enter a title and description for the issue.
5. Click Submit new issue.

Documentation Style guide
This section gives writing style guidelines for the Zowe documentation. These are guidelines, not rules. Use your best
judgment, and feel free to propose content changes to this documentation in a pull request.

:arrow_right: Headings and titles

:arrow_right: Technical elements

:arrow_right: Tone on page 192

:arrow_right: Word usage

:arrow_right: Graphics on page 195

:arrow_right: Abbreviations on page 195

https://www.markdownguide.org/basic-syntax
https://www.markdownguide.org/basic-syntax

 | How to contribute | 191

:arrow_right: Structure and format

Headings and titles

Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as proper
nouns. Examples of proper nouns include the names of specific people, places, companies, languages, protocols, and
products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings.

Example:

• Building an API response
• Setting the active build configuration

For conceptual and reference information, use noun phrases for headings.

Example:

• Query language
• Platform and application integration

Use headline-style capitalization for only these items:

Titles of books, CDs, videos, and stand-alone information units.

Example:

• Installation and User's Guide
• Quick Start Guides or discrete sets of product documentation

Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.

If the subject is a functional overview, begin a heading with words such as Introduction or
Overview rather than contriving a pseudo-task-oriented heading that begins with Understanding,
Using, Introducing, or Learning.

Technical elements

Variables

Style:

• Italic when used outside of code examples,

Example: myHost
• If wrap using angle brackets <> within code examples, italic font is not supported.

Example:

• put <pax-file-name>.pax
• Where pax-file-name is a variable that indicates the full name of the PAX file you download. For example,

zoe-0.8.1.pax.

Message text and prompts to the user

Style: Put messages in quotation marks.

Example: "The file does not exist."

 | How to contribute | 192

Code and code examples

Style: Monospace

Example: java -version

Command names, and names of macros, programs, and utilities that you can type as commands

Style: Monospace

Example: Use the BROWSE command.

Interface controls

Categories: check boxes, containers, fields, folders, icons, items inside list boxes, labels (such as Note:), links, list
boxes, menu choices, menu names, multicolumn lists, property sheets, push buttons, radio buttons, spin buttons, and
Tabs

Style: Bold

Example: From the Language menu, click the language that you want to use. The default selection is English.

Directory names

Style: Monospace

Example: Move the install.exe file into the newuser directory.

File names, file extensions, and script names

Style: Monospace

Example:

• Run the install.exe file.
• Extract all the data from the .zip file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Brightside.

Citations that are not links

Categories: Chapter titles and section titles, entries within a blog, references to industry standards, and topic titles in
IBM Knowledge Center

Style: Double quotation marks

Example:

• See the "Measuring the true performance of a cloud" entry in the Thoughts on Cloud blog.
• See "XML Encryption Syntax and Processing" on the W3C website.
• For installation information, see "Installing the product" in IBM Knowledge Center.

Tone

Use simple present tense rather than future or past tense, as much as possible.

Example:

:heavy_check_mark: The API returns a promise.

:x: The API will return a promise.

 | How to contribute | 193

Use simple past tense if past tense is needed.

Example:

:heavy_check_mark: The limit was exceeded.

:x: The limit has been exceeded.

Use active voice as much as possible

Example:

:heavy_check_mark: In the Limits window, specify the minimum and maximum values.

:x: The Limits window is used to specify the minimum and maximum values.

Exceptions: Passive voice is acceptable when any of these conditions are true:

• The system performs the action.
• It is more appropriate to focus on the receiver of the action.
• You want to avoid blaming the user for an error, such as in an error message.
• The information is clearer in passive voice.

Example:

:heavy_check_mark: The file was deleted.

:x: You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our".

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.

Example:

:heavy_check_mark: Click the item that you want to search for.

:x: Click the item for which you want to search.

Avoid using "Please", "thank you"

In technical information, avoid terms of politeness such as "please" and "thank you". "Please" is allowed in UI only
when the user is being inconvenienced.

Example: Indexing might take a few minutes. Please wait.

Avoid anthropomorphism.

Focus technical information on users and their actions, not on a product and its actions.

Example:

:heavy_check_mark: User focus: On the Replicator page, you can synchronize your local database with replica
databases.

:x: Product focus: The Replicator page lets you synchronize your local database with replica databases.

 | How to contribute | 194

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Word usage

Note headings such as Note, Important, and Tip should be formatted using the lower case and bold
format.

Example:

• Note:
• Important!
• Tip:

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.

