Zowe Documentation
Version 1.0.0






| Contents | iii

Contents

Chapter 1: Getting Started.........ccove e 5
ZOWE OVEIVIEW.....eeueeeentenieseeeeseeseeseeseesessessesteseessessesseseesenseneeneeneeseeseeseeseasesaeaEeebeseeseenteteseensenseneeneeseesensessentensessens 6
ZOWE OVEIVIEW ... eeeeneeneeneeneeseeseeseeseetestessestesteseessessensesseneeseeneeseesessesseasesteseeseentenseseensansenseneeseeseesessensessnssens 6

ZOWE @I CHITECIUIE. ... ettt sttt st e et es e e s e s sesbesbesaeseesbesbeseessen e nee e eneeneeneenennennes 10

S =2 I 1] (=SSR 11
Version 1.0.0 (FELrUAIY 2009)........ccoiiirierieirieresiereeteseete st et e s se e b et bese et seebe e ebeseebeseeneseas 11
Chapter 2: USEr GUITE........ci ettt sttt enne e 15
TS = o 7o = SRS 16
IS = o 7o = RS 16

Y S (S L= 0 0T =011 £ 17
INSLAlING ZOWE ON Z/OS........eceeceeeceeeer ettt ettt s ae s be s besee st e te st e e e e e e e e eneerennenns 22
Ttz T o 7o 1YL= o S 39
UNINSLAIING ZOWE......eiveiiiiieiie ettt st se e s e seese et e s s e s aesbesbesteseentense e eneeneeneenearenses 41
(0001110 01T 0T 7o 11 43
Zowe Application Framework CONfiQUIation...........ceiirererereesieseeseeesese e e e sre e see e sae e sae e eneeseeneens 43
(©oT011To 04T o o 7o 11T/ 5 I N 48

USING ZOWE. ... eeieeiieieseeeesteeeeeseeses e ssestessesaestesteseeseesseseessensensenseseeseesessease et esseseeabesbeseestenteseasennsensensensenensenneasens 49
USING the ZOWE DESKEOP.....cveiieieiieierieieieee et st st s e st esae s e e e ae e e e esee e eseesessesnesrestesaeseenseneesenns 49

Y o IO - oo S 54

(S T o o 1 57

Zowe CLI extensions @nNd PlUGFINS......cvciieeiriie et st st e se st te e ste e seesa e e nae e e e eneeneeneenennes 65
(= 1o [ o 0 1Y S 65

LTt =TT T oL To e 65

Zowe CLI Plug-in fOr IBM CICSi.......cooiieieerieieieeee st e sttt s e e s eseese e enestessesnessenseses 67

Zowe CLI plug-in for IBM Db2 Datahase........cc.coveeeireieiiieseseseseseeseesee e seesesese e ssesessnesseseeseenens 71

V SCOOE EXIENSION FOr ZOWE.....cuieieiietiieeie ettt st st st et st see st et e be e benente e 74
Chapter 3: EXLENAING....cciiieiieeieesie ettt e e 77
Developing fOor API Meialion LaYEN..........coiiiiiiiieiee ettt sttt sbe b e b e 78
ONDOAIAING OVEIVIEW. ...ttt sttt ettt ae bt s bt sae st e s beseese et e see e ens e e e e eneeseeseenesbesbesaeseens 78

Zowe APl Mediation Layer SECUMTY ......ccooeirirereeieriesit ettt s se e sae b b sae bt seeseeneas 82

Java REST APIS With SPring BOOL.........coiiiiiiiiiii et e s 91

Java REST APIs service Without Spring BOOL.............coeiiriiieireeenene s 102

= 1= 0 U] =S U 103

JAVA JErSEY REST APIS ...ttt b bbb e e 112

REST APIs without code Changes reqUITed............coeiereriererieieeeeeereee e 117
DeVelOpiNg fOF ZOWE CLI ...t et et et et e e st e besbesbesbesbeseeseennan 123
Developing fOr ZOWE CLI ...ttt bbb e bbb e e et eneenas 123
Setting up your develOpmENt ENVIFONMENT...........oiirieriereeieeeee ettt e e saea 125
Installing the SAMPIE PIUG-IN....c.oii et sbe s 126
EXIENAING 8 PIUG-TN. .ottt b e s e e et e et sbesaesae b e 128
Developing @ NEW PIUG-IN.. ...ttt b et sa e s bbb e e b e e et e e e st e resaeebenae e 131
Implementing Profiles iN @ PIUG-IN.......cooiiii e e e 136
Developing for Zowe Application FrameWOrK...........c.oiiiriiereeee e s eaea 137
Extending the Zowe Application Framework (ZLUX).......ccociiiiiiiiinenene e 137

Creating appliCation PIUG-INS......coueiuiriee e et e e eneene s 137



Plug-ins definition @nd SETUCTUE..........coiuiieeeeee e e et 138

DL =S = Ao =P 142

Zowe Desktop and WindoW MaNageMENT..........coiiiiirierierieie ettt se et e e e e e eneas 144

CoNfiQUIAtiON DELASEIVICE. ......coeiuirierie ittt ettt b e s bbbttt st e e e b e se e e ene e e e aeebesbesaesnea 147

URI BFOKET ...ttt b et b b e et e e et et e st e he e b e e bt eae e b e s b e s e e sb et et e e e e eneene e 152

Application-to-appliCation COMMUNICALTION. ..........iieirieiereeieeree ettt s e e e e sae e snens 154

o g < oo 1 1o LU SRS 158

(oo o [T oo [V 1] 11 32UV USSR 161

Stand up alocal version of the Example Zowe Application SErVEX.........ccoviiineneiinieneree e 163

ZOWE TULOTTBIS. ...ttt ettt ettt h e bbbt b e bt se et e e se et e st e m e e aeeaeebeebesbeebesbesbenbenbeseans 167

SEAIEr SAIMPIES..... ettt b et et et e e s e et et et e st eb e e beebeeb e s besbesb et e se e e et e e e ene 168

User Database BroWSEr SEAITEN ADD....ciueiertererierierierieseeeeieeeeiestesie s sresae e seesbeseeseesesseseeeenessessessesees 168

U g o (o NS g U 10 (SRR 168

ZOWE SBIMPIES......eeeeteste ettt ettt h e bt e b et s e e e e st et e ae e st eh e e Rt ebe e b e sbeseeebebese e s en b e e e e enenneeneenen 183

Add [frameE AP 10 ZOWE.......euiieiitiite ittt ettt b et sb s b s be et e b e see e e e et e e et eseeneenesbesaeees 183

Add a Native ANQUIEI APP 10 ZOWE.......couiiieriereeieie ettt se e e e sbe b e b b es 184

Chapter 4: Troubleshooting the installation...........cccvcveievicievn e 185

TroublESNOOLING Z/OSIMF.........oiiiiiieiirteet et b et b et b e b e e n e 186

Z/OS Services are UNAVAIADIE.........c.ooiii ettt 186

Troubleshooting installing the Zowe Application FrameworK...........ccoeierrennennenese e 187

Troubleshooting iNSLAIING ZOWE CL1 ..ottt 187

Command not found message displays when issuing npm install commands...........ccocvevvivrevvernneene 187

npm install -g Command Fails Dueto an EPERM EITOr........cccccoviniinnenneneseseeeesieeseiens 187

Sudo syntax required to complete Some iNStalations............covereireinen e 187
npminstall -gcommandfailsduetonpm ERR! Cannot read property ' pause'

(oL VY o L= BN =T o = o) SRR 188

Node.js commands do Not respond as EXPECEM..........ccueerieirieerierere e 188

Installation fails 0N OraCle LINUX B........cccvrerierieieieieeeesesis sttt e nes 188

Chapter 5: HOW t0 CONtIiDULE.......cocieeece e 189

BEfOre YOU gEL SLAE™.........cveeeeeeeei ettt s e e be s tese e e e e e e eseeseeseeneeresnenrenteseenrenean 190

Contributing tO AOCUMENLALION.........cciieeesesesteesieseeee e e e e et s e s e re st e seesrestesteseesseseeseeseeseeseeseesessessesresseseesenns 190

Sending a GitHUD PUIl FEUESL.........ecue ettt s eeresrennenne 190

Opening an issue for the dOCUMENTALION.........cccerverieieieeecee e e e e e eneas 190

DOCUMENLEEION SEYIE QUITE ...ttt ettt be s eese e te s tesae s e nae e e e eneenennnarens 190

L= o T aTo 3= 1 o I 1 - 191

TECHNICE EIEIMENES.....c.eceiicic bbb e bbb n et s e s s 191

L0 P TP USSR 192

LAY 0 T o = 194

(7= o o 1= 195

F N o] 1LY = 0] LSOO 195

SITUCLUIE AN FOMMIBL......eveiteecieeeie ettt st sttt e e s a e st sttt 195



Chapter

1

Getting Started

Topics:

Zowe overview
Release notes



| Getting Started | 6

Zowe overview

Zowe overview

Zowe is an open source project that is created to host technologies that benefit the Z platform from all members of the
Z community, including Integrated Software Vendors, System Integrators, and z/OS consumers. Zowe, like Mac or
Windows, comes with a set of APIs and OS capabilities that applications build on and also includes some applications
out of the box.

Zowe offers modern interfaces to interact with z/OS and allows you to work with ZZOSin away that is similar to
what you experience on cloud platformstoday. Y ou can use these interfaces as delivered or through plug-ins and
extensions that are created by clients or third-party vendors.

Zowe consists of the following main components. For details of each component, see the corresponding section.

» Zowe Application Framework on page 6: A web user interface (Ul) that provides avirtual desktop
containing a number of apps allowing access to Z/OS function. Base Zowe includes apps for traditional access
such asa 3270 terminal and aVT Terminal, as well as an editor and explorers for working with JES, MV S Data
Sets and Unix System Services.

« 7/OS Services. Provides arange of APIsfor the management of zZ/OS JES jobs and MV S data set services.

« APl Mediation Layer on page 8: Provides a gateway that acts as areverse proxy for z/OS services, together
with a catalog of REST APIs and a dynamic discovery capability. Base Zowe provides core services for working
with MV S Data Sets, JES, as well as working with ZZOSMF REST APIs. The APl Mediation Layer also provides
aframework for Single Sign On (SSO).

e Zowe CLI on page 7: Provides acommand-line interface that lets you interact with the mainframe remotely
and use common tools such as Integrated Devel opment Environments (IDEs), shell commands, bash scripts, and
build tools for mainframe development. It provides a set of utilities and services for application devel opers that
want to become efficient in supporting and building z/OS applications quickly. It provides a core set of commands
for working with data sets, USS, JES, aswell asissuing TSO and console commands. Some Zowe extensions are
powered by Zowe CLI, for example the V SCode Extension for Zowe on page 74.

Check out the video below for a demo of the modern interfaces that Zowe provides.

Zowe Application Framework

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application
Framework, you can create applications to suit your specific needs. The Zowe Application Framework contains aweb
Ul that has the following features:

«  Theweb Ul works with the underlying REST APIsfor data, jobs, and subsystem, but presents the information in a
full screen mode as compared to the command line interface.

« Theweb Ul makes use of |eading-edge web presentation technology and is also extensible through web Ul plug-
ins to capture and present awide variety of information.

» Theweb Ul facilitates common z/OS devel oper or system programmer tasks by providing an editor for common
text-based files like REXX or JCL along with general purpose data set actions for both Unix System Services
(USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:
e Zowe Desktop

The desktop, accessed through a browser.
* ZoweApplication Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plusthe
Express.js as awebservices framework, and the proxy applications that communi cate with the z/OS services and
components.

e ZSSServer
The ZSS Server provides secure REST services to support the Zowe Application Server.



| Getting Started | 7

« Application plug-ins

Several application-type plug-ins are provided. For more information, see Zowe Desktop application plug-ins on
page 50.

z/OS Services

Zowe provides a z/OS® RESTful web service and deployment architecture for z/OS microservices. Zowe contains the
following core z/OS services:

+ 7/OS Datasets services

Get alist of jobs, get content from ajob file output, submit job from a data set, and more.
» 7/OSJobs services

Get alist of data sets, retrieve content from a member, create a data set, and more.

Y ou can view the full list of capabilities of the RESTful APIsfrom the API catalog that displays the Open API
Specification for their capabilities.
» These APIs are described by the Open API Specification allowing them to be incorporated to any standard-based

REST API developer tool or APl management process.
* These APIs can be exploited by off-platform applications with proper security controls.

As a deployment architecture, the z/OS Services are running as microservices with a Springboot embedded Tomcat
stack.

Zowe CLI

Zowe CLI isacommand-line interface that |ets application developers interact with the mainframe in afamiliar
format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe
applications, and exploit the ease-of-use of off-platform tools. Zowe CL1 lets application devel opers use common
tools such as Integrated Devel opment Environments (IDEs), shell commands, bash scripts, and build tools for
mainframe development. It provides a set of utilities and services for application devel opers that want to become
efficient in supporting and building z/OS applications quickly.

Zowe CLI provides the following benefits:

« Enables and encourages devel opers with limited zZ/OS expertise to build, modify, and debug z/OS applications.

» Fosters the development of new and innovative tools from a computer that can interact with z/OS.

« Ensurethat business critical applications running on z/OS can be maintained and supported by existing and
generally available software development resources.

* Provides amore streamlined way to build software that integrates with z/OS.

Note: For information about prerequisites, software requirements, installing and upgrading Zowe CLI, see Installing
Zowe on page 16.

Zowe CLI capabilities
With Zowe CLI, you can interact with zZ/OS remotely in the following ways:

e Interact with mainframefiles: Create, edit, download, and upload mainframe files (data sets) directly from Zowe
CLI.

e Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output
automatically.

e Issue TSO and z/OS console commands:Issue TSO and console commands to the mainframe directly
from Zowe CLI.

* Integrate ZZOSactionsinto scripts:Build local scriptsthat accomplish both mainframe and local tasks.
» Produceresponses as JSON documents: Return datain JSON format on request for consumption in other
programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI command groups on page
57.



| Getting Started | 8

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI on
page 65.

More I nformation:

e System requirements on page 17
e Installing Zowe CLI on page 39

API Mediation Layer

The APl Mediation Layer provides a single point of access for mainframe service REST APIs. The layer offers
enterprise, cloud-like features such as high-availability, scalability, dynamic APl discovery, consistent security, a
single sign-on experience, and documentation. The APl Mediation Layer facilitates secure communication across
loosely coupled microservices through the APl Gateway. The API Mediation Layer includes an API Catalog that
provides an interface to view all discovered microservices, their associated APIs, and Swagger documentation in a
user-friendly manner. The Discovery Service makesit possible to determine the location and status of microservice
instances running inside the ecosystem.

More I nformation:

» JavaREST APIswith Spring Boot on page 91
* APl Catalog on page 54

Key features

» High availahility of servicesin which application instances on afailing node are distributed among surviving
nodes

« Microservice Uls available through the APl Gateway and API Catalog by means of reverse proxying

e Support for standardization and normalization of microservice URLSs and routing to provide APl Mediation Layer
users with a consistent way of accessing microservices.

« Minimal effort to register a microservice with the gateway (configuration over code)

* Runson Windows, Linux, and z/OS (target platform)

»  Written in Java utilizing Spring Boot (2.x), Angular 5, and the Netflix CloudStack

« Supports multiple client types for discovery (including Spring Boot, Java, and NodelS)

» Contains enablersthat allow for easy discovery and exposure of REST APIs and Swagger documentation for each
microservice

API Mediation Layer architecture

The following diagram illustrates the single point of access with the APl Gateway and the interactions between the
APl Gateway, APl Catalog, and the Discovery Service:



| Getting Started | 9

Userf REST
AR client

APl Mediation Layer - APl Gateway, Catalog, and Discovery

TCRIP
Syzplex
Distributar

-
Access to other services via gateway
orto Discovery Service

v v v v v v

AP| Gateway AP| Gatewway AP| Gateweay Dslsecnfi\;ﬁ’ Désecn?i\;iw Désecrsivceew

Instance #1 Instance #2 Instance #n Instance #1 Instance #2 IFteies 24
T
]

AP| Catalog I

Instance #1 : FPeer synchronization

gateway connects to services 1 ESM
Heartheat : P  Microservice

Instance #1

I
Regigterto DS, access othey g

| ]

Security calls flogin, access check, PassTicket)

AREST API AREST API Another REST
Instance #1 Instance #n AFI

I L I L I L
205 Product Z05 Product Z5 Product

Components
The API Layer consists of the following key components:
API Gateway

The microservices that are contained within the ecosystem are located behind areverse proxy. Clientsinteract with
the gateway layer (reverse proxy). This layer forwards APl requests to the appropriate corresponding service through
the microservice endpoint Ul. The gateway is built using Netflix Zuul and Spring Boot technology.

Discovery Service

The Discovery serviceisthe central point in the APl Gateway infrastructure that accepts "announcements of REST
services' and serves as arepository of active services. Back-end microservices register with this service either
directly by using a Eureka client. Non-Spring Boot applications register with the Discover Service indirectly through
a Sidecar. The Discovery Serviceis built on Eureka and Spring Boot technology.

API Catalog

The API Catalog is the catalog of published APIs and their associated documentation that are discoverable or can be
available if provisioned from the service catalog. The APl documentation is visualized using the Swagger Ul. The
API Catalog contains APIs of services available as product versions. A service can be implemented by one or more
service instances, which provide exactly the same service for high-availability or scalability.