Example:

• Before a procedure, use "Follow these steps:"
• The <component_name> supports the following use cases:
• Before you intall Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".

Example:

:x: Complete the following.

:heavy_check_mark: Complete the following tasks.

Use a consistent style for referring to version numbers.

When talking about a specific version, capitalize the first letter of Version.

Example:

:heavy_check_mark: Java Version 8.1 or Java V8.1

:x: Java version 8.1, Java 8.1, or Java v8.1

When just talking about version, use "version" in lower case.

Example: Use the latest version of Java.

Avoid "may"

Use "can" to indicate ability, or use "might" to indicate possibility.

Example:

• Indicating ability:

:heavy_check_mark: You can use the command line interface to update your application."

:x: "You may use the command line interface to update your application."
• Indicating possibility:

:heavy_check_mark: "You might need more advanced features when you are integrating with another application.
"

:x: "You may need more advanced features when you are integrating with another application."

Use "issue" when you want to say "run/enter" a command.

Example: At a command prompt, type the following command:

 | How to contribute | 195

Graphics

• Use graphics sparingly.

Use graphics only when text cannot adequately convey information or when the graphic enhances the meaning of
the text.

• When the graphic contains translatable text, ensure you include the source file for the graphic to the doc repository
for future translation considerations.

Abbreviations

Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the
spelled-out form of the term.

Example:

:x: The tutorials are available as PDFs.

:heavy_check_mark: The tutorials are available as PDF files.

Do not use abbreviations as verbs.

Example:

:x: You can FTP the files to the server.

:heavy_check_mark: You can use the FTP command to send the files to the server.

Do not use Latin abbreviations.

Use their English equivalents instead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent

e.g. for example

etc. and so on. When you list a clear sequence of elements
such as "1, 2, 3, and so on" and "Monday, Tuesday,
Wednesday, and so on." Otherwise, rewrite the sentence
to replace "etc." with something more descriptive such as
"and other output."

i.e. that is

Spell out the full name and its abbreviation when the word appears for the first time. Use
abbreviations in the texts that follow.

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "More information" to link to useful resources or related topics at the end of topics where necessary.

Word usage
The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

API Mediation Layer

application app

Do Don't

Capitalize "Server" when it's part of the product name

data set dataset

Java java

IBM z/OS Managemnt Facility (z/OSMF) z/OSMF zosmf (unless used in syntax)

ID id

PAX pax

personal computer PC server machine

later higher Do not use to describe versions of software or fix
packs.

macOS MacOS

Node.js node.js Nodejs

plug-in plugin

REXX Rexx

UNIX System Services z/OS UNIX System Services USS

zLUX ZLUX zLux

Zowe CLI

	Contents
	Getting Started
	Zowe overview
	Zowe overview
	Zowe Application Framework
	z/OS Services
	Zowe CLI
	Zowe CLI capabilities

	API Mediation Layer
	Key features
	API Mediation Layer architecture
	Components
	API Gateway
	Discovery Service
	API Catalog

	Zowe Third-Party Software Requirements and Bill of Materials

	Zowe architecture

	Release notes
	Version 1.0.0 (February 2019)
	What's new in API Mediation Layer
	What's new in Zowe CLI
	What's new in the Zowe Desktop
	What's new in the Zowe App Server
	What's changed
	Known issues

	User Guide
	Installing Zowe
	Installing Zowe
	Installation roadmap

	System requirements
	Overview
	z/OSMF configuration
	z/OS requirements
	Configuring z/OSMF
	z/OSMF REST services for the Zowe CLI

	Planning for installation of API Mediation Layer, Zowe Application Framework, and Zowe APF Angel
	System requirements for Zowe CLI
	Prerequisite software
	Supported platforms
	Free disk space

	Installing Zowe on z/OS
	Obtaining and preparing the installation file
	Prerequisites
	Installing the Zowe runtime on z/OS
	How the install script zowe-install.sh works

	Starting and stopping the Zowe runtime on z/OS
	Starting the ZOWESVR PROC
	Stopping the ZOWESVR PROC

	Installing the Zowe Cross Memory Server on z/OS
	Manually installing the Zowe Cross Memory Server
	Scripted install of the Zowe Cross Memory Server

	Starting and stopping the Zowe Cross Memory Server on z/OS
	Verifying installation
	Verifying Zowe Application Framework installation
	Verifying z/OS Services installation
	Verifying API Mediation installation

	Looking for troubleshooting help?