More I nformation:
« JavaREST APIswith Spring Boot on page 91



| Getting Started | 10

e API Catalog on page 54

Zowe Third-Party Software Requirements and Bill of Materials

e Third-Party Software Requirements (TPSR)
+ Bill of Materials (BOM)

Zowe architecture

Zowe isacollection of components that together form a framework that allows Z based functionality to be accessible
across an organization. This includes exposing Z based components such as ZZOSMF as Rest APIs. The framework
provides an environment where other components can be included and exposed to a broader non-Z based audience.



| Getting Started | 11

The following diagram depicts the high level Zowe architecture.

z/05s

Zowe CLI /S ZOWESVR runs under IZUUSR:IZU!

Installed by znwe-instIII.sh driven by

Desktop node app

|
|
|
l
|
|
|
|
|
|
|
|
|
API
I -
: Gateway — API| Discovery
|
. |
Zowe Virtual Desktop | ha
: — AP| Catalog
|
APl Catalog | >
|
| MVS Ul
|
|
| > MWS API
MVS !
Explorer | f :_
I i |
| . JES UI
JES Explorer ! > -
: e o JES API
|
uss :
Explorer I _
: » > Uss Ul «—
|
|
[
|
TN3270 | ! ZLUX
|
|
|
|
VT < '
: » TN3270
| |
I | : = VT
|
[

Desktnp[Eruwser ul

Release notes

Learn about what is hew, changed, removed, and known issuesin Zowe.

Version 1.0.0 (February 2019)

Version 1.0.0 contains the following changes since the Open Beta release.



| Getting Started | 12

What's new in APl Mediation Layer

HTTPsis now supported on al Java enablers for onboarding API microservices with the APl ML.

SSO authentication using zZZ OSMF has been implemented for the API Catalog login. Mainframe credentials are
required for access.

What's new in Zowe CLI

Breaking changeto Zowe CLI: The- - pass command option is changed to - - passwor d for al core Zowe
CLI commands for clarity and to be consistent with plug-ins. If you have zosmf profiles that you created prior to
January 11, 2019, you must recreate them to use the - - passwor d option. The aliases - - pwand - - pass still
function when you issue commands as they did prior to this breaking change. Y ou do not need to modify scripts
that use - - pass.

The @ext npm tag used to install Zowe CLI is deprecated. Usethe @ at est npm tag to install the product
with the online registry method.

What's new in the Zowe Desktop

Y ou can now obtain information about an application by right-clicking on an application icon and then clicking
Properties.

To view version information for the desktop, click the avatar in the lower right corner of the desktop.

Additional information was added for the Workflow application.

Thetitlebar of the active window is now colored to give an at-a-glance indication of which window isin the
foreground.

Window titlebar maximize button now changes style to indicate whether awindow is maximized.

Windows now have a slight border around them to help see boundaries and determine which window is active.
Multiple instances of the same application can be opened and tracked from the launchbar. To open multiple
instances, right-click and choose Open New. Once multiple instances are open, you can click the application icon
to select which application to bring to the foreground. The number of orbs below the application icon relates to the
number of instances of the application that is open.

Desktop framework logging trimmed and formalized to the Zowe App Logger. For more information, see https./
github.com/zowe/zlux/wiki/L ogging.

The UriBroker was updated to support dataservice versioning and UNIX file APl updates.

Removed error messages about missing conponent s. j s by making this optional component explicitly
declared within an application. By using the property "webContent.hasComponents = true/false”.

Set the maximum username and password length for login to 100 characters each.
Applications can now list webContent.framework = "angular" as an alias for "angular2".
Fixed a bug where the desktop might not load on high latency networks.

What's new in the Zowe App Server

HTTP support was disabled in favor of HTTPS-only hosting.

The server can be configured to bind to specific IPs or to hostnames. Previously, the server would listen on all
interfaces. For more information, see https://github.com/zowe/zl ux-app-server/pull/30.

The core logger prefixes for the Zowe App Server were changed from " _unp" to *_zsf".

Dataservices are now versioned, and dataservices can depend on specific versions of other dataservices. A
plug-in can include more than one version of a dataservice for compatibility. For more information, see https://
github.com/zowe/zlux/wiki/ZLUX-Dataservices.

Support to communicate with the APl Mediation Layer with the use of keys and certificates was added.

Trimmed and corrected error messages regarding unconfigured proxies for clarity and understanding. For more
information, see https://github.com/zowe/zlux-server-framework/pull/33.

Fixed thenodeCl ust er . sh script to have itslogging and environment variable behavior consistent with
nodeSer ver. sh.

Removed the "swaggerui" plug-in in favor of the API Catalog.
Bugfix for / pl ugi ns API to not show the installation location of the plug-in.
Bugfix to print awarning if the server finds two plug-ins with the same name.


https://github.com/zowe/zlux/wiki/Logging
https://github.com/zowe/zlux/wiki/Logging
https://github.com/zowe/zlux-app-server/pull/30
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux-server-framework/pull/33

| Getting Started | 13

* Added the ability to conditionally add HTTP headers for secure servicesto instruct the browser not to cache the
responses. For more information, see https://github.com/zowe/zlux-server-framework/issues/36.

* Added astartup check to confirm that ZSSis running as a prerequisite of the Zowe App Server.
» Bugfix for sending HTTP 404 response when content is missing, instead of a request hanging.
« Added tracing of login, logout, and HTTP routing so that administrators can track access.

What's changed

* Previously, APIsfor z/OS Jobs services and zZ/OS Data Set services are provided unsing an IBM WebSphere
Liberty web application server. In this release, they are provided using a Tomcat web application server. Y ou can
view the associated APl documentation corresponding to the z/OS services through the API Catalog.

« Referencesto zIl ux- exanpl e- ser ver werechangedto zl ux- app- server and referencesto zI| ux-
pr oxy-server werechangedto zl ux- server-framewor k.

Known issues
Paste oper ations from the Zowe Desktop TN3270 and VT Terminal applications

TN3270 App - If you are using Firefox, the option to use Ctrl+V to pasteis not available. Instead, press Shift + right-
click to access the paste option through the context menu.

Pressing Ctrl+V will perform paste for the TN3270 App on other browsers.
VT Terminal App - Inthe VT Termina App, Ctrl+V will not perform a paste operation for any browser.
Note: In both terminals, press Shift + right-click to access copy and paste options through the context menu.

Z/0OS Subsystems App - The z/OS Subsystems application is being removed temporarily for the 1.0 release. The
reason is that as the ZSS has transitioned from closed to open source some APIs needed to be re-worked and are not
complete yet. Look for the return of the application in a future update.


https://github.com/zowe/zlux-server-framework/issues/36




Chapter

2

User Guide

Topics:

¢ Installing Zowe

* Configuring Zowe

» Using Zowe

e Zowe CLI extensions and plug-
ins




| User Guide | 16

Installing Zowe

Installing Zowe

You install the Zowe runtime on z/OS and install Zowe CLI on your computer. The installations on Z/OS and on a
computer are independent processes.

When you install Zowe on z/OS, there are two parts. The first part isto install the Zowe Application Framework, the
API Mediation Layer, and a number of micro services that provide capability to both. The second part isto install the
Zowe Cross Memory Server. Thisis an authorized server application that provides privileged servicesto Zowe in a
Secure manner.

The Zowe CLI isnot installed on z/OS and runs on a personal computer.

z/0S

- Zowe
API Tedlatmn Application
ayer Framework

Zowe

PC

Zowe CLI

Installation roadmap

Installing Zowe involves several steps that you must complete in the appropriate sequence. Review the following
installation roadmap that presents the task-flow for preparing your environment and installing and configuring Zowe
before you begin the installation process.



| User Guide | 17

Prepare your environment to meet the installation requirements. | See System requirements on page 17.
Allocate enough space for the installation. | The installation process requires approximately 1 GB of available
space. Once installed on Z/OS, APl Mediation Layer requires approximately 150MB of space, and the Zowe
Application Framework requires approximately 50 MB of space before configuration. Zowe CLI requires
approximately 200 MB of space on your compulter.

Install components of Zowe. | To install Zowe runtime on z/OS, see Installing Zowe on z/OS on page 22. To
install Zowe CLI on acomputer, see Installing Zowe CLI on page 39.

Verify that Zoweisinstalled correctly. | To verify that the Zowe runtimeisinstalled correctly, see Verifying
installation on page 38. To verify that Zowe CLI isinstalled correctly, see Testing connection to ZZOSMF.
Optional: Troubleshoot problems that occurred during installation. | See Troubleshooting the installation on page
185. To uninstall Zowe, see Uninstalling Zowe on page 41.

System requirements

Before installing Zowe, ensure that your environment meets the prerequisites.

Overview

Z/OS host requirements (for all components):

IBM z/OS Management Facility (zZOSMF) Version 2.2 or Version 2.3.

Z/IOSMF is a prerequisite for the Zowe microservice. ZZOSMF must be installed and running before you use Zowe.
For details, see zZOSMF configuration on page 18.

z/OS® Version 2.2 or |ater.

Nodejs Version 6.14.4.1 or later on the zZ/OS host where you install the Zowe Application Server.

1. Toinstal Nodejson z/OS, follow the procedures at https://devel oper.ibm.com/node/sdk/ztp.
Notes:

* Toinstall Nodejson z/OS, ensure that you meet the following requirementsin the procedure. Other
requirements, including installing Python, Make 4.1, or Perl, are not needed.

Z/0S V2R2 with PTF UI46658 or z/0OS V2R3, z/OS UNIX System Services enabled, and Integrated
Cryptographic Service Facility (ICSF) configured and started.
« Thefollowing requirements for installing Node.js are NOT needed, so you can skip those configurations.

e Python, Make 4.1, or Perl
e C/C++ compiler

After you install Node,js, set the NODE_HOME environment variable to the directory where Node.jsisinstalled.
For example, NODE_HOVE=/ pr oj / nvd/ node/ i nst al | s/ node-v6. 14. 4- 0s390- s390x.

npm 5.4 or later
To update npm, issue the following command:
npminstall -g npm

IBM SDK for Java Technology Edition V8 or later

Disk and browser requirements (for Zowe desktop):

833 MB of HFSfile space.
Supported browsers:

e Google Chrome V54 or later

* MozillaFirefox V44 or |ater
e Safari V11 or later

« Microsoft Edge (Windows 10)

Client reguirements (for Zowe CL1):


https://developer.ibm.com/node/sdk/ztp

| User Guide | 18

Any platform where Node.js 8.0 or 10 is available, including Windows, Linux, and Mac operating systems. For
details, see System requirements for Zowe CLI on page 21.

z/OSMF configuration

The following information contains procedures and tips for meeting ZZOSMF requirements. For compl ete information,
go to IBM Knowledge Center and read the following documents.

e IBM zZ/OS Management Facility Configuration Guide
* IBM Z/OS Management Facility Help

z/OS requirements

Ensure that the z/OS system meets the following requirements:

Requirements

Description

Resourcesin IBM Knowledge
Center

Integrated Cryptographic Service
Facility (ICSF)

AXR (System REXX)

Common Event Adapter (CEA)
server

Common Information Model (CIM)
server

CONSOLE and CONSPROF
commands

IBM z/OS Provisioning Toolkit

Javalevel

TSO region size

On z/OS, Node requires ICSF to be
installed, configured and started.

Z/OS uses AXR (System REXX)
component to perform Incident

L og tasks. The component enables
REXX executable filesto run outside
of conventional TSO and batch
environments.

The CEA server, which isaco-
requisite of the Common Information
Model (CIM) server, enables the
ability for ZZOSMF to deliver z/OS
events to C-language clients.

Z/IOSMF uses the CIM server to
perform capacity-provisioning and
workload-management tasks. Start
the CIM server before you start z/
OSMF (the 1ZU* started tasks).

The CONSOLE and CONSPROF
commands must exist in the
authorized command table.

The IBM® z/OS® Provisioning
Toolkit isacommand line utility that
provides the ability to provision z/
OS development environments. If
you want to provision CICS or Db2
environments with the Zowe CL I,
thistoolkit is required.

IBM® 64-bit SDK for z/OS®, Java
Technology Edition V8 or later is
required.

To prevent exceeds maximum
region size errors, verify that the
TSO maximum region sizeisa
minimum of 65536 KB for the z/OS
system.

N/A

System REXX

Customizing for CEA

Reviewing your CIM server setup

Customizing the CONSOLE and
CONSPROF commands

What is IBM Cloud Provisioning and
Management for zZ/OS?

Software prerequisites for ZOSMF

N/A



https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

| User Guide | 19

Requirements Description Resourcesin IBM Knowledge
Center
User IDs User IDsrequire a TSO segment N/A

(access) and an OMV S segment.
During workflow processing and
REST API requests, ZZOSMF might
start one or more TSO address spaces
under the following job names:
userid; substr(userid, 1, 6) CN
(Console).

Configuring z/OSMF
Follow these steps:

1. From the console, issue the following command to verify the version of zZ/OS:
/ D 1 PLI NFO
Part of the output contains the release, for example,

RELEASE z/ GS 02. 02. 00.
2. Configure ZZOSMF.

Z/IOSMF is abase element of ZOSV2.2 and V2.3, so it isaready installed. But it might not be configured and
running on every z/OS V2.2 and V2.3 system.

In short, to configure an instance of ZZOSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS, and then start
the Z/OSMF server. The zZZOSMF configuration process occurs in three stages, and in the following order:

e Stagel - Security setup

e Stage 2 - Configuration

e Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure z/
OSMF, see Configuring ZZOSMF if you use ZZOS V2.2 or Setting up ZZOSMF for thefirst timeif V2.3.

Note: In z/OS V2.3, the base element ZZOSMF is started by default at systeminitial program load (IPL). Therefore, z/
OSMF is available for use as soon as you set up the system. If you prefer not to start zOSMF automatically, disable
the autostart function by checking for START commands for the ZZOSMF started proceduresin the COMMNDXxx
parmlib member.

The z/OS Operator Consolestask is new in Version 2.3. Applications that depend on access to the operator console
such as Zowe CLI's RestConsoles API require Version 2.3.


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

| User Guide | 20

1. Verify that the zZZOSMF server and angel processes are running. From the command line, issue the following
command:

/DA | ZU
If jobs IZUANGL1 and IZUSVR1 are not active, issue the following command to start the angel process:
/'S | ZUANGL

After you see the message ""CWWKBO0056I INITIALIZATION COMPLETE FOR ANGEL"", issue the
following command to start the server:

/'S 1 ZUSVRL

The server might take afew minutes to initialize. The ZZOSMF server is available when the message
""CWWKF0011l: The server zosmfServer is ready to run a smarter planet."" is displayed.
2. Issuethe following command to find the startup messages in the SDSF log of the ZZOSMF server:

f | ZUG349I
Y ou could see a message similar to the following message, which indicates the port number:

| ZUG3491 : The z/ OSMF STANDALONE Server home page can be accessed at
https://nvs. hursl ey.i bm com 443/ zosnf after the z/ OSMF server is started
on your system

In this example, the port number is443. Y ou will need this port number later.

Point your browser at the nominated zZOSMF STANDALONE Server home page and you should see its Welcome
Page where you can log in.

Note: If your implementation uses an external security manager other than RACF (for example, CA Technologies,
a Broadcom Company, Top Secret or CA Technologies ACF2), you provide equivalent commands for your
environment. For more information, see the following product documentation:

« Configure ZZOS Management Facility for CA Technologies Top Secret
« Configure Z/OS Management Facility for CA Technologies ACF2

z/IOSMF REST services for the Zowe CLI

The Zowe CLI uses ZZOSMF Representational State Transfer (REST) APIsto work with system resources and extract
system data. Ensure that the following REST services are configured and available.

Z/JOSMF REST services Requirements Resourcesin IBM knowledge
Center
Cloud provisioning services Cloud provisioning services Cloud provisioning services

arerequired for the Zowe CLI
CICS and Db2 command groups.
Endpoints begin with/ zosnf /
provi si oni ng/

TSO/E address space services TSO/E address space services are TSO/E address space services
required to issue TSO commandsin
the Zowe CLI. Endpoints begin with
[ zosntf/t soApp



https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://docops.ca.com/ca-acf2-for-z-os/16-0/en/installing-and-implementing/configure-z-os-management-facility-for-ca-acf2
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm

| User Guide | 21

ZIOSMF REST services Requirements Resourcesin IBM knowledge
Center
Z/OS console services Z/OS console services arerequired to  z/OS console

issue console commands in the Zowe
CLI. Endpoints begin with/ zosnf /
rest consol es/

2/OS data set and file REST interface z/OS data set and file REST interface z/OS data set and file interface
isrequired to work with mainframe
data sets and UNIX System Services
filesin the Zowe CLI. Endpoints
beginwith/ zosnf/restfil es/

Z/OS jobs REST interface z/0S jobs REST interfaceisrequired z/OS jobsinterface
to use the zos-jobs command group
in the Zowe CLI. Endpoints begin
with/ zosnf / restj obs/

Z/IOSMF workflow services Z/IOSMF workflow servicesis Z/IOSMF workflow services
required to create and manage z/
OSMF workflows on a z/OS system.
Endpoints begin with/ zosnf /
wor kf | ow/

Zowe uses symbolic links to the ZZOSMF boot st r ap. properti es,
jvmsecurity.override. properties,andltpa. keys files. Zowe reuses SAF, SSL, and LTPA
configurations; therefore, they must be valid and complete.

For more information, see Using the ZZOSMF REST servicesin IBM zZ/OSMF documentation.

To verify that zZOSMF REST services are configured correctly in your environment, enter the REST endpoint into
your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Notes:

« Browsing ZZOSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user
credentials.

» The browser returns the status code 200 and alist of all jobs on the zZ/OS system. Thelist isin raw JSON format.

Planning for installation of API Mediation Layer, Zowe Application Framework, and Zowe APF
Angel

The following information is required during the installation process of APl Mediation Layer and Zowe Application
Framework. Make the decisions before the installtion.

e TheHFSdirectory whereyou install Zowe, for example, / var / zowe.

» TheHFSdirectory that contains a 64-bit Java™ 8 JRE.

e ThezZ/OSMF installation directory, for example, / usr/ | pp/ zosnf /i b.

e The APl Mediation Layer HTTP and HTTPS port numbers. Y ou will be asked for 3 unique port numbers.
e Theuser ID that runs the Zowe started task.

Tip: Usethe same user ID that runs the ZZOSMF | ZUSVRL task, or auser 1D with equivaent authorizations.

» The mainframe account under which the ZSS server runs must have UPDATE permission on the BPX. DAEMON
and BPX. SERVER facility class profiles.

System requirements for Zowe CLI

Before you install Zowe CLI, make sure your system meets the following requirements:


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm

| User Guide | 22

Prerequisite software

The following prerequisites for Windows, Mac, and Linux are required if you areinstalling Zowe CLI from alocal
package. If you are installing Zowe CL 1 from Bintray registry, you only require Node.js and npm.

Note: Asabest practice, we recommend that you update Node.js regularly to the latest Long Term Support (LTS)
version.

Ensure that the following prerequisite software is installed on your computer:
* NodejsV8.0or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node - -
ver si on to verify that Node.jsisinstalled.

* Node Package Manager V5.0 or later

npm isincluded with the Node.js installation. Issue the command npm - - ver si on to verify that npmis
installed.

Supported platforms

Zowe CL I is supported on any platform where Node.js 8.0 or 10 is available, including Windows, Linux, and Mac
operating systems. For information about known issues and workarounds, see Troubleshooting installing Zowe CLI
on page 187.

Zowe CLI isdesigned and tested to integrate with ZZOSMF running on IBM z/OS Version 2.2 or |ater. Before you can
use Zowe CLI to interact with the mainframe, system programmers must install and configure IBM z/OSMF in your
environment.

Important!
* OracleLinux 6 is not supported.
Free disk space

Zowe CL I requires approximately 100 M B of free disk space. The actua quantity of free disk space consumed might
vary depending on the operating system where you install Zowe CLI.

Installing Zowe on z/OS

Toinstall Zowe on z/OS, there are two parts. The first part isthe Zowe runtime that consists of three components:
Zowe Application Framework, z/OS Explorer Services, and Zowe APl Mediation Layer. The second part is the Zowe
Cross Memory Server. Thisisan authorized server application that provides privileged services to Zowe in a secure
manner.

Follow the instructions in this topic to obtain the installation file for Z/OS runtime components and run the installation
scripts.

1. Obtaining and preparing the installation file on page 23
2. Prerequisites on page 26
3. Installing the Zowe runtime on z/OS on page 26

¢ How theinstall script zowe-install.sh works on page 30
4. Starting and stopping the Zowe runtime on z/OS on page 32

» Starting the ZOWESVR PROC on page 32
e Stopping the ZOWESVR PROC on page 33
5. Installing the Zowe Cross Memory Server on z/OS on page 33

e Manually installing the Zowe Cross Memory Server on page 33

e Scripted install of the Zowe Cross Memory Server on page 36
6. Starting and stopping the Zowe Cross Memory Server on z/OS on page 37
Verifying installation on page 38
8. Looking for troubleshooting help? on page 39

~


https://nodejs.org/en/download/

| User Guide | 23

Obtaining and preparing the installation file

The Zowe installation file for Zowe z/OS components are distributed as a PAX file that contains the runtimes and
the scriptsto install and launch the z/OS runtime. For each release, thereisa PAX filenamed zowe- v. r. m pax,
where

¢ v indicatesthe version
* 1 indicates the release number
* mindicates the modification number

The numbers are incremented each time arelease is created so the higher the numbers, the later the release.

To download the PAX file, open your web browser and click the DOWNLOAD Zowe z/OS Components button on the
Zowe Download website to save it to afolder on your desktop. After you obtain the PAX file, follow the procedures
below to verify the PAX file and prepareit to install the Zowe runtime.

Follow these steps:


https://zowe.org/download/

| User Guide | 24

1. Verify theintegrity of the PAX fileto ensure that the file you download is officially distributed by the Zowe
project.

Notes:

* The commands in the following steps are tested on both Mac OS X V10.13.6 and Ubuntu V16.04 and VV17.10.
» Ensurethat you have GPG installed. Click here to download and install GPG.

e Thev. r. minthe commands of this step isavariable. Y ou must replace it with the actual PAX file version,
for example, 0. 9. 0.

Step 1: Verify the hash code.

Download the hash code filezowe- v. r. m pax. sha512 from the Zowe website. Then, run the following
commands to check:

(gpg --print-nmd SHA512 zowe-v.r.m pax > zowe-V.r.m pax.shabl12. ny) && diff
zowe- V. r.m pax.sha512. ny zowe-v.r.m pax.sha512 && echo matched || echo
"not mat ch"

When you see "matched", it means the PAX file that you download is the same one that is officially distributed by
the Zowe project. Y ou can delete the temporary zowe- v. r. m pax. sha512. ny file.

Y ou can also use other commands such assha512, sha512sum or openssl dgst -shab512 to generate
SHA512 hash code. These hash code results are in a different format from what Zowe provides but the values are
the same.

Step 2. Verify with signaturefile.

In addition to the SHA512 hash, the hash is also verifiable. Thisis done by digitally signing the hash text file with
aKEY from one of the Zowe developers.

Follow these steps:

a. Download the signaturefilezowe- v. r. m pax. asc from https://projectgiza.org/Downloads/
post_download.html, and download the public key KEYS from https://github.com/zowe/rel ease-management/.

Import the public key withthegpg --i nmport KEYS command.

If you have never used gpg before, generate keys with the gpg - - gen- key command.

Sign the downloaded public key withthegpg - - si gn- key DC8633F77D1253C3 command.
Verify thefilewiththegpg --verify zowe-v.r.m pax.asc zowe-v.r.m pax command.
Optional: You can remove the imported key withthegpg - - del et e- key DC8633F77D1253C3
command.

~oao00oT

When you see output similar to the following one, it means the PAX file that you download is the same one that is
officialy distributed by the Zowe project.

gpg: Signature made Tue 14 Aug 2018 08: 29: 46 AM EDT
gpg: using RSA key DC8633F77D1253C3
gpg: Good signature from"Matt Hogstrom (CODE SI GNI NG KEY) " [full]


https://www.gnupg.org/
https://projectgiza.org/Downloads/post_download.html
https://projectgiza.org/Downloads/post_download.html
https://projectgiza.org/Downloads/post_download.html

| User Guide | 25

2. Transfer the PAX fileto z/OS.
Follow these steps:

a. Open aterminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory where
you downloaded the Zowe PAX file.

b. Connect to z/OS using SFTP. Issue the following command:
sftp <userl D@ p. of . zos. box>

If SFTPis not available or if you prefer to use FTP, you can issue the following command instead:
ftp <userl D@ p. of . zos. box>

Note: When you use FTP, switch to binary file transfer mode by issuing the following command:
bi n

c¢. Navigate to the target directory that you wish to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter into the Unix file system. The following
commands are useful:

e Toseewhat directory you arein, type pwd.
e To switch directory, typecd.

* Tolist the contents of adirectory, typel s.
* Tocreate adirectory, type mkdi r .

d. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:
put <zowe-V.r.np. pax

Where zowe-v.r. mis avariable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with | to have
them issued against your desktop. To list the contents of a directory on your desktop, typel | s wherel s lists
contents of adirectory on z/OS.

3. When the PAX fileistransferred, expand the PAX file by issuing the following command in an SSH session:
pax -ppx -rf <zowe-v.r.np.pax

Where zowe-v.r.mis avariable that indicates the name of the PAX file you downloaded.

Thiswill expand to afile structure.

/files
/install
/scripts

Note: The PAX filewill expand into the current directory. A good practice isto keep the installation directory
apart from the directory that contains the PAX file. To do this, you can create adirectory such as/ zowe/ paxes
that contains the PAX files, and another such as/ zowe/ bui | ds. Use SFTPto transfer the Zowe PAX fileinto
the/ zowe/ paxes directory, use the cd command to switch into/ zowe/ bui | ds and issue the command pax
-ppx -rf ../ paxes/<zowe-v.r.nmp. pax.The/install folder will be created inside the zowe/

bui | ds directory from where the installation can be launched.



| User Guide | 26

Prerequisites

Before you start the installation on z/OS, ensure that your environment meets the necessary prerequisites that are
described in System requirements on page 17.

The user ID that is used to perform the installation must have authority to read the zZ OSMF keyring. For how to
check the name of the keyring and grant read access to the keyring, see the Trust ZZOSMF certificate topic.

Installing the Zowe runtime on z/OS

Toinstall Zowe APl Mediation Layer, Zowe Application Framework, and z/OS Services, you install the Zowe
runtime on z/OS.

Follow these steps:

1. Navigateto the directory where the installation archive is extracted. Locatethe/ i nst al | directory.

/install
[ zowe-install.sh
/ zowe-install.yam

2. Reviewthezowe-i nstall.yam filewhich containsthe following properties:

i nstal l:rootDir isthedirectory that Zowe installs to create a Zowe runtime. The default directory is

~/ zowe/ v. r . mwhere v isthe Zowe version number, r is the release number and mis the modification
number,for example, 1.0.0 or 1.2.11 . The user's home directory is the default value. This ensures that the user
who performs the installation has permission to create the directories that are required for the installation. If
the Zowe runtime will be maintained by multiple users, it is recommended to use another directory, such as/
var/zowe/v.r. m

Y ou can run the installation process multiple times with different valuesinthezowe- i nstal | . yam file
to create separate installations of the Zowe runtime. Ensure that the directory where Zowe will beinstaled is
empty. Theinstall script exitsif the directory is not empty and creates the directory if it does not exist.

Zowe API Mediation Layer has three HTTPS ports, one for each micro-service.

Z/0S Services has HTTPS ports for the jobs and the data sets microservices.

Z/OS desktop apps has three ports for each of its explorer apps

The zlux-server has two ports: the HTTPS port used by the Zowe Application Server, and an HTTP port that is
used by the ZSS Server.

Example:

install:
rootDir=/var/zowe/1.0.0

api - medi ati on:
cat al ogPort =7552
di scover yPort =7553
gat ewayPort =7554
external Certificate=
external CertificateAlias=
external CertificateAuthorities=
verifyCertificatesO Services=true
enabl eSso=f al se
zosnf Keyri ng=l ZUKeyri ng. | ZUDFTL
zosnf User =l ZUSVR

Z0S- Servi ces:
j obsAPI Port =8545
mvsAPI Por t =8547

zowe- deskt op- apps:
j obsExpl or er Port =8546
nvsExpl or er Port =8548



| User Guide | 27

ussExpl or er Port =8550

Notes:

« |If all of the default port values are acceptable, the ports do not need to be changed. To allocate ports, ensure
that the ports are not in use for the Zowe runtime servers.

e Comments are not supported in the YAML file, apart from lines starting with '# in column one.

. Determine which ports are not available.

a. Display alist of portsthat are in use with the following command:
TSO NETSTAT

b. Display alist of reserved ports with the following command:
TSO NETSTAT PORTLI ST

Thezowe-instal | . yam aso containsthetelnet and SSH port with defaults of 23 and 22. If your Z/OS
LPAR isusing different ports, edit the values. This allows the TN3270 terminal desktop application to connect as
well asthe VT terminal desktop application.

Note: Unlike the ports needed by the Zowe runtime for its Zowe Application Framework and z/OS Services
which must be unused, the terminal ports are expected to be in use.

# Ports for the TN3270 and the VT term nal to connect to
term nal s:

sshPort =22

t el net Port =23

. Select the ZOWESVR PROCLIB member.

Thezowe-instal | .yam filecontainsthe dataset name and member name of the ZOWESVR JCL to be used
to run Zowe.

Example:

# started task JCL nenber for Zowe job
zowe- server-proclib:
# dsNane=SYS1. PROCLI B

dsNanme=aut o



| User Guide | 28

menber Nane=ZONESVR

Follow these steps:
a. Specify the dataset name of the PROCLIB member you want to use with the dsNane tag. For example,

dsNane=user. proclib

The following guidelines apply.

« Do not enclose the dataset name in quotes.

« The dataset nameis not case-sensitive, but the dsNane tag is case-sensitive and must be written exactly as
shown.

¢ The dataset name must be an existing z/OS dataset in the PROCLIB concatenation. The user who installs
Zowe must have update access to this dataset.

« |If you omit the dsNarre tag or specify dsNane=aut o, the install script scans the available PROCL 1B
datasets and places the JCL member in the first dataset where the installing user has write access. For further
details, see How theinstall script zowe-install.sh works on page 30.

b. Specify the member name of the PROCLIB member you want to use with the menber Name tag. For example,
nmenber Nane=ZONEABC

The following guidelines apply.

« Do not enclose the member name in quotes.

« The member nameis not case-sensitive, but the menber Nane tag is case-sensitive and must be written
exactly as shown.

e The member name must be avalid PDS member name in z/OS. If the member already exists, it will be
overwritten.

« If you omit the menber Nane tag or specify menber Nane=, theinstall script uses ZOWESVR.

. (Optional) Use existing certificate signed by an external CA for HTTPS portsin APl Mediation Layer and Zowe

Application Framework.

If you skip this step, then certificates generated by the local API Mediation CA are used. These certificates are
generated automatically during the installation. The server certificate needs to be imported to your browser. See
Import the local CA certificate to your browser on page 86.

Y ou can use an existing server certificate that is signed by an external CA such asa CA managed by the IT
department of your company. The benefit of such certificateis that it will be trusted by browsersin your company.
Y ou can even use a public certificate authority such as Symantec, Comodo, or GoDaddy. Such certificate are
trusted by all browsers and most REST API clients. Thisis, however, amanual process of requesting a certificate.
As such, we recommend to start with the local APl Mediation Layer CA for an initial evaluation.

Y ou can use an existing certificate with the following procedure.
Follow these steps:

a. Update the value of ext er nal Certi fi cat e intheapi - nedi at i on section of the YAML file. The value
needs to point to a keystore in PKCS12 format that contains the certificate with its private key. The file needs

to be transferred as a binary to the zZ/OS system. Currently only the PKCS12 keystore with the password set to
passwor d are supported.

b. Update the value of ext er nal Certi fi cat eAl i as totheadlias of the server certificate in the keystore.

c. Updatethe value of ext ernal Certi fi cat eAut hori ti es tothe path of the public certificate of the
certificate authority that has the signed the certificate. Y ou can add additional certificate authorities separated by



| User Guide | 29

spaces. This can be used for certificate authorities that have signed the certificates of the services that you want to
accessviathe APl Mediation Layer.

d. (Optional) If you have trouble getting the certificates and you want only to evaluate Zowe, you can switch off
the certificate validation by setting veri fyCerti fi cat esOf Servi ces=f al se. The HTTPSwill still be
used but the API Mediation Layer will not validate any certificate.

Important! Switching off certificate evaluation is a non-secure setup.

Example:

api - nedi ati on:
external Certificate=/path/to/ keystore.pl2
external CertificateAlias=servercert
external CertificateAuthorities=/path/to/cacert.cer
verifyCertificatesO Servi ces=true

. (Optional) Check theinstall condition of the required prerequisites. To do this, issue the following command with
the current directory being the/ i nst al | directory.

zowe- check- prereqs. sh

The script writes messages to your termina window. The results are marked OK, | nf o, ar ni ng or Err or .
Correct any reported errors and rerun the command to ensure that no errors exist before you run the zowe-

i nstall.sh scripttoinstall the Zowe runtime. The zowe- check- pr er eqs. sh script does not change any
settings. You can run it as often as required before you run the install script.

. Executethezowe-i nst al | . sh script.

With the current directory being the/ i nst al | directory, execute the script zowe- i nst al | . sh by issuing the
following command:

zowe-install.sh
Y ou might receive the following error that the file cannot be executed:

zowe-install.sh: cannot execute

The error occurs when the install script does not have execute permission. To add execute permission, issue the
following command:

chnmod u+x zowe-install.sh

When the script runs, it echosiits progress to the shell and attempts to determine and validate the location of
the prerequisites including ZZOSMF, Java, and Node. When the script cannot determine the location of these
prerequisites, you will be prompted for their location.

Each time the install script runsit create alog file that contains more information. Thisfileisstoredinthe/ | og
directory and is created with a date and time stamp name, for example/ | og/ 2019- 02- 05- 18- 08- 35. | og.
Thisfileis copied across into the runtime folder into which Zowe isinstalled, and contains useful information to
help diagnose problems that may occur during an install.