	Installing Zowe CLI
	Methods to install Zowe CLI
	Installing Zowe CLI from a local package
	Installing Zowe CLI from an online registry

	Testing Zowe CLI connection to z/OSMF

	Uninstalling Zowe
	Uninstalling Zowe from z/OS
	Uninstalling Zowe CLI from the desktop

	Configuring Zowe
	Zowe Application Framework configuration
	Setting up terminal application plug-ins
	Setting up the TN3270 mainframe terminal application plug-in
	Setting up the VT Terminal application plug-in

	Configuring the Zowe Application Server and ZSS
	Configuration file
	Network configuration
	HTTP
	HTTPS
	Network example

	Deploy configuration
	Deploy example

	Application plug-in configuration
	Plug-ins directory example

	Logging configuration
	ZSS configuration
	Connecting the Zowe Application Server to ZSS

	Enabling tracing
	Zowe Application Server tracing
	Log levels
	Enabling tracing for ZSS

	Zowe Application Framework logging
	Controlling the logging location
	ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables
	ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

	Retaining logs

	Configuring Zowe CLI
	Setting environment variables for Zowe CLI
	Setting log levels
	Setting the .zowe directory

	Using Zowe
	Using the Zowe Desktop
	Navigating the Zowe Desktop
	Accessing the Zowe Desktop
	Logging in and out of the Zowe Desktop
	Pinning applications to the task bar

	Using Explorers within the Zowe Desktop
	Zowe Desktop application plug-ins
	Hello World Sample
	IFrame Sample
	z/OS Subsystems
	TN3270
	VT Terminal
	API Catalog
	Editor
	Workflows

	Using the Editor
	Specifying a language server
	Specifying a language
	Opening a directory
	Creating a new file
	Saving a file

	Using the Workflows application plug-in
	Logging on to the system
	Updating the data display
	Configuration
	Adding a z/OSMF server
	Testing a server connection
	Setting a server as the default z/OSMF server
	Removing a server
	Reload a server configuration
	Save a server configuration
	Workflows
	Searching workflows
	Defining a workflow
	Viewing tasks
	Task work area
	Performing a task
	Checking a task
	Managing tasks
	Viewing warnings

	API Catalog
	View Service Information and API Documentation in the API Catalog

	Using Zowe CLI
	Displaying Zowe CLI help
	Displaying top-level help
	Displaying command group, action, and object help

	Zowe CLI command groups
	plugins
	profiles
	provisioning
	zos-console
	zos-files
	zos-jobs
	zos-tso
	zosmf

	Defining Zowe CLI connection details
	Understanding command option order of precedence
	Creating Zowe CLI profiles
	Creating a profile to access an API Mediation Layer

	Defining Environment Variables
	Transforming arguments/options to environment variable format
	Setting environment variables in an automation server
	Using secure credential storage

	Integrating with API Mediation Layer

	Writing scripts to automate mainframe actions
	Writing a Script
	Example: Clean up Temporary Data Sets
	Example: Submit Jobs and Save Spool Output

	Zowe CLI extensions and plug-ins
	Extending Zowe CLI
	Installing plug-ins
	Setting the registry
	Meeting the prerequisites
	Installing plug-ins
	Validating plug-ins
	Updating plug-ins
	Uninstalling plug-ins

	Zowe CLI Plug-in for IBM CICS
	Use cases
	Prerequisites
	Installing
	Installing from an online registry
	Installing from a local package

	Creating a user profile
	Commands
	Defining resources to CICS
	Deleting CICS resources
	Discarding CICS resources
	Getting CICS resources
	Installing resources to CICS
	Refreshing CICS programs

	Zowe CLI plug-in for IBM Db2 Database
	Use cases
	Prerequisites
	Installing
	Installing from online registry
	Installing from local package
	Downloading the ODBC driver
	Installing the Plug-in

	Addressing the license requirement
	Creating a user profile
	Commands
	Calling a stored procedure
	Executing an SQL statement
	Exporting a table in SQL format

	VSCode Extension for Zowe
	Prerequisites
	Installing
	Use-Cases

	Extending
	Developing for API Mediation Layer
	Onboarding Overview
	Overview of APIs
	Sample REST API Service
	API Service Types

	Zowe API Mediation Layer Security
	How API ML transport security works
	Transport layer security
	Authentication
	Zowe API ML services
	Zowe API ML TLS requirements
	Authentication for API ML services
	Authorization
	API ML truststore and keystore
	Authentication to the Discovery Service