Y ou may also receive the following message:
apim _cmsh --action trust-zosnf has fail ed.

WARNI NG z/OSMF is not trusted by the APl Mediation Layer. Foll ow
i nstructions in Zowe docunentation about nanual steps to trust z/ OSMF

This error does not interfere with installation progress and can be remediated after the install completes. See Trust
Z/IOSMF Certificate for more details.



| User Guide | 30

8. Configure Zowe as a started task.

The ZOWESVR must be configured as a started task (STC) under the IZUSVR user ID. Y ou can do this after the
zowe- i nst al | . sh script has completed by running the script zowe- conf i g- st c. sh. To run this script,
use the cd command to switch to the Zowe runtime directory that you specifiedinthei nstal | : rootDi r in
thezowe-i nstal | . yan file, and execute the script fromthe/ i nst al | directory that is created by the pax
command. For example:

cd /var/zowe/1.0.0
/ zowe/ bui | ds/install/zowe-config-stc.sh

Alternatively, you can issue the commands manually:

Note: You must replace ZOAESVR in the commands bel ow with the name of your server that you specified as
menmber Name=ZONESVRinthezowe-i nstal | . yan file.

» If you use RACF, issue the following commands:

RDEFI NE STARTED ZOWESVR. * UACC(NONE) STDATA( USER(| ZUSVR) GROUP(| ZUADM N)
PRI VI LEGED(NO) TRUSTED(NO) TRACE( YES))
SETROPTS REFRESH RACLI ST( STARTED)

» If you use CA ACF2, issue the following commands:

SET CONTROL( GSO)
| NSERT STC. ZOAESVR LOGONI D(| ZUSVR) GROUP(| ZUADM N) STCl D{ ZOAESVR)
F ACF2, REFRESH( STQ)

e If you use CA Top Secret, issue the following commands:

TSS ADDTQ( STC) PROCNAME( ZONESVR) ACI D( | ZUSVR)
9. Add the usersto the required groups, IZUADMIN for administrators, and IZUUSER for standard users.

» If you use RACF, issue the following command:

CONNECT (userid) GROUP(1 ZUADM N)

e |If youuse CA ACF2, issue the following commands:

ACFNRULE TYPE(TGR) KEY(1ZUADM N) ADD(UI D(<uid string of user>) ALLOW
F ACF2, REBUI LD( TGR)

* If you use CA Top Secret, issue the following commands:

TSS ADD(userid) PROFI LE(I ZUADM N)
TSS ADD(userid) GROUP(| ZUADMGP)

How the install script zowe-i nstal | . sh works

Whenthezowe-i nst al | . sh script runs, it performs a number of steps broken down into the following sections.
Review the sections to help you undertand messsages and issues that might occur when you run the script and actions
you can take to resolve the issues.



| User Guide | 31

1. Environment variables

To prepare the environment for the Zowe runtime, a number of ZFS folders need to be located for prerequisites on
the platform that Zowe needs to operate. These can be set as environment variables before the script isrun. If the
environment variables are not set, theinstall script will attempt to locate default values.

o ZONE_ZOSMF_PATH: The path where ZZOSMF isinstalled. Defaultsto/ usr /| pp/ zosnf /1 b/
def aul t s/ servers/ zosnf Server.

o ZOWE_JAVA HQVE: The path where 64 bit Java 8 or later isinstalled. Defaultsto/ usr/ | pp/ j aval
J8. 0_64.

e ZOWE_EXPLORER_HOST: The hostname of where the explorer servers are launched from. Defaults to
running host name - c.

When you run the install script for the first time, the script attempts to locate environment variables. The install
script creates afilesnamed . zowe_pr of i | e that resides in the current user's home directory and adds lines that
specify the values of the environment variables to the file. The next time you run the install script, it uses the same
valuesin thisfile.

Each time you run the install script, it retrieves environment variable settings in the following ways.

« Whenthe. zowe- profi | e file existsin the home diretory, the install script usesthe valuesin thisfile to set
the environment variables.

 Whenthe. zowe- profi | e file does not exist, theinstall script checksif the. pr ofi | e file existsin the
home directory. If it does exist, theinstall script usesthe valuesin thisfile to set the environment variables.

You can create, edit, or deletethe. zowe_pr of i | e file (as needed) before each install to set the variablesto
the values that you want. We recommend that you do not add commandsto the. zowe_pr of i | e file, with the
exception of the expor t command and shell variable assignments.

Note: If you wish to set the environment variables for all users, add the lines to assign the variables and their
valuestothefile/ et c/ profil e.

If the environment variables for ZONE_ZOSM-_PATH, ZONE_JAVA HOVE are not set and the install script
cannot determine a default location, the install script will prompt for their location. The install script will not
continue unless valid locations are provided.

2. Expanding the PAX files

Theinstall script will create the Zowe runtime directory structure using thei nstal | : root Di r  vauein the
zowe-install.yam file. The runtime components of the Zowe server are then unpaxed into the directory
that contains a number of directories and files that make up the Zowe runtime.

If the expand of the PAX filesis successful, theinstall script will report that it ranitsinstall step to completion.
3. Changing Unix permissions

After theinstall script lays down the contents of the Zowe runtime into the r oot Di r , the next step isto set the
file and directory permissions correctly to allow the Zowe runtime serversto start and operate successfully.

Theinstall process will executethefilescri pt s/ zowe-runt i nme- aut hori ze. sh inthe Zowe runtime
directory. If the script is successful, the result is reported. If for any reason the script fails to run because of
insufficient authority by the user running the install, the install process reports the errors. A user with sufficient
authority should then runthe zowe- r unt i ne- aut hori ze. sh. If you attempt to start the Zowe runtime
servers without the zowe- r unt i me- aut hori ze. sh having successfully completed, the results are
unpredictable and Zowe runtime startup or runtime errors will occur.

4. Creating the PROCLIB member to run the Zowe runtime

Note: The name of the PROCLIB member might vary depending on the standards in place at each z/OS site,
however for this documentation, the PROCLIB member is called ZONESVR.

At the end of the installation, a Unix file ZONESVR. | cl iscreated under the directory where the runtimeis
installed into, $1 NSTALL_DI R/ fi | es/ t enpl at es. The contents of thisfile need to be tailored and placed in
a JCL member of the PROCLIB concatenation for the Zowe runtime to be executed as a started task. The install
script does this automatically. If the user specifies dsNanme=aut o, or omits the ds Nane tag, or setsit to null by



| User Guide | 32

coding dsName=, theinstall script proceeds as follows and stops after the first successful write to the destination
PROCLIB.

a. Try JES2 PROCLIB concatenation.
b. Try master JES2 JCL.
c. Try SYS1. PROCLI B.

If this succeeds, you will see a message like the following one:
PROC ZOWESVR pl aced i n USER PROCLI B

Otherwise you will see messages beginning with the following information:
Failed to put ZOAESVR JCL in a PROCLI B dat aset .

In this case, you need to copy the PROC manually. Issue the TSO oget command to copy the ZONESVR. j cl
file to the preferred PROCLIB:

oget '$INSTALL_DI R/ fil es/tenpl ates/ ZOAESVR. j cl' ' MY. USER PROCLI B( ZONESVR) '
Y ou can place the PROC in any PROCLIB data set in the PROCLIB concatenation, but some data sets such as

SYS1. PROCLI B might be restricted, depending on the permission of the user.
You can tailor the JCL at thisline

/| ZONESVR  PROC SRVRPATH='/zowe/install/path'

to replacethe/ zowe/ i nst al | / pat h with the location of the Zowe runtime directory that contains the zZ/OS
Services. Theinstall processinsertsthe expandedi nst al | : r oot Di r valuefromthezowe-i nstal | . yam
fileinto the SRVRPATH for you by default. Otherwise you must specify that path on the START command when
you start Zowe in SDSF:

/'S ZONESVR, SRVRPATH=' $ZOWE_ROOT DI R

Starting and stopping the Zowe runtime on z/OS

Zowe has anumber of runtimes on z/OS: the z/OS Service microservice server, the Zowe Application Server, and
the Zowe API Mediation Layer microservices. When you run the ZOWESVR PROC, all of these components start.
The Zowe Application Server startup script also starts the zSS server, so starting the ZOWESVR PROC starts all the
required servers. Stopping ZOWESVR PROC stops all of the serversthat run as independent Unix processes.

Starting the ZOWESVR PROC
To start the ZOWESVR PROC, runthe zowe- st ar t . sh script at the Unix Systems Services command prompt:

cd $ZONE_ROOT DI R/ scripts
./ zowe-start.sh

where:

$ZOWE_ROOT_DIRisthe directory where you installed the Zowe runtime. This script starts the ZOWESVR PROC
for you so you do not have to log on to TSO and use SDSF.

Note: The default startup allows self-signed and expired certificates from the Zowe Application Framework proxy
data services.

If you prefer to use SDSF to start Zowe, start ZOWESVR by issuing the following operator command in SDSF:

/'S ZONESVR



| User Guide | 33

By default, Zowe uses the runtime version that you most recently installed. To start a different runtime, specify its
server path on the START command:

/'S ZONESVR, SRVRPATH=" $ZOWE_ROOT_DI R

To test whether the API Mediation Layer is active, openthe URL: ht t ps: / / <host nane>: 7554,

The port number 7554 is the default APl Gateway port. Y ou can overwrite thisport inthezowe- i nstal | . yan
file before the zowe- i nst al | . sh script isrun. See Step 2 in Installing the Zowe runtime on z/OS on page 26.

Stopping the ZOWESVR PROC
To stop the ZOWESVR PROC, run the zowe- st op. sh script at the Unix Systems Services command prompt:

cd $ZONE_ROOT DI R/ scripts
./ zowe- st op. sh

If you prefer to use SDSF to stop Zowe, stop ZOWESVR by issuing the following operator command in SDSF:
/ C ZONESVR

Either method will stop the z/OS Service microservice server, the Zowe Application Server, and the zSS server.

When you stop the ZOWESVR, you might get the following error message:
| EEB42] ZOWESVR DUPLI CATE NAME FOUND- REENTER COMVAND W TH ' A='

This error results when there is more than one started task named ZOWESVR. To resolve the issue, stop the required
ZOWESVR instance by issuing the following commands:

| C ZONAESVR, A=asi d
Y ou can obtain the asid from the value of A=asi d when you issue the following commands:

I D A ZONESVR

Installing the Zowe Cross Memory Server on z/OS

The Zowe Cross Memory Serviceis astarted task angel that runs an authorized server application providing
privileged cross-memory servicesto Zowe.

The server runs as a started task and requires an APF authorized load library, a program properties table (PPT) entry,
and aparmlib. Y ou can create these by using one of the following methods. The two methods achieve the same end
result.

e Manualy

» Usethescript/install/zowe-install-apf-server. sh that reads configuration parameters from the
file/install/zowe-install -apf-server.yani

Y ou can choose which method to use depending on your familiarity with z/OS configuration steps that are required
for the manual path, together with the authority and privileges of your user ID if you choose to run the automated
path.

Once the cross memory server isinstalled and started, there will be started task ZWESIS01 that runs the load library
ZWESIS01. The ZWESIS01 started task serves the ZOWESVR started task and provides secure services that require
running in an APF-authorized state.

Manually installing the Zowe Cross Memory Server

A number of filesare included in the USS directory zowe_i nstal | _dir/fil es/zss.If thisdirectory is
not present, you must create it by expanding thefilezowe_i nstal | _dir/fil es/zss. pax. Todo this, first



| User Guide | 34

create thefolder zss beneath f i | es using the command nkdi r zss and navigate into the zss folder using the
command cd zss. Then, expand thezss. pax fileusing the command pax - ppx -rf ../zss. pax.

The manua installation consists of the following steps.
1. ZWESIS01 load module and proclib

Zowe Cross Memory Server consists of a single load module with the name ZWESIS01. The load module
issuppliedinthefi | es\ zss\ LOADLI B\ ZWESI S01 file. This must be copied to a user-defined data set
zwes_| oadl i b, for example, ZWES.SISLOAD.

Y ou can copy the ZWESIS01 file to your zwes_| oadl i b data set by using the command cp ZWESI S01
"/ zwes_| oadl i b(ZWESI S01)"' " . Thezwes_| oadl i b must be a PDSE due to language requirements.

Do not add thezwes_| oadl i b data set to the system LNKLST or LPALST concatenations. Y ou must execute
it by using a started task that usesa STEPLIB DD statement so that the appropriate version of the softwareis
loaded correctly. A sample JCL for the PROCLIB isprovidedinfi | es/ zss/ SAMPLI B/ ZWESI SO1. Copy
thisto your system PROCLIB, such as SY S1.PROCLIB, or any other PROCLIB in the JES2 Concatenation
PROCLIB Path.

Note: The user that is assigned to the started task must have an OMV S segment. The cross memory server loads
the module to LPA for its PC-cp services.
2. PPT Entry

The Zowe cross memory server must run in key 4 and be non-swappable. For the server to start in this
environment, you must add a corresponding PPT entry to the SCHEDxx member of the system PARMLIB. For
example, add the following PPT entry to the SCHEDxx member:

PPT PGWAME( ZVESI SO01) KEY(4) NOSWAP
After you edit the PARMLIB, issue the following command to make the SCHEDxx changes effective:

[/ SET SCH=xx
3. APF-authorization

Due to the nature of the services the Zowe cross memory server provides, itsload library requires APF-
authorization. It is possible to check whether aload library is APF-authorized by using the following TSO
command:

D PROG, APF, DSNAMVE=ZWES. S| SLCAD

where the value of DSNAME is the name of the data set that contains the ZWESI SO1 load module.
To dynamically add the load library to the APF list, run one of the following TSO commands:

SETPROG APF, ADD, DSNAME=ZVES. S| SLOAD, VOLUVE=voI ser

(If the load library resides on Non SMS- Managed Vol une)
O

SETPROG APF, ADD, DSNAME=ZVES. S| SLOAD, SM5

(I'f the load library is SMs-Managed |i brary)

where the value of DSNAME is the name of the data set that contains the ZWESI S01 |oad module.
4. PARMLIB member

The Zowe cross memory server started task requires avalid ZWESI SPxx PARMLIB member to be found

at startup. Thefilezowe_instal |l _dir/fil es/zss/ SAMPLI B/ ZWESI POO contains the default
configuration values. Y ou can copy this member to your system PARMLIB data set, or allocate the default PDS
data set ZWES.SISAMP that is specified in the ZWES| SO1 started task JCL.



| User Guide | 35

5. Security requirements for the cross memory server

6.

The Zowe cross memory server performs a sequence of SAF checks to protect its services from unauthorized
callers. Thisis done by using the FACILITY classand an entry for ZVES. | S. Valid callers must have READ
access to the ZVEES. | S class. The following examples assume that you will be running the ZOWESVR STC
under the IZUSVR user.

» If you use RACF, issue the following commands:

* To seethe current class settings, issue:
SETROPTS LI ST

* Toactivate the FACILITY class, issue:
SETROPTS CLASSACT( FACI LI TY)

e ToRACLIST the FACILITY class, issue:
SETROPTS RACLI ST( FACI LI TY)

e Todefinethe ZVES. | S profileinthe FACILITY class and grant IZUSVR READ access, issue the
following commands:

RDEFI NE FACI LI TY ZVES. | S UACC( NONE)
PERM T ZWES. | S CLASS(FACI LI TY) | D(1ZUSVR) ACCESS( READ)
SETROPTS RACLI ST(FAC! LI TY) REFRESH

* If you use CA ACF2, issue the following commands:

SET RESOURCE( FAC)
RECKEY ZWES ADD(1S ROLE(| ZUSVR) SERVI CE( READ) ALLOW
F ACF2, REBUI LD( FAC)

« |If you use CA Top Secret, issue the following commands, where owner - aci d may be [ZUSVR or a
different ACID:

TSS ADD( " owner-aci d*) | BMFAC( ZVES. )
TSS PERM T( | ZUSVR) | BMFAC( ZVEES. | S)  ACCESS( READ)

| CSF cryptographic services
The user IZUSVR who runs ZOWESVR will need READ accessto CSFRNGL in the CSFSERYV class.

When using | CSF services, you need to define or check the following configurations depending on whether ICSF
isaready installed.

e ThelCSF or CSF job that runs on your Z/OS system.

« Configuration of ICSF optionsin SY S1.PARMLIB(CSFPRM00), SY S1.SAMPLIB, SY S1.PROCLIB.
* Create CKDS, PKDS, TKDSVSAM data sets.

« Defineand activate the CSFSERV class:

» If you use RACF, issue the following commands:

RDEFI NE CSFSERV profil e- nane UACC( NONE)

PERM T profil e-nanme CLASS(CSFSERV) | D(tcpip-stacknane) ACCESS( READ)

PERM T profil e-name CLASS(CSFSERV) | D(userid-list) ... [for userids
| KED, NSSD, and Policy Agent]

SETROPTS CLASSACT( CSFSERV)



| User Guide | 36

SETROPTS RACLI ST( CSFSERV) REFRESH

* If youuse CA ACF2, issue the following commands. Notethat pr of i | e- prefi x andprofil e-
suf fi x are user defined.

SET CONTROL( GSO)

| NSERT CLASMAP. CSFSERV RESOURCE( CSFSERV) RSRCTYPE( CSF)

F ACF2, REFRESH( CLASMVAP)

SET RESOURCE( CSF)

RECKEY profile-prefix ADD(profile-suffix uid(UD string for tcpip-

st ackname) SERVI CE( READ) ALLOW

RECKEY profile-prefix ADD(profile-suffix uid(UD string for |ZUSVR)
SERVI CE( READ) ALLOW ... [repeat for userids |IKED, NSSD, and Policy
Agent |

F ACF2, REBUI LD( CSF)

e If you use CA Top Secret, issue the following commands. Note that pr of i | e- prefi x andprofil e-
suf fi x are user defined.

TSS ADDTO( owner - aci d) RESCLASS( CSFSERV)

TSS ADD( owner - aci d) CSFSERV(profil e-prefix.)
TSS PERM T(t cpi p-stacknane) CSFSERV(profile-prefix.profile-suffix)

ACCESS( READ)
TSS PERM T(user-aci d) CSFSERV(profile-prefix.profile-suffix)
ACCESS( READ) ... [repeat for user-acids | KED, NSSD,

and Policy Agent]

e The user under which zssServer runs will need READ access to CSFRNGL in the CSFSERV class.

« Determine whether you want SAF authorization checks against CSFSERV and set
CSF. CSFSERV. AUTH. CSFRNG. DI SABLE accordingly.

* Refer to the zZ/0S 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation,
initialization, and customization.

* CCA and/or PKCS #11 coprocessor for random number generation.

e Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if required.

Scripted install of the Zowe Cross Memory Server

For users who have sufficient authority under their user ID to the zZ/OS instance they are installing the Zowe cross
memory server into, thereis a convenience script providedin/ zowe_instal |l _dir/install/zowe-
i nstall -apf-server. sh.

» The script will create the APF authorized load library, copy the load module, create the PROCLIB, define the
ZVES. | SFACILITY classand give READ access to the ZOWESVR user ID.

e The script will not create the PPT entry which must be done manually. This is done using the steps described
in step "5. Security requirements for the cross memory server” in Manually installing the Zowe Cross Memory
Server on page 33.

» The script will not create anything for the ICSF cryptographic services. These are described in step "6. ICSF
cryptographic services' in Manually installing the Zowe Cross Memory Server on page 33.

Because the parameters that are used to control the script are contained in thefile/ zowe_i nstal | _dir/
install/zowe-install-apf-server.yan ,youmustedit thisfile before running the zowe- i nst al | -
apf - server . sh script with appropriate values.

# Dat asets that APF server will be installed into

i nstall
# PROCLI B dataset nanme (required, no default val ues)
procli b=
# PARMLI B dat aset name (${USER}. PARMLIB by defaul t)
parm i b=

# LOADLI B dataset name (${USER}.LQADLI B by defaul t)


https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

| User Guide | 37

| oadl i b=

where,

* install:proclib isthe data set name that the ZWESISO1 JCL member that is used to start the ZWESI SO1 started
task will be copied into, for example, USER.PROCLIB.

e ingtall:parmlib is the data set name that the ZWESIPO0 PARMLIB member will be copied into and used by the
ZWESIS01 PROCLIB. Choose avalue such as IZUSVR.PARMLIB.

« ingtall:loadlib is the data set name where the ZWESI S01 load module will be copied into. This data set will be
created as a PDSE and be APF authorized by the script. Choose a value such as USER.LOADLIB.

# APF server users
users:
# User to run Zowe server (required, no default val ues)
zoweUser =
# APF server STC user (ZWESI STC by defaul t)
stcUser =
# APF server STC user U D (required if STC user doesn't exist)
st cUser Ui d=
# STC user group (required if either STC user or profile doesn't exist)
st cG oup=

where,

o users:zoweUser isthe TSO user ID that the ZOWESVR started task runs under. For the majority of installs, this
will be IZUSVR, so enter IZUSVR asthe value, and the script will give this user accessto the READ ZWES. | S
FACI LI TY classthat allows Zowe to use the cross memory server.

o users:sctUser istheuser ID that the ZWESI SO1 started task will be run under. Enter the same value as the user ID
that is running ZOWESVR, so choose IZUSVR.

e usersistcUserUid. Thisisthe Unix user ID of the TSO user ID used to run the ZWESI SO1 started task. If the user
ID isIZUSVR to seethe Unix user ID enter thecommand i d 1 ZUSVR which will return the sctUserUid in the
uid result. In the example below 1IZUSVR hasauid of 210, souser s: st cUser Ui d=210 should be entered.

/:>id 1 ZUSVR
ui d=210( 1 ZUSVR) gi d=202(1 ZUADM N) gr oups=205( | ZUSECAD)

e users.stcGroup isthe user group that the ZWESI SO1 started task will be run under. Enter the same values as the
user group that is running ZOWESVR, so choose IZUADMIN.

After you edit thezowe- i nst al | - apf - server. yam filewith values, add a PPT entry before you run zowe-
i nstall-apf-server. sh.
Starting and stopping the Zowe Cross Memory Server on z/OS
The Zowe Cross Memory server is run as a started task from the JCL in the PROCLIB member ZWESIS01. To start
this, issue the operator start command through SDSF:

/'S ZWES| S01
To end the Zowe APF Angel process, issue the operator stop command through SDSF:

| P Z\ESI S01

Note: The starting and stopping of the ZOWESVR for the main Zowe serversisindependent of the ZWESI S01
angel process. If you are running more than one ZOWESVR instance on the same LPAR, then these will be sharing
the same ZWESI S01 cross memory server. Stopping ZWESI S01 will affect the behavior of all Zowe serverson the
same LPAR. The Zowe Cross Memory Server is designed to be along-lived address space. There is no requirement
to recycle on aregular basis. When the cross-memory server is started with a new version of the ZWESISO01 load
module, it will abandon its current load module instance in LPA and will load the updated version.



| User Guide | 38

Verifying installation

Once Zowe is running and the startup sequence is complete, you can check the configuration files and jobs for Zowe
on your z/OS system to ensure that the installation processis successful. To do this, follow these steps.

1. Navigatetotheruntime $ZONE_ROOT_DI R/ scri pt s directory, where $ZOWE_ROOT_DIR isthe location of
the Zowe runtime directory that contains the explorer server.

2. Runthezowe-veri fy. sh script by issuing the following command:
zowe-verify.sh

The script writes its messages to your terminal window. The results are marked OK, | nf o, War ni ng or Er r or .
Correct any reported errors and restart the Zowe server. Thezowe- ver i f y. sh script does not change any settings,
S0 you can run it as often as required.

Next steps

Follow the instructions in the following sections to verify that the components are installed correctly and are
functional.

» Verifying Zowe Application Framework installation on page 38
« Verifying zZ/OS Services installation
* Veifying APl Mediation installation on page 38

Verifying Zowe Application Framework installation
If the Zowe Application Framework isinstalled correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at ht t ps: // myhost : htt psPort/ ZLUX/ pl ugi ns/
org. zowe. zl ux. boot st rap/ web/ i ndex. ht m

where:

* myHost isthe host on which you installed the Zowe Application Server.
» httpPort isthe port number that is assigned to node.http.portin z| uxser ver . j son.
» httpsPort isthe port number that is assigned to node.https.port in zI uxser ver . j son.

For example, if the Zowe Application Server runs on host myhost and the port number that is
assigned to node.https.port is 12345, you specify ht t ps: / / myhost : 12345/ ZLUX/ pl ugi ns/
org. zowe. zl ux. boot st rap/ web/ i ndex. ht m

Verifying z/OS Services installation
After the ZOWESVR procedure is started, you can verify the installation of z/OS Services from an internet browser
by entering the following case-sensitive URL :

htt ps://host Nanme: <_gat ewayPort >/ api/v1l/jobs?prefix=*
where, gatewayPort is the port number that isassigned to api : medi at i on: gat ewayPort inzowe-
install.yan.
Verifying API Mediation installation
Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed
through the API Gateway using the following URL.:

htt ps:// host Nanme: basePort/ api /vl/ api cat al og/ appl i cation/state

Thehost Name isset during install, and basePor t isset asthegat ewayHt t psPort parameter.

Example:



| User Guide | 39

The following example illustrates how to use the curl utility to invoke APl Mediation Layer endpoint and the grep
utility to parse out the response status variable value

$ curl -v -k --silent https://host Nanme: basePort/ api/vl/ api cat al og/
application/state 2>&1 | grep -Po '(?<=\"status\"\:\")[AM\"]+
uP

The response UP confirms that API Mediation Layer isinstalled and is running properly.

Looking for troubleshooting help?

If you encounter unexpected behavior when installing or verifying Zowe runtime, see the Troubleshooting the
installation on page 185 section for troubleshooting tips.

Installing Zowe CLI

As a systems programmer or application developer, you install Zowe CLI on your computer and create Zowe CL |
profiles.

Methods to install Zowe CLI
Use one of the following methods to install Zowe CLI.

e Install Zowe CLI from alocal package
e Installing Zowe CLI from an online registry on page 40

If you encounter problems when you attempt to install Zowe CLI, see Troubleshooting installing Zowe CLI on page
187.

Installing Zowe CLI from a local package
If you do not have internet access at your site, use the following method to install Zowe CLI from alocal package.
Follow these steps:
1. Ensurethat the following prerequisite software isinstalled on your computer:
* NodejsV8.0or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node - -
ver si on to verify that Node.jsisinstalled.

* Node Package Manager V5.0 or later

npm isincluded with the Node.js installation. Issue the command npm - - ver si on to verify that npmis
installed.
2. Obtain the installation files. From the Zowe Download website, click Download Zowe Command Line Interface
to download the Zowe CLI installation bundle (zowe- ¢l i - bundl e. zi p) to your computer.
3. Open acommand line window. For example, Windows Command Prompt. Browse to the directory where you
downloaded the Zowe CLI installation bundle (.zip file). Issue the following command to unzip thefiles:

unzi p zowe-cli-bundle. zip

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the .zip
file. You can extract the contents of the zip file to your preferred location.


https://nodejs.org/en/download/
https://zowe.org/download/

4.

| User Guide | 40

Issue the following command to install Zowe CLI on your computer:

Note: You might need to issue a change directory command and navigate to the location where you extracted the
contents of the zip file before you issuethenpm i nst al I command.

npminstall -g zowe-cli.tgz

Note: On Linux, you might need to prepend sudo to your npmcommands so that you can issue the install and
uninstall commands. For more information, see Troubleshooting installing Zowe CLI on page 187.

Zowe CLI isinstalled on your computer. See Installing plug-ins on page 65 for information about the
commands for installing plug-ins from the package.

(Optional) Create azosnf profile so that you can issue commands that communi cate with ZZOSMF. For
information about how to create a profile, see Creating Zowe CL | profiles on page 60.

Tip: Profiles are aZowe CLI feature that let you store configuration information for use on multiple commands.
Y ou can create a profile that contains your username, password, and connection details for a particular mainframe
system, then reuse that profile to avoid typing it again on every command.

After you install and configure Zowe CLI, you can issuethezowe - - hel p command to view alist of available
commands. For more information, see Displaying Zowe CLI help on page 57.

Installing Zowe CLI from an online registry

If your computer is connected to the Internet, you can use the following method to install Zowe CLI from an npm
registry.
Follow these steps:

1

Ensure that the following prerequisite software isinstalled on your computer:
* NodejsV8.0or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node - -
ver si on to verify that Node.jsisinstalled.
* Node Package Manager V5.0 or later

npm isincluded with the Node,js installation. Issue the command npm - - ver si on to verify that npmis
installed.

Issue the following command to set the registry to the Zowe CL 1 scoped package on Bintray. In addition to setting
the scoped registry, your non-scoped registry must be set to an npm registry that includes al of the dependencies
for Zowe CLI, such as the global npm registry:

npm config set @rightside:registry https://api.bintray.com npn ca/
bri ght si de

Issue the following command to install Zowe CLI from the registry:

npminstall -g @rightsidel/core@ at est

(Optional) To install all available plug-insto Zowe CLI, issue the following command:
zowe plugins install @rightside/cics@ atest

Note: For more information about how to install multiple plug-ins, update to a specific version of a plug-in, and
install from specific registries, see Installing plug-ins on page 65.

(Optional) Create azosnf profile so that you can issue commands that communi cate with ZOSMF. For
information about how to create a profile, see Creating Zowe CL| profiles on page 60.

Tip: Profiles are aZowe CLI feature that let you store configuration information for use on multiple commands. Y ou
can create a profile that contains your username, password, and connection details for a particular mainframe system,
then reuse that profile to avoid typing it again on every command.


https://nodejs.org/en/download/

| User Guide | 41

After you install and configure Zowe CLI, you canissuethezowe - - hel p command to view alist of available
commands. For more information, see Displaying Zowe CLI help on page 57.

Testing Zowe CLI connection to z/ OSMF

Y ou can issue acommand at any time to receive diagnostic information from the server and confirm that Zowe CLI
can communicate with ZZOSMF or other mainframe APIs.

Tip: We recommend that you append - - hel p to the end of commands in the product to see the complete set of
commands and options available to you. For example, issuezowe profiles --hel p tolearn moreabout how to
list profiles, switch your default profile, or create different profile types.

Without a Profile
Verify that your CLI can communicate with ZZOSMF by issuing the following command:

zowe zosnf check status --host <host> --port <port> --user <usernane> --pass
<passwor d>

Default profile

Verify that you can use your default profile to communicate with ZZOSMF by issuing the following command:
zowe zosnf check status

Specific profile

Verify that you can use a specific profile to communicate with ZZOSMF by issuing the following command:
zowe zosnf check status --zosnf-profile <profil e_name>

The commands return a success or failure message and display information about your zZZOSMF server. For example,
the zZ/OSMF version number and alist of installed plug-ins. Report any failure to your systems administrator and use
the information for diagnostic purposes.

Uninstalling Zowe
Y ou can uninstall Zowe if you no longer need to use it. Follow these procedures to uninstall each Zowe component.
e Uningtaling Zowe from z/OS
e Uninstalling Zowe CLI from the desktop on page 42
Uninstalling Zowe from z/OS
Follow these stepson z/OS:

1. Stop the Zowe started task which stops all of its microservices by using the following command:

C ZONESVR



| User Guide | 42

2. Delete the ZONESVR member from your system PROCL| B data set.
To do this, you can issue the following TSO DELETE command from the TSO READY prompt or from | SPF
option 6:

del ete 'your.zowe. proclib(zowesvr)'

Alternatively, you can issue the TSO DELETE command at any | SPF command line by prefixing the command
with TSO:

tso delete 'your.zowe. proclib(zowesvr)'

To query which PROCL IB data set that ZOWESVR is put in, you can view the SDSF JOB log of ZOWESVR and
look for the following message:

| EFC001l PROCEDURE ZOWESVR WAS EXPANDED USI NG SYSTEM LI BRARY
your. zowe. proclib

If noZOWESVR JOB log isavailable, issue the/ $D PROCLI B command at the SDSF COMMAND INPUT
line and BROWSE each of the DSNAME=sone. j es. procl i b output linesin turn with | SPF option 1, until
you find the first data set that contains member ZOWESVR. Then issue the DELETE command as shown above.

3. Remove RACF® \(or equivalent\) definitions using the following command:

RDELETE STARTED ( ZOAESVR. *)
SETR RACLI ST( STARTED) REFRESH
REMOVE (userid) GROUP(| ZUUSER)

where userid indicates the user ID that is used to install Zowe.

Uninstalling Zowe CLI from the desktop

Important\! The uninstall process does not delete the profiles and credentials that you created when using the product
from your computer. To delete the profiles from your computer, delete them before you uninstall Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe CLI.
Follow these steps:
1. Open acommand line window.

Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.

2. List al profilesthat you created for a Zowe CLI command groups on page 57 by issuing the following
command:

zowe profiles list <profileType>
Example:

$ zowe profiles |ist zosnf

The follow ng profiles were found for the nodul e zosnf:
'SM TH- 123" ( DEFAULT)

smith-123@M TH 123-W C:.\ User s\ SM TH 123

$



| User Guide | 43

3. Deleteadl of the profilesthat are listed for the command group by issuing the following command:
Tip: For this command, use the results of thel i st command.

Note: When you issuethe del et e command, it deletes the specified profile and its credentials from the
credential vault in your computer's operating system.

zowe profiles delete <profil eType> <profil eName> --force
Example:

zowe profiles delete zosnf SM TH 123 --force

4. Repeat Steps 2 and 3 for al Zowe CLI command groups and profiles.
5. Uninstall Zowe CLI by issuing one of the following commands:

e If youinstalled Zowe CLI from the package, issue the following command

npm uni nstall --global @rightsidel/core

» If youinstaled Zowe CLI from the online registry, issue the following command:
npm uni nstall --gl obal brightside

The uninstall process removes all Zowe CLI installation directories and files from your computer.