	Certificate management in Zowe API Mediation Layer
	Running on localhost
	How to start API ML on localhost with full HTTPS
	Certificate management script
	Generate certificates for localhost
	Generate a certificate for a new service on localhost
	Add a service with an existing certificate to API ML on localhost
	Log in to Discovery Service on localhost

	Zowe runtime on z/OS
	Certificates for z/OS installation from the Zowe PAX file
	Import the local CA certificate to your browser
	Generate a keystore and truststore for a new service on z/OS
	Add a service with an existing certificate to API ML on z/OS
	Procedure if the service is not trusted

	Trust a z/OSMF certificate
	Disable certificate validation

	Java REST APIs with Spring Boot
	Prepare an existing Spring Boot REST API for onboarding
	Add Zowe API enablers to your service
	Add API ML onboarding configuration
	Setup keystore with the service certificate
	Externalize API ML configuration parameters
	Test your service
	Validate that your API instance is still working
	Validate that your API instance is discoverable

	Review the configuration examples of the discoverable client

	Java REST APIs service without Spring Boot
	Prerequisites
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	(Optional) Add Swagger API documentation to your project
	Add endpoints to your API for API Mediation Layer integration
	Add configuration for Discovery client
	Add a context listener
	Add a context listener class
	Register a context listener

	Setup key store with the service certificate
	Run your service
	(Optional) Validate discovery of the API service by the Discovery Service

	Java Jersey REST APIs
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	Externalize parameters
	Download Apache Tomcat and enable SSL
	Run your service

	REST APIs without code changes required
	Identify the API that you want to expose
	Route your API

	Define your service and API in YAML format
	Configuration parameters
	Add and validate the definition in the API Mediation Layer running on your machine
	Add a definition in the API Mediation Layer in the Zowe runtime
	(Optional) Check the log of the API Mediation Layer
	(Optional) Reload the services definition after the update when the API Mediation Layer is already started

	Developing for Zowe CLI
	Developing for Zowe CLI
	How can I contribute?
	Getting started
	Tutorials
	Plug-in Development Overview

	Developer Documentation and Guidelines
	Imperative CLI Framework Documentation
	Contribution Guidelines

	Setting up your development environment
	Prequisites
	Initial setup
	Clone zowe-cli-sample-plugin and build from source
	(Optional) Run the automated tests

	Next steps

	Installing the sample plug-in
	Overview
	Installing the sample plug-in to Zowe CLI
	Viewing the installed plug-in
	Using the installed plug-in
	Testing the installed plug-in
	Next steps

	Extending a plug-in
	Overview
	Creating a Typescript interface for the Typicode response data
	Creating a programmatic API
	Exporting interface and programmatic API for other Node.js applications
	Checkpoint
	Defining command syntax
	Defining command handler
	Defining command to list group
	Checkpoint

	Using the installed plug-in
	Summary
	Next steps

	Developing a new plug-in
	Overview
	Cloning the sample plug-in source
	Changing package.json
	Adjusting Imperative CLI Framework configuration
	Adding third-party packages
	Creating a Node.js programmatic API
	Exporting your API

	Checkpoint
	Defining commands

	Trying your command
	Bringing together new tools!
	Next steps

	Implementing profiles in a plug-in
	Next steps

	Developing for Zowe Application Framework
	Extending the Zowe Application Framework (zLUX)
	Creating application plug-ins
	Setting the environment variables for plug-in development
	Using the sample application plug-in

	Plug-ins definition and structure
	Application plug-in filesystem structure
	Root files and directories
	pluginDefinition.json

	Dev and source content
	nodeServer
	webClient

	Runtime content
	lib
	web

	Location of plug-in files
	pluginsDir directory

	Plug-in definition file
	Plug-in attributes
	General attributes
	Application attributes
	Application web content attributes
	IFrame application web content

	Dataservices
	Defining a dataservice
	Dataservices defined in pluginDefinition

	Dataservice API
	Router-based dataservices
	HTTP/REST router dataservices
	Websocket router dataservices
	Router dataservice context

	Zowe Desktop and window management
	Loading and presenting application plug-ins
	Plug-in management
	Application management
	Windows and Viewports
	Viewport Manager
	Injection Manager
	Plug-in definition
	Logger
	Launch Metadata
	Viewport Events
	Window Events
	Window Actions

	Configuration Dataservice
	Resource Scope
	REST API
	REST query parameters
	REST HTTP methods
	GET
	PUT
	DELETE

	Administrative access and group

	Application API
	Internal and bootstrapping
	Plug-in definition
	Aggregation policies