6. Deletethe C: \ User s\ <user _nane>\. bri ght si de directory on your computer. The directory contains the
Zowe CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.
7. If youinstalled Zowe CLI from the online registry, issue the following command to clear your scoped
npm registry:

npm config set @rightside:registry

Configuring Zowe

Zowe Application Framework configuration
After you install Zowe, you can optionally configure the terminal application plug-ins or modify the Zowe
Application Server and Zowe System Services (ZSS) configuration, if needed.
Setting up terminal application plug-ins
Follow these optional steps to configure the default connection to open for the terminal application plug-ins.
Setting up the TN3270 mainframe terminal application plug-in
_defaul t TN3270. j sonisafileint n3270- ng2/ , which is deployed during setup. Within thisfile, you can
specify the following parameters to configure the terminal connection:

"host": <host nanme>
"port": <port>
“security”: {

type: <"telnet” or “tls">



| User Guide | 44

Setting up the VT Terminal application plug-in

_defaul t VT. j sonisafileinvt - ng2/ , which is deployed during setup. Within thisfile, you can specify the
following parametersto configure the terminal connection:

“host " : <host nane>
“port”:<port>
“security”: {

type: <"telnet” or “ssh”>

Configuring the Zowe Application Server and ZSS
Configuration file

The Zowe Application Server and ZSS rely on many parameters to run, which includes setting up networking,
deployment directories, plug-in locations, and more.

For convenience, the Zowe Application Server and ZSS read from a JSON file with a common structure. ZSS reads
thisfile directly as a startup argument, while the Zowe Application Server (asdefined inthe zI ux- ser ver -

f r amewor k repository) accepts severa parameters, which are intended to be read from a JSON file through an
implementer of the server, such asthe exampleinthe zl ux- app- ser ver repository, thej s/ zl uxServer.js
file. Thisfile accepts a JSON file that specifies mogt, if not all, of the parameters needed. Other parameters can be
provided through flags, if needed.

An example of aJSON file (zI uxser ver . j son) canbefoundinthezl ux- app- server repository, inthe
confi g directory.

Note: All examples are based on the Zlux-app-server repository.
Network configuration
Note: The following attributes are to be defined in the server's JISON configuration file.

The Zowe Application Server can be accessed over HTTP, HTTPS, or both, provided it has been configured for either
(or both).

HTTP
To configure the server for HTTP, complete these steps:

1. Define an attribute http within the top-level node attribute.

2. Define port within http. Where port is an integer parameter for the TCP port on which the server will listen.
Specify 80 or avalue between 1024-65535.

HTTPS
For HTTPS, specify the following parameters:

1. Define an attribute https within the top-level node attribute.
2. Definethe following within https:

e port: Aninteger parameter for the TCP port on which the server will listen. Specify 443 or a value between
1024-65535.

« certificates: An array of strings, which are paths to PEM format HTTPS certificate files.
« keys: An array of strings, which are paths to PEM format HTTPS key files.

« pfx: A string, which is a path to a PFX file which must contain certificates, keys, and optionally Certificate
Authorities.

» certificateAuthorities (Optional): An array of strings, which are paths to certificate authorities files.

« certificateRevocationLists (Optional): An array of strings, which are paths to certificate revocation list (CRL)
files.

Note: When using HTTPS, you must specify pfx, or both certificates and keys.



| User Guide | 45

Network example

In the example configuration, both HTTP and HTTPS are specified:

"node": {
"https": {
"port": 8544,
/I1pfx (string), keys, certificates, certificateAuthorities, and
certificateRevocationLists are all valid here.
"keys": ["../depl oy/product/ZLUX/ server Confi g/ server. key"],
"certificates": ["../deploy/product/ZLUX/ serverConfi g/ server.cert"]

}1
"http": {

"port": 8543
}

}

Deploy configuration

When the Zowe Application Server is running, it accesses the server's settings and reads or modifies the contents of

its resource storage. All of this datais stored within the Depl oy folder hierarchy, which is spread out into a several

SCopes:

e Product : The contents of thisfolder are not meant to be modified, but used as defaults for a product.

« Site: The contents of thisfolder are intended to be shared across multiple Zowe Application Server instances,
perhaps on a network drive.

e | nst ance: Thisfolder represents the broadest scope of data within the given Zowe Application Server instance.

e & oup: Multiple users can be associated into one group, so that settings are shared among them.

« User : When authenticated, users have their own settings and storage for the application plug-ins that they use.

These directories dictate where the Configuration Dataservice on page 147 stores content.

Deploy example

/1 Al paths relative to zl ux-app-server/js or zlux-app-server/bin
/[l In real installations, these values will be configured during the
installation process.

"rootDir":"../depl oy",
"productDir":"../depl oy/ product™,
"siteDir":"../deploy/site",
"instanceDir":"../depl oy/instance",
"groupsDir":"../depl oy/instance/ groups",
"usersDir":"../depl oy/instance/ users"

Application plug-in configuration
This topic describes application plug-ins that are defined in advance.

In the configuration file, you can specify a directory that contains JSON files, which tell the server what application
plug-in to include and where to find it on disk. The backend of these application plug-ins use the server's plug-in
structure, so much of the server-side references to application plug-ins use the term plug-in.

To include application plug-ins, define the location of the plug-ins directory in the configuration file, through the top-
level attribute pluginsDir.

Note: In this example, the directory for these JSON filesis/ pl ugi ns. Yet, to separate configuration files from
runtimefiles, the zl ux- app- ser ver repository copies the contents of thisfolder into/ depl oy/ i nst ance/
ZLUX/ pl ugi ns. So, the example configuration file uses the latter directory.

Plug-ins directory example

/1 Al paths relative to zlux-app-server/js or zlux-app-server/bin



| User Guide | 46

/1 In real installations, these values will be configured during the install
process.
/...
"pluginsDir":"../depl oy/instance/ ZLUX/ pl ugi ns",
Logging configuration
For more information, see Logging utility on page 161.
ZSS configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are;rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the server, but
if the Zowe Application Server and ZSS are not run from the same location, then these directories can be different.

The zssPort attribute is specific to ZSS. Thisisthe TCP port on which ZSS listensin order to be contacted by the
Zowe Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting the Zowe Application Server to ZSS

When you run the Zowe Application Server, specify the following flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

* -h: Declares the host where ZSS can be found. Use as "-h \<hostname\>"
e -P: Declaresthe port at which ZSSislistening. Use as"-P \<port\>"

Enabling tracing

To obtain more information about how a server isworking, you can enable tracing within the zl uxser ver. j son
file.

For example:

"l ogLevel s": {
"_zsf.routing": O,
" zsf.install": O,
" _zss.tracelLevel ": 0,
" zss.fileTrace": 1

}

Specify the following settings inside the logL evels object.
All settings are optional.
Zowe Application Server tracing

To determine how the Zowe Application Server (zI ux- app- ser ver ) isworking, you can assign alogging level to
one or more of the pre-defined logger namesinthe zl uxser ver. j son file.

Thelog prefix for the Zowe Application Server is_zsf, which is used by the server framework. (Applications and
plug-ins that are attached to the server do not usethe _zsf prefix.)

The following are the logger names that you can specify:

_zsf.bootstrap Logging that pertains to the startup of the server.

_zsf.auth Logging for network calls that must be checked for authentication and authorization purposes.
_zsf.static Logging of the serving of static files (such as images) from an application's/ web folder.
_zsf.child Logging of child processes, if any.

_zsf.utils Logging for miscellaneous utilities that the server relies upon.

_zsf.proxy Logging for proxies that are set up in the server.

_zsf.install Logging for the installation of plug-ins.



| User Guide | 47

_zsf.apiml Logging for communication with the api mediation layer.

_zsf.routing Logging for dispatching network requests to plug-in dataservices.
_zsf.network Logging for the HTTPS server status (connection, ports, IP, and so on)
Log levels

Thelog levels are:

« SEVERE =0,

* WARNING =1,
« INFO=2,

* FINE=3,

* FINER =4,

* FINEST =5

FINE, FINER, and FINEST are log levels for debugging, with increasing verbosity.
Enabling tracing for ZSS

To increaselogging for ZSS, you can assign alogging level (an integer value greater than zero) to one or more of the
pre-defined logger namesinthezl uxserver . j son file.

A higher value specifies greater verbosity.

Thelog prefix for ZSSis_zss. The following are the logger names that you can specify:
_zss.tracel evel: Controls general server logging verbosity.

_zssfileTrace: Logsfile serving behavior (if file serving is enabled).
_7zss.socketTrace: Logs general TCP Socket behavior.

_zss.httpParseTrace: Logs parsing of HTTP messages.

_zss.httpDispatchTrace: Logs dispatching of HT TP messages to dataservices.
_zss.httpHeader sTrace: Logs parsing and setting of HTTP headers.
_zss.httpSocketTrace: Logs TCP socket behavior for HTTP.

_zss.httpCloseConver sationTrace: Logs HTTP behavior for when an HTTP conversation ends.
_zsshttpAuthTrace: Logs behavior for session security.

When you are finished specifying the settings, savethe zI uxser ver . j son file.

Zowe Application Framework logging

The Zowe Application Framework log files contain processing messages and statistics. The log files are generated in
the following default locations:

e Zowe Application Server: zI ux- app- server /| og/ nodeSer ver - yyyy- mm dd- hh-nm | og
e ZSS: zl ux- app-server/| og/ zssServer-yyyy- mm dd- hh- mm | og

The logs are timestamped in the format yyyy-mm-dd-hh-mm and older logs are deleted when anew log is created at
server startup.

Controlling the logging location
The log information is written to afile and to the screen. (On Windows, logs are written to afile only.)
ZLUX_NODE_LOG _DIR and ZSS_LOG_DIR environment variables

To control where the information is logged, use the environment variable ZLUX_NODE_LOG_DIR, for the Zowe
Application Server, and ZSS L OG_DIR, for ZSS. While these variables are intended to specify a directory, if you
specify alocation that is afile name, Zowe will write the logs to the specified fileinstead (for example: / dev/ nul |
to disable logging).



| User Guide | 48

When you specify the environment variables ZLUX_NODE_LOG_DIRand ZSS LOG_DIR and you
specify directories rather than files, Zowe will timestamp the logs and del ete the ol der |ogs that exceed the
ZLUX_NODE_LOGS TO_KEEP threshold.

ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

If you set the log file name for the Zowe Application Server by setting the ZLUX_NODE_LOG_FILE environment
variable, or if you set thelog file for ZSS by setting the ZSS LOG_FILE environment variable, there will only be one
log file, and it will be overwritten each time the server islaunched.

Note: When you set the ZLUX_NODE_LOG_FILE or ZSS L OG_FILE environment variables, Zowe will not
override the log names, set atimestamp, or delete the logs.

If the directory or file cannot be created, the server will run (but it might not perform logging properly).
Retaining logs

By default, the last five logs are retained. To specify a different number of logs to retain, set
ZLUX_NODE_LOGS TO_KEEP (Zowe Application Server logs) or ZSS LOGS TO_KEEP (ZSSlogs) to the
number of logs that you want to keep. For example, if you set ZLUX_NODE_LOGS TO_KEEP to 10, when the
eleventh log is created, the first log is del eted.

Configuring Zowe CLI

After you install Zowe, you can optionally perform Zowe CLI configurations.

Setting environment variables for Zowe CLI

Y ou can set environment variables on your operating system to modify Zowe CLI behavior, such asthelog level
and the location of the .zowe directory, where the logs, profiles, and plug-ins are stored. Refer to your computer's
operating system documentation for information about how to set environmental variables.

Setting log levels
You can set the log level to adjust the level of detail that iswritten to log files:

Important\! Setting thelog level to TRACE or ALL might result in "sensitive" data being logged. For example,
command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default
ZONE\ _APP\ LOG Zowe CLI logging level Log4JSlog levels (OFF, DEBUG
\ _LEVEL TRACE, DEBUG, INFO,

WARN, ERROR, FATAL)

ZONE\ _| MPERATI VE Imperative CLI Framework Log4JS log levels (OFF, DEBUG
\_LOG _LEVEL logging level TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

Setting the .zowe directory

Y ou can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log files,
profiles, and plug-ins for the product:

Environment Variable Description Values Default

ZONE\ _CLI\ _HOVE Zowe CLI homedirectory  Any valid path on your Y our computer default
location computer home directory




| User Guide | 49

Using Zowe

Using the Zowe Desktop
Y ou can use the Zowe Application Framework to create application plug-ins for the Zowe Desktop. For more
information, see Extending the Zowe Application Framework (zLUX) on page 137.
Navigating the Zowe Desktop
From the Zowe Desktop, you can access Zowe applications.
Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at ht t ps: / / nyhost : ht t psPor t / ZLUX/ pl ugi ns/
org. zowe. zl ux. boot strap/ web/ i ndex. ht m

where:

« myHost isthe host on which you are running the Zowe Application Server.

» httpsPort is the value that was assigned to node.https.port in zI uxser ver . j son. For example, if
you run the Zowe Application Server on host myhost and the value that is assigned to node.https.port in
zl uxserver . j son is12345, you would specify ht t ps: / / nyhost : 12345/ ZLUX/ pl ugi ns/
org. zowe. zl ux. boot st rap/ web/ i ndex. ht m .

Logging in and out of the Zowe Desktop

1. Tologin, enter your mainframe credentialsin the Username and Password fields.
2. Press Enter. Upon authentication of your user name and password, the desktop opens.

Tolog out, click the the avatar in the lower right corner and click Sign Out.
Pinning applications to the task bar

1. Click the Start menu.
2. Locate the application you want to pin.
3. Right-click the on the application icon and select Pin to taskbar.

Using Explorers within the Zowe Desktop

The explorer server provides a sample web client that can be used to view and manipulate the Job Entry Subsystem
(JES), data sets, zZ/OS UNIX System Services (USS), and System log.

The following views are available from the explorer server Web Ul and are accessible via the explorer server icon
located in the application draw of Zowe Desktop (Navigation between views can be performed using the menu draw
located in the top left corner of the explorer server Web Ul):

JES Explorer

Use this view to query JES jobs with filters, and view the related steps, files, and status. Y ou can also purge jobs from
thisview.

MVS Explorer

Use this view to browse the MV S™ file system by using a high-level qualifier filter. With the MV'S Explorer, you can
complete the following tasks:

e List the members of partitioned data sets.

» Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").

e Submit data sets that contain JCL to Job Entry Subsystem (JES).

» Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for
JCL and REXX.

e Conduct basic validation of record length when editing JCL.

» Delete data sets and members.



| User Guide | 50

* Open data setsin full screen editor mode, which gives you afully qualified link to that file. The link is then
reusable for example in help tickets.

USS Explorer
Use this view to browse the USS files by using a path. With the USS Explorer, you can compl ete the following tasks:

e Listfilesand folders.

» Create new filesand folders.

« Edit fileswith basic syntax highlighting and content assist for JCL and REXX.
» Deletefilesand folders.

Zowe Desktop application plug-ins

Application plug-ins are applications that you can use to access the mainframe and to perform various tasks.
Developers can create application plug-ins using a sample application as a guide. The following application plug-ins
areinstalled by defaullt:

Hello World Sample

The Hello World sample application plug-in for devel opers demonstrates how to create a dataservice and how to
create an application plug-in using Angular.

IFrame Sample

The |Frame sample application plug-in for developers demonstrates how to embed pre-made webpages within the
desktop as an application and how an application can request an action of another application (see the source code for
more information).

z/OS Subsystems

The z/OS Subsystems plug-in helps you find information about the important services on the mainframe, such as
CICS, Db2, and IMS.

TN3270

This TN3270 plug-in provides a 3270 connection to the mainframe on which the Zowe Application Server runs.
VT Terminal

The VT Terminal plug-in provides a connection to UNIX System Services and UNIX.

APl Catalog

The API Catalog plug-in lets you view API services that have been discovered by the APl Mediation Layer. For
more information about the APl Mediation Layer, Discovery Service, and API Catalog, see APl Mediation Layer
Overview.

Editor
With the Zowe Editor you can create and edit files on the system that Zowe serves.
Workflows

From the Workflows application plug-in you can create, manage, and use ZZOSMF workflows to manage your system.

Using the Editor

With the Zowe Editor, you can create and edit the many types of files.
Specifying a language server

To specify alanguage server, complete these steps:

1. From the Language Server menu, select URL*.

2. From the Language Server Setting, Put your config here area, paste your configuration.
3. Ensurethat the Enable L anguage Server check box is selected.

4. Click Save.



| User Guide | 51

Specifying a language

From the L anguage menu, select the language you want to use.
Opening a directory

To open adirectory on the system, complete these steps:

1. From the File menu, select Open Directory.(Alternatively, you can click Open Directory in the File Explorer.)

2. From the Open Directory, Input Your Directory field, type the name of the directory you want to open. For
example: / u/ zs1234

3. Click Open.

The File Explorer on the |eft side of the window lists the folders and files in the specified directory. Clicking on a
folder expands the tree. Clicking on afile opens atab that displays the file contents.

Creating a new file
To create anew file, complete these steps:

1. From the File menu, select New File. The New File tab opens.
2. From the New File, File Name field, type the name of thefile.
3. Click Create.

Saving a file
To save afile, click File > Save.
Note: To save dl files, click File > Save All (or Ctrl+S).

Using the Workflows application plug-in

The Workflows application plug-in is available from the Zowe Deskstop Start menu. To launch Workflows, click the
Start menu in the lower-left corner of the desktop and click the Workflows application plug-in icon. The Users/Tasks
Wor kflows window opens.

Logging on to the system
If you are prompted to log on to the system, compl ete these steps:

1. Enter your user ID and password.
2. Click Signin.

Updating the data display

To refresh the data on any tab, click in the upper right corner of the window.
Configuration

From the Configuration tab, you can view, add, and remove servers.