	URI Broker
	Accessing the URI Broker
	Functions
	Accessing an application plug-in's dataservices
	HTTP Dataservice URI
	Websocket Dataservice URI

	Accessing application plug-in's configuration resources
	Standard configuration access
	Scoped configuration access

	Accessing static content
	Accessing the application plug-in's root
	Server queries
	Accessing a list of plug-ins

	Application-to-application communication
	Why use application-to-application communication?
	Actions
	Action target modes
	Action types
	Loading actions
	Dynamically
	Saved on system

	Recognizers
	Recognition clauses
	Loading Recognizers at runtime
	Dynamically
	Saved on system

	Recognizer example

	Dispatcher
	Registry
	Pulling it all together in an example

	Error reporting UI
	ZluxPopupManagerService
	ZluxErrorSeverity
	ErrorReportStruct
	Implementation
	Declaration
	Usage
	HTML

	Logging utility
	Logging objects
	Logger IDs
	Accessing logger objects
	Logger
	App Server
	Web

	Component logger
	App Server
	Web

	Logger API
	Component Logger API
	Log Levels
	Logging verbosity
	Configuring logging verbosity
	Server startup logging configuration

	Stand up a local version of the Example Zowe Application Server
	Server layout
	ZSS and Zowe Application Server overlap

	First-time Installation and Use
	0. (Optional) Install git for z/OS
	1. Acquire the source code
	2. Acquire external components
	3. Set the server configuration
	4. Build application plug-ins
	5. Deploy server configuration files
	6. Run the server
	7. Connect in a browser
	Deploy example

	Application plug-in configuration
	Plugins directory example

	ZSS Configuration
	Connecting Zowe Application Server to ZSS

	Zowe tutorials
	Sample Apps
	Internationalization in Angular Templates in Zowe zLUX
	App to app communication
	Using the Widgets Library
	Configuring user preferences (configuration dataservice)

	Starter Samples
	User Database Browser Starter App
	User Browser Tutorial
	Constructing an App Skeleton
	Defining your first plugin
	Constructing a Simple Angular UI
	Packaging Your Web App
	Adding Your App to the Desktop

	Building your first Dataservice
	Working with ExpressJS
	Adding your Dataservice to the Plugin Definition

	Adding your first Widget
	Adding your Dataservice to the App
	Introducing ZLUX Grid

	Adding Zowe App-to-App Communication
	Adding the Starter App
	Enabling Communication
	Calling back to the Starter App

	Zowe Samples
	Add Iframe App to Zowe
	Add a Native Angular App to Zowe

	Troubleshooting the installation
	Troubleshooting z/OSMF
	z/OS Services are unavailable

	Troubleshooting installing the Zowe Application Framework
	Troubleshooting installing Zowe CLI
	Command not found message displays when issuing npm install commands
	npm install -g Command Fails Due to an EPERM Error
	Sudo syntax required to complete some installations
	npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
	Node.js commands do not respond as expected
	Installation fails on Oracle Linux 6

	How to contribute
	Before you get started
	Contributing to documentation
	Sending a GitHub pull request
	Opening an issue for the documentation

	Documentation Style guide
	Headings and titles
	Use sentence-style capitalization for headings
	For tasks and procedures, use gerunds for headings.
	For conceptual and reference information, use noun phrases for headings.
	Use headline-style capitalization for only these items:
	Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.
	If the subject is a functional overview, begin a heading with words such as Introduction or Overview rather than contriving a pseudo-task-oriented heading that begins with Understanding, Using, Introducing, or Learning.

	Technical elements
	Variables
	Message text and prompts to the user
	Code and code examples
	Command names, and names of macros, programs, and utilities that you can type as commands
	Interface controls
	Directory names
	File names, file extensions, and script names
	Search or query terms
	Citations that are not links

	Tone
	Use simple present tense rather than future or past tense, as much as possible.
	Use simple past tense if past tense is needed.
	Use active voice as much as possible
	Using second person such as "you" instead of first person such as "we" and "our".
	End sentences with prepositions selectively
	Avoid using "Please", "thank you"
	Avoid anthropomorphism.
	Avoid complex sentences that overuse punctuation such as commas and semicolons.

	Word usage
	Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format.
	Use of "following"
	Use a consistent style for referring to version numbers.
	Avoid "may"
	Use "issue" when you want to say "run/enter" a command.

	Graphics
	Abbreviations
	Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the term.
	Do not use abbreviations as verbs.
	Do not use Latin abbreviations.
	Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that follow.

	Structure and format

	Word usage