Adding a zZ/OSMF server

Complete these steps to add anew ZZOSMF server:

1. Click the Configuration tab.

2. Click the plus sign (+) on the left side of the window.
3. IntheHost field, type the name of the host.

4. InthePort field, type the port number.

5. Click OK.

Testing a server connection

To test the connection, click Test. When the server is online the Online indicator next to the server Host and Port is
green.



Setting a server as the default zZOSMF server
Complete these steps to set a default zZZOSMF server:

1. Click Set asdefault.
2. Enter your user 1D and password.
3. Click Signin.

Note: You must specify adefault server.

Removing a server

To remove aserver, click x next to the server that you want to remove.

Reload a server configuration

To reload a server configuration, click Reload.

Save a server configuration

To save aserver configuration, click Save.

Workflows

To display al workflows on the system, click the Wor kflows tab.
Y ou can sort the workflows based on the following information:
Workflow

The name of the workflow.

Description

The description of the workflow.

Version

The version number.

Owner

The user ID of the workflow owner.

System

The system identifier.

Status

The status of the workflow (In progress or Completed).

Progress

Indicates how much of the workflow has been compl eted based on the number of tasks completed.

Searching workflows

To locate a specific workflow, type a search string in the search box in the upper right corner of the window.

Defining a workflow

To define aworkflow, complete these steps:

1. Fromthe Workflowstab, click Actions> New wor kflow. (By default, the Advanced M ode check box is

selected.)
In the Name field, specify a descriptive name for the workflow.

In the System field, specify a system.

arwbd

In the Workflow definition file field, specify the primary XML file for this workflow.

| User Guide | 52

In the Owner field, specify the user ID of the person that is responsible for assigning the tasksin the workflow.
(To set the owner to the current user, select the Set owner to current user check box.)



| User Guide | 53

6. Click OK.
Viewing tasks

To view the tasks associated with aworkflow, click the My Tasks tab. Workflows that have assigned tasks are shown
on the left side of the window. The task work areais on the right side of the window.

Y ou can choose to view workflows that have Pending or Completed tasks or you can choose to view all workflows
(Pending and Completed) and their tasks, regardless of the task status.

For each workflow, you can click the arrow to expand or collapse the task list. Assigned tasks display below each
workflow. Hovering over each task displays more information about the task, such as the status and the owner.

Each task has aindicator of PERFORM (a step to be performed) or CHECK (Check the step that was performed).
Clicking CHECK or PERFORM opens awork area on the right side of the window. When atask is complete, a
green clipboard icon with a checkmark is displayed.

Note: If you are viewing tasks on a Pending or Completed tab, only those workflows that have tasks with a
corresponding status, are displayed.

Task work area

When you click CHECK or PERFORM, awork area on the right side of the window opens to display the steps to
complete the task. Expand or collapse the work area by clicking B

Tip: Hovering over the task description in thetitle bar of the work area window on the right side displays more
information about the corresponding workflow and the step description.

Performing a task

1. To perform atask that has steps that are assigned to you, click PERFORM.

2. Usethework areato perform the steps associated with the selected task. Depending on the task, you might use an
embedded tool (such as another application) or you might complete a series of steps to complete the task.

3. If there are multiple steps to perform, click Next to advance to the next step for the task.
4. Click Finish.

Note: When atask is complete, a green clipboard icon with a checkmark is displayed next to the task.
Checking a task

1. Tocheck atask, click CHECK.

2. Inthetask work area, view the JESMSGLG, JESICL, JESY SMSG, or SY STSPRT output that is associated with
the selected task.

Managing tasks

To manage atask in the PERFORM status, click H to the right of the task status. Choose from the following options:
Properties

Display the title and description of the task.

Perform

Perform the first step.

Skip

Skip this step.

Override Complete

Override the completion of the step. The selected step will be bypassed and will not be performed for this workflow.
Y ou must ensure that the step is performed manually.

Assignment



| User Guide | 54

Opens the Manage A ssignees window where authorized users can add or remove the user ID of the person that is
assigned to the step.

Return
Remove ownership of the step.
Viewing warnings

To view any warning messages that were encountered, click the Warningstab. A messageislisted in this tab each
timeit is encountered.

To locate a specific message, type a search string in the search box in the upper right corner of the window.
Y ou can sort the warning messages based on the following information.

M essage Code

The message code that is associated with the warning.

Description

A description of the warning.

Date

The date of the warning.

Corresponding Wor kflow

The workflow that is associated with the warning.

API Catalog

As an application developer, use the API Catalog to view what services are running in the APl Mediation Layer.
Through the API Catalog, you can aso view the associated API documentation corresponding to a service,
descriptive information about the service, and the current state of the service. Thetilesin the API Catalog can be
customized by changing values in the mfaas.catal og-ui-tile section defined in the application.yml of aservice. A
microservice that is onboarded with the APl Mediation Layer and configured appropriately, registers automatically
with the API Catalog and atile for that service is added to the Catal og.

Note: For more information about how to configure the API Catalog in the application.yml, see: Java REST APIs
with Spring Boot on page 91.

View Service Information and API Documentation in the API Catalog

Use the API Catalog to view services, APl documentation, descriptive information about the service, the current state
of the service, service endpoints, and detailed descriptions of these endpoaints.

Note: Verify that your service isrunning. At least one started and registered instance with the Discovery Serviceis
needed for your serviceto be visiblein the API Catalog.

Follow these steps:

1. Usethe search bar to find the service that you are looking for. Services that belong to the same product family are
displayed on the samettile.

Example: Sanpl e Applications, Endevor, SDK Application

2. Click thetileto view header information, the registered services under that family 1D, and APl documentation for
that service.

Notes:

» The state of the serviceisindicated in the service tile on the dashboard page. If no instances of the service are
currently running, the tile displays a message displays that no services are running.

« Atleast oneinstance of a service must be started and registered with the discovery service for it to be visiblein
the API Catalog. If the service that you are onboarding is running, and the corresponding API documentation



| User Guide | 55

is displayed, this API documentation is cached and remains visible even when the service and all service
instances stop.
» Descriptive information about the service and alink to the home page of the serviceis displayed.

Example:

API Catalog

< Back

Sample APl Mediation Layer Applications

Applications which demonstrate how to make a service integrated to the APl Mediation Layer ecosystem

discoverableclient sampleservice enablervisampleapp

Service Integration Enabler V2 Sampl

API Doc Version: 1.0.0

[ Base URL: https://ca3x.ca.com:12818 ]

Sample service showing how to integrate a Spring Boot v2 x application

Other Operations General Operations

GET luilvi/discoverableclient/apiiv1/instance/gateway-url What is the URI of the Gatew:



| User Guide | 56

3. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the
endpoint description, and the full structure of the endpoint.

Example:

Service Integration Enabler V1 Sample App (spring boot 1.x)

APl Doc Version: 1.0.0

[ Base URL: https://fcadx.ca.com:1BE18 ]

Sample micro-service showing how to enable a Spring Boot v1.x application

V1EnablerSampleApp Sample Confroller

lapifvi/enablervizsampleapp/samples Refrieve all samples

Simple method to demonstrate how to expose an API endpoint with Open AP information

Parameters

Mo parameters

Responses Resp

Example Value Model

"details": "string®,
"index": @,
"name”: "string"”

}
1

Notes:

« Ifalock iconisvisible on the right side of the endpoint panel, the endpoint requires authentication.
* The structure of the endpoint is displayed relative to the base URL.
« The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:



| User Guide | 57

[ api /v1l/ {your Servi cel d}/ { endpoi nt Nare}
The path of the full URL that includes the base URL is also displayed in the following format:
htt ps://host Nanme: basePort/ api/v1l/ {your Servi cel d}/ { endpoi nt Nare}

Both links target the same endpoint location.

Using Zowe CLI

This section contains information about using Zowe CLI.

Displaying Zowe CLI help

Zowe CLI contains a help system that is embedded directly into the command-line interface. When you want help
with Zowe CLI, you issue help commands that provide you with information about the product, syntax, and usage.

Displaying top-level help
To begin using the product, open a command line window and issue the following command to view the top-level
help descriptions:

zowe --help

Tip: The command zowe initiates the product on acommand line. All Zowe CLI commands begin with zowe.
Displaying command group, action, and object help

You can usethe - - hel p global option get more information about a specific command group, action, or object. Use
the following syntax to display group-level help and learn more about specific command groups (for example, zos-
jobs and zos-files):

zowe <group, action, or object name> --help
zowe zos-files create --help

Zowe CLI command groups

Zowe CLI contains command groups that focus on specific business processes. For example, thezos-fi | es
command group provides the ability to interact with mainframe data sets. This article provides you with a brief
synopsis of the tasks that you can perform with each group. For more information, see Displaying Zowe CLI help on

page 57.

The commands available in the product are organized in a hierarchical structure. Command groups (for example,
zos-fi |l es) contain actions (for example, cr eat e) that let you perform actions on specific objects (for example,
a specific type of data set). For each action that you perform on an object, you can specify options that affect the
operation of the command.

Important! Before you issue these commands, verify that you completed the stepsin Create a Zowe CLI profile
and Testing Zowe CLI connection to ZZOSMF on page 41 to help ensure that Zowe CLI can communicate with z/
OS systems.

Zowe CLI contains the following command groups:
plugins

The plugins command group lets you install and manage third-party plug-insfor the product. Plug-ins extend the
functionality of Zowe CLI in the form of new commands.

With the plugins command group, you can perform the following tasks:

e Install or uninstall third-party plug-ins.
» Digplay alist of installed plug-ins.



| User Guide | 58

« Vadlidate that a plug-in integrates with the base product properly.
Note: For more information about pl ugi ns syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe plugins -h

profiles

The profiles command group lets you create and manage profiles for use with other Zowe CLI command groups.
Profiles allow you to issue commands to different mainframe systems quickly, without specifying your connection
details with every command.

With the profiles command group, you can perform the following tasks:

» Create, update, and delete profiles for any Zowe CLI command group that supports profiles.
» Set the default profile to be used within any command group.
« List profile names and details for any command group, including the default active profile.

Note: For more information about pr of i | es syntax, actions, and options, open Zowe CLI, and issue the following
command:

zowe profiles -h

provisioning

The provisioning command group lets you perform IBM zZ/OSMF provisioning tasks with templates and provisioned
instances from Zowe CLI.

With the provisioning command group, you can perform the following tasks:

« Provision cloud instances using zZZ OSMF Software Services templates.

« Listinformation about the available ZZOSMF Service Catalog published templates and the templates that you used
to publish cloud instances.

e List summary information about the templates that you used to provision cloud instances. Y ou can filter the
information by application (for example, DB2 and CICS) and by the external name of the provisioned instances.

« List detail information about the variables used (and their corresponding values) on named, published cloud
instances.

Note: For more information about provisioning syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe provisioning -h

zos-console

The zos-console command group lets you issue commands to the z/OS console by establishing an extended Multiple
Console Support (MCS) console.

With the zos-console command group, you can perform the following tasks: | mportant\! Before you issue zZ/0OS
console commands with Zowe CL I, security administrators should ensure that they provide access to commands that
are appropriate for your organization.

* Issue commandsto the z/OS console.
» Collect command responses and continue to collect solicited command responses on-demand.

Note: For more information about zos- consol e syntax, actions, and options, open Zowe CLI| and issue the
following command:

zowe zos-console -h



| User Guide | 59

zos-files
The zos-files command group lets you interact with data sets on Z/OS systems.
With the zos-files command group, you can perform the following tasks:

» Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of data sets
from templates. Y ou can specify options to customize the data sets you create.

« Download mainframe data sets and edit them locally in your preferred Integrated Development Environment
(IDE).

« Upload locd filesto mainframe data sets.

e List available mainframe data sets.

* Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM data
sets.

Note: For more information about zos- f i | es syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-files -h

z0os-jobs
The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.
With the zos-jobs command group, you can perform the following tasks:

e Submit jobs from JCL that resides on the mainframe or alocdl file.
e Listjobsand spool filesfor ajob.
« View the status of ajob or view a spool file from ajob.

Note: For more information about zos- j obs syntax, actions, and options, open Zowe CLI| and issue the following
command:

ZOowe z0s-jobs -h

Zos-tso
The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS systems.
With the zos-tso command group, you can perform the following tasks:

e Excecute REXX scripts
» Create a TSO address space and issue TSO commands to the address space.
* Review TSO command response datain Zowe CLI.

Note: For more information about zos- t so syntax, actions, and options, open Zowe CLI1 and issue the following
command:

zowe zos-tso -h

zosmf
The zosmf command group lets you work with Zowe CL1 profiles and get general information about ZZOSMF.
With the zosmf command group, you can perform the following tasks:

» Create and manage your Zowe CLI| zosmf profiles. Y ou must have at least one zosmf profile to issue most
commands. Issuethezowe hel p expl ai n profil es commandinZowe CLI to learn more about using
profiles.

« Verify that your profiles are set up correctly to communicate with ZZOSMF on your system. For more information,
see Test Connection to ZZOSMF.

» Get information about the current ZZOSMF version, host, port, and plug-insinstalled on your system.



| User Guide | 60

Note: For more information about zosnf syntax, actions, and options, open Zowe CL1 and issue the following
command:

zowe zosnf -h

Defining Zowe CLI connection details

Zowe CLI has a command option order of precedence that lets you define arguments and options for commands

in multiple ways (command-line, environment variables, and profiles). This provides flexibility when you issue
commands and write automation scripts. This topic explains order of precedence and different methods for specifying
your mainframe connection details.

¢ Understanding command option order of precedence on page 60
e Creating Zowe CL1I profiles on page 60

« Defining Environment Variables on page 61

« Integrating with APl Mediation Layer on page 62

Understanding command option order of precedence

Before you issue commands, it is helpful to understand the command option order of precedence. The following isthe
order in which Zowe CLI searches for your command arguments and options when you issue a command:

1. Arguments and options that you specify directly on the command line.

2. Environment variables that you define in the computer's operating system. For more information, see Defining
Environment Variables on page 61

3. User profilesthat you create.

4. The default value for the argument or option.

The affect of the order isthat if you omit an argument/option from the command line, Zowe CL| searches for an
environment variable that contains a value that you defined for the argument/option. If Zowe CLI does not find a
value for the argument/option in an environment variable, Zowe CL | searches your user profiles for the value that you
defined for the option/argument. If Zowe CLI does not find a value for the argument/option in your profiles, Zowe
CL I executes the command using the default value for the argument/option.

Note: If arequired option or argument value is not located, you receive a syntax error message that statesM ssi ng
Posi ti onal Argument orM ssing Option.

Creating Zowe CLI profiles

Profilesare aZowe CLI functionality that let you store configuration information for use on multiple commands. Y ou
can create a profile that contains your username, password, and connection details for a particular mainframe system,
then reuse that profile to avoid typing it again on every command. Y ou can switch between profilesto quickly target
different mainframe subsystems.

To createazosnt profile, issue the following command. Refer to the available optionsin the help text to define your
profile:

zowe profiles create zosnf-profile --help

Creating a profile to access an API Mediation Layer

Y ou can create profiles that access an either an exposed APl or APl Mediation Layer (APl ML) in the following

ways.

« When you create a profile, specify the host and port of the API that you want to access. When you only provide
the host and port configuration, Zowe CLI connects to the exposed endpoints of a specific API.

« When you create a profile, specify the host, port, and the base path of APl ML instance that you want to access.
Using the base path to API ML, Zowe CLI routes your requests to an appropriate instance of the APl based on the
system load and the available instances of the API.

Example:



| User Guide | 61

The following example illustrates the command to create a profile that connects to zZOSMF through APl ML with the
base path ny/ api / | ayer:

zowe profiles create zosnf nyprofile -H <myhost> -P <nyport> -u <myuser> --
pw <nypass> --base-path <ny/api/layer>

For more information, see Integrating with APl Mediation Layer on page 62.

« When you create a profile, specify the host and port of the API that you want to access. When you only provide
the host and port configuration, Zowe CLI connects to the exposed endpoints of a specific API.

« When you create a profile, specify the host, port, and the base path of the API Mediation Layer instance that you
want to access. Using the base path to an APl Mediation Layer, Zowe CLI routes your requests to an appropriate
instance of the API based on the system load and the available instances of the API.

Example:

The following example illustrates the command to create a profile that connects to zZZ OSMF through APl Mediation
Layer with the base path my/ api / | ayer:

zowe profiles create zosnf nyprofile -H <myhost> -P <nyport> -u <nyuser> --
pw <nypass> --base-path <ny/api/layer>

After you create a profile, verify that it can communicate with zZZOSMF. For more information, see Testing Zowe CLI
connection to ZZOSMF on page 41.

Defining Environment Variables

Y ou can define environment variables in your environment to execute commands more efficiently. Y ou can store a
value, such as your password, in an environment variable, then issue commands without specifying your password
every time. The term environment refers to your operating system, but it can also refer to an automation server, such
as Jenkins or a Docker container. In this section we explain how to transform arguments and options from Zowe CLI
commands into environment variables and define them with avalue. In this section we explain how to transform
arguments and options from Zowe CL1 commands into environment variables and define them with avalue.

* Assigning an environment variablefor a valuethat iscommonly used.

For example, you might want to specify your mainframe user name as an environment variable on your computer.
When you issue a command and omit the - - user nane argument, Zowe CLI automatically uses the value
that you defined in the environment variable. Y ou can now issue a command or create any profile type without
specifying your user name repeatedly.

* Overriding avaluethat isused in existing profiles.

For example, you might want to override a value that you previously set on multiple profiles to avoid recreating
each profile.This reduces the number of profiles that you need to maintain and lets you avoid specifying every
option on command line for one-off commands.

« Specifying environment variablesin a Jenkins environment (or other automation server) to store
credentials securely.

Y ou can set values in Jenkins environment variables for use in scripts that run in your CI/CD pipeline. You
can define Jenkins environment variables in the same manner that you can on your computer. Y ou can aso
define sensitive information in the Jenkins secure credential store. For example, you might need to define your
mainframe password in the secure credential store so that it is not availablein plain text.

Transforming arguments/options to environment variable format

Transform the option/argument into the correct format for a Zowe CLI environment variable, then define values to the
new variable. The following rules apply to this transformation:

» Prefix environment variables with ZONE_OPT_

« Convert lowercase letters in arguments/options to uppercase letters

« Convert hyphensin arguments/options to underscores



| User Guide | 62

Tip: Seeyour operating system documentation for information about how to set and get environment variables. The
procedure for setting environment variables varies between Windows, Mac, and various versions of Linux operating
systems.

Examples:

The following table shows command line options that you might want to transform and the resulting environment
variable to which you should define the value. Use the appropriate procedure for for your operating system to define
the variables.

Command Option Environment Variable Use Case

--user ZONE_OPT_USER Define your mainframe user name
to an environment variable to avoid
specifying it on all commands or
profiles.

--reject-unauthorized ZONE_OPT_REJECT UNAUTHORI ZE®fineavaueof t r ue tothe- -
reject-unathorized flag
when you always require the flag
and do not want to specify it on all
commands or profiles.

Setting environment variables in an automation server

Y ou can use environment variables in an automation server, such as Jenkins, to write more efficient scripts and make
use of secure credential storage.

Y ou can either set environment variables using the SET command within your scripts, or navigate to Manage
Jenkins\> Configure System \> Global Properties and define an environment variable in the Jenkins GUI. For
example:

Global properties
Dizable deferred wipeout on this node

¥ Environment variables

List of variables
Name | 1esT VARIABLE

W
/alue | tect value

Name
Using secure credential storage
Automation tools such as Jenkins automation server usually provide a mechanism for securely storing configuration

(for example, credentials). In Jenkins, you can usewi t hCr edent i al s to expose credentials as an environment
variable (ENV) or Groovy variable.

Note: For more information about using this feature in Jenkins, see Credentials Binding Plugin in the Jenkins
documentation.

Integrating with API Mediation Layer

The APl Mediation Layer provides asingle point of access to a defined set of microservices. The APl Mediation
Layer provides cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and APl documentation.


https://jenkins.io/doc/pipeline/steps/credentials-binding/

| User Guide | 63

When Zowe CL 1 executes commands that connect to a service through the APl Mediation Layer, the layer routes the
command execution requests to an appropriate instance of the API. The routing path is based on the system load and
available instances of the API.

Usethe- - base- pat h option on commandsto let all of your Zowe CLI core command groups (excludes plug-in
groups) access REST APIsthrough an APl Mediation Layer. To access APl Mediation Layers, you specify the base
path, or URL, to the APl gateway as you execute your commands. Optionally, you can define the base path URL as
an environment variable or in aprofile that you create.

Examples:
The following example illustrates the base path for a REST request that is not connecting through an APl Mediation
Layer to one system where an instance of ZZOSMF is running:

htt ps:// mymai nfranmehost: port/zosnf/restjobs/jobs

The following example illustrates the base path (named api / v1/ zosnf 1) for aREST request to an APl mediation
layer:

https://nyapi |l ayerhost: port/api/vl/ zosnf 1/ zosnf/restjobs/jobs

The following example illustrates the command to verify that you can connect to ZZOSMF through an APl Mediation
Layer that contains the base path ry/ api / | ayer:

zowe zosnf check status -H <myhost> -P <nyport> -u <myuser> --pw <nypass> --
base-path <ny/api/l ayer>

More Information:

e APl Mediation Layer

» Creating aprofile to access an APl Mediation Layer on page 60

Writing scripts to automate mainframe actions

Y ou can combine multiple Zowe CLI commandsin bash or shell scripts to automate actions on z/OS. Y ou can
implement scripts to enhance your devel opment workflow, automate repetitive test or build tasks, and orchestrate
mainframe actions from continuous integrati on/continuous deployment (CI/CD) tools such as Jenkins or TravisCl.

e Writing a Script on page 63

e Example: Clean up Temporary Data Sets

» Example: Submit Jobs and Save Spool Output
Writing a Script

Write a script that executes multiple CLI commands.

Note: The type of script that you write depends on the programming languages that you use and the environment
where the script is executed. The following procedure is a general guide to Zowe CLI scripts, but you might need to
refer to third-party documentation to learn more about scripting in general.

Follow these steps:
1. Create anew file on your computer with the extension .sh. For example, t est Scri pt . sh.

Note: On Linux, an extension is not required. Y ou make the file executable by issuing the command chnmod  u+x
testScript.

2. Atthetop of thefile, specify the interpreter that your script requires. For example, type#! / bi n/ sh or #!/
bi n/ sh.

Note: The command terminal that you use to execute the script depends on what you specify at the top of your
script. Bash scripts require a bash interpreter (bash terminal), while shell scripts can be run from any terminal.



| User Guide | 64

3. Write ascript using a series of Zowe CLI commands.

Tip: You can incorporate commands from other command-line tools in the same script. Y ou might choose to
"pipe" the output of one command into another command.

4. From the appropriate command terminal, issue acommand to execute the script. The command you use to execute
script varies by operating system.

The script runs and prints the output in your terminal. Y ou can run scripts manually, or include them in your
automated testing and delivery pipelines.

Example: Clean up Temporary Data Sets

The script in this example lists specified data sets, then loops through the list of data sets and deletes each file. You
can use asimilar script to clean up temporary data sets after use.

Note: This script must be run from a bash terminal.

#!/ bi n/ bash
set -e
# Project cleanup script - deletes tenporary project data sets
# pbtain the list of tenporary project data sets
dslist=$(zowe files Is ds "ny.project.ds*")
# Del ete each data set in the Iist
| FS=$'\n'
for ds in $dslist
do
echo "Del eting Tenporary Project Dataset: $ds"
zowe files delete ds "$ds" -f
done

Example: Submit Jobs and Save Spool Output

The script in this example submits ajob, waits for the job to enter output status, and saves the spool filesto local files
on your computer.

Note: This script must be run from a bash terminal.

#!' /bin/ env bash
#subm t our job
j obi d=$(zowe zos-jobs subnit data-set "boech02.public.cntl(iefbrl4)" --rff
jobid --rft string)
echo "Subnitted our job, JOB ID is $jobid"
#wait for job to go to output
st at us=" UNKNOVWN
while [[ "$status” != "OUTPUT"]]; do
echo " Checki ng
status of job $jobid" status=$(zowe zos-jobs view job-status-by-jobid
"$jobid" --rff status --rft string)
echo "Current status is $status"”
sl eep 5s
done;
echo "Job conpleted in QUTPUT status. Final result of job: "
zowe zo0s-jobs view job-status-by-jobid "$jobid"
# get a list of all of the spool files for our job nowthat it's in output
spool i ds=$(zowe zos-jobs list spool-files-by-jobid "$jobid" --rff id --rft
tabl e)
# save each spool IDto a customfile nane
while read -r id; do
zowe z0sS-jobs view spool-file-by-id "$jobid" "$id" > ./${jobid}_spool _
${id}.txt
echo "Saved spool DD to ./${jobid}_spool ${id}.txt"
done <<< "$spool _ids"



| User Guide | 65

Zowe CLI extensions and plug-ins

Extending Zowe CLI
You caninstall plug-insto extend the capabilities of Zowe CLI.

Plug-ins CLI to third-party applications are also available, such as Visua Studio Code Extension for Zowe (powered
by Zowe CLI).

Plug-ins add functionality to the product in the form of new command groups, actions, objects, and options.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

Note: For information about how to install, update, and validate a plug-in, see Installing plug-ins on page 65.
The following plug-ins are available:
CA Brightside Plug-in for IBM® CICS®

The Zowe CLI Plug-in for IBM CICS lets you extend Zowe CLI to interact with CICS programs and transactions.
The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS.
For more information, see CICS management client interface on the IBM Knowledge Center.

For more information, see Zowe CLI Plug-in for IBM CICS on page 67.
Zowe CLI plug-in for IBM® Db2® Database

The Zowe CLI plug-in for Db2 enables you to interact with IBM Db2 Database on z/OS to perform tasks
with modern devel opment tools to automate typical workloads more efficiently. The plug-in aso enables you to
interact with IBM Db2 to foster continuous integration to validate product quality and stability.

For more information, see Zowe CLI plug-in for IBM Db2 Database on page 71.
VSCode Extension for Zowe

The Visua Studio Code (VSCode) Extension for Zowe lets you interact with data sets that are stored on IBM z/0OS
mainframe. Install the extension directly to V SCode to enable the extension within the GUI. Y ou can explore data
sets, view their contents, make changes, and upload the changes to the mainframe. For some users, it can be more
convenient to interact with data sets through a GUI rather than using command-line interfaces or 3270 emulators. The
extension is powered by Zowe CLI.

For more information, see VSCode Extension for Zowe on page 74.

Installing plug-ins
Use commandsin the plugins command group to install and manage plug-ins for Zowe CLI.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

You can install the following plug-ins:
e ZoweCLI Plug-infor IBM CICS

Use @r i ght si de/ ci cs@ at est inyour command syntax to install, update, and validate the plug-in.
e ZoweCLI Plug-in for IBM Db2 Database

Use @r i ght si de/ db2@ at est inyour command syntax to install, update, and vaidate the IBM Db2
Database plug-in.
Setting the registry

If you installed Zowe CLI from the zowe-cli-bundle.zip distributed with the Zowe PAX media, proceed to the
Installing plug-ins on page 65.


https://code.visualstudio.com/

| User Guide | 66

If you installed Zowe CLI from aregistry, confirm that NPM is set to target the registry by issuing the following
command:

npm config set @rightside:registry https://api.bintray.com npn ca/

bri ght si de
Meeting the prerequisites
Ensure that you meet the prerequisites for a plug-in before you install the plug-in to Zowe CLI. For documentation
related to each plug-in, see Extending Zowe CLI| on page 65.
Installing plug-ins
Issueani nstal |l commandtoinstall plug-insto Zowe CLI. Thei nst al | command contains the following
syntax:

zowe plugins install [plugin...] [--registry <registry>]

e [plugin...] (Optional) Specifies the name of a plug-in, an npm package, or a pointer to a (local or remote)
URL. When you do not specify a plug-in version, the command installs the latest plug-in version and specifies the
prefix that is stored in npm save-prefix. For more information, see npm save prefix. For more information about
npm semantic versioning, see npm semver. Optionally, you can specify a specific version of aplug-in to install.
For example, zowe plugin install plugi nName@1. 0. 0.

Tip: You can install multiple plug-ins with one command. For example, issuezowe pl ugi n install
pl ugi n1 plugi n2 pl ugi n3

e [--registry <registry>] (Optional) Specifiesaregistry URL from which to install a plug-in when you
donotusenpm confi g set tosettheregistry initialy.

Examples: Install plug-ins
« Thefollowing example illustrates the syntax to use to install a plug-in that is distributed with the zowe-cli-
bundle.zip. If you are using zowe-cli-bundle.zip, issue the following command for each plug-in .tgz file:
zowe plugins install ./zowe-cli-cics.tgz
« Thefollowing example illustrates the syntax to use to install a plug-in that is named "my-plugin” from a specified
registry:
zowe plugins install @rightside/ny-plugi n@ at est

» Thefollowing example illustrates the syntax to use to install a specific version of "my-plugins’

zowe plugins install @rightside/ny-plugin@”1.2. 3"

Validating plug-ins

Issue the plug-in validation command to run tests against al plug-ins (or against a plug-in that you specify) to verify
that the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing
command groups in the base application. The command response provides you with details or error messages about
how the plug-ins integrate with Zowe CLI.

Perform validation after you install the plug-ins to help ensure that it integrates with Zowe CLI.

Theval i dat e command has the following syntax:
zowe plugins validate [plugin]
e [ pl ugi n] (Optional) Specifies the name of the plug-in that you want to validate. If you do not specify aplug-in

name, the command validates all installed plug-ins. The name of the plug-in is not always the same as the name of
the NPM package.


https://docs.npmjs.com/misc/config#save-prefix
https://docs.npmjs.com/misc/semver

| User Guide | 67

Examples: Validate plug-ins
« Thefollowing example illustrates the syntax to use to validate a specified installed plug-in:

zowe plugins validate @rightside/ny-plugin
« Thefollowing example illustrates the syntax to use to vaidate al installed plug-ins:

zowe plugins validate

Updating plug-ins
Issuethe updat e command to install the latest version or a specific version of aplug-in that you installed
previously. The updat e command has the following syntax:

zowe plugins update [plugin...] [--registry <registry>]

e [plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same
as the name of the NPM package. Y ou can use npm semantic versioning to specify a plug-in version to which to
update. For more information, see npm semver.

e [--registry <registry>]
(Optional) Specifies aregistry URL that is different from the registry URL of the original installation.
Examples. Update plug-ins

« Thefollowing example illustrates the syntax to use to update an installed plug-in to the latest version:

zowe pl ugins update @ri ghtside/ ny-plugi n@ at est

» Thefollowing example illustrates the syntax to use to update a plug-in to a specific version:

zowe pl ugins update @ri ghtside/ ny-plugin@”"1.2. 3"

Uninstalling plug-ins

Issuetheuni nst al I command to uninstall plug-ins from a base application. After the uninstall process completes
successfully, the product no longer contains the plug-in configuration.

Tip: The command is equivalent to using npm uninstall to uninstall a package.

Theuni nst al | command contains the following syntax:
zowe plugins uninstall [plugin]

e [ pl ugi n] Specifiesthe plug-in name to uninstall.
Example: Uninstall plug-ins

» Thefollowing example illustrates the syntax to use to uninstall a plug-in:

zowe plugins uninstall @rightside/nmy-plugin

Zowe CLI Plug-in for IBM CICS

The Zowe CLI Plug-in for IBM® CICS® |ets you extend Zowe CL| to interact with CICS programs and transactions.
The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS.
For more information, see CICS management client interface on the IBM Knowledge Center.

¢ Use cases on page 68
* Prerequisites on page 68


https://docs.npmjs.com/misc/semver
https://docs.npmjs.com/cli/uninstall
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html

| User Guide | 68

* Installing on page 68

» Creating auser profile on page 69

e Commands on page 69

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM CICS to perform the following tasks:

» Deploy code changes to CICS applications that were developed with COBOL.

» Deploy changesto CICS regions for testing or delivery. See the Defining resources to CICS on page 69 for an
example of how you can define programsto CICSto assist with testing and delivery.

e Automate CICS interaction stepsin your CI/CD pipeline with Jenkins Automation Server or TravisCl.

* Deploy build artifacts to CICS regions.

o Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Prerequisites

Before you install the plug-in, meet the following prerequisites:

¢ Installing Zowe CLI on page 39 on your computer.

e Ensurethat IBM CICS Transaction Server v5.2 or later isinstalled and running in your mainframe environment.
e Ensurethat IBM CICS Management Client Interface (CMCI) is configured and running in your CICS region.
Installing

Use one of the two following methods that you can use to install the Zowe CLI1 Plug-in for IBM CICS:

* Installing from an online registry on page 638
« Installing from alocal package on page 68

Note: For more information about how to install multiple plug-ins, update to a specific version of a plug-ins, and
install from specific registries, see Installing plug-ins on page 65.

Installing from an online registry
Toinstall Zowe CLI from an online registry, complete the following steps:
1. Setyour npm registry if you did not already do so when you installed Zowe CLI. Issue the following command:

npm confi g set @rightside:registry https://api.bintray.com npnica/
bri ght si de

2. Open acommand line window and issue the following command:

zowe plugins install @rightside/cics@ atest
3. (Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate cics

Successful validation of the IBM CICS plug-in returns the response: Successful |y val i dat ed.
Installing from a local package

If you downloaded the Zowe PAX file and extracted the zowe- cl i - bundl e. zi p package, complete the
following stepsto install the Zowe CLI Plug-in for CICS:

1. Open acommand line window and change the local directory where you extracted the zowe- cl i -
bundl e. zi p file. If you do not have the zowe- cl i - bundl e. zi p file, seethetopic Install Zowe CLI from
local package for information about how to obtain and extract it.


https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html

| User Guide | 69

2. Issuethefollowing command to install the plug-in:

zowe plugins install zowe-cli-cics.tgz
3. (Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate @rightside/cics

Successful validation of the CICS plug-in returns the response: Successful | y val i dat ed. You can safely
ignore*** \Mr ni ng: messagesrelated to Imperative CLI Framework.

Creating a user profile

Y ou can create a CICS user profile to avoid typing your connection details on every command. Theci cs profile
contains your host, port, username, and password for the IBM CMCI server of your choice. Y ou can create multiple
profiles and switch between them as needed.

Issue the following command to create a cics profile:

zowe profiles create cics <profile name> -H <host> -P <port> -u <user> -p
<passwor d>

Note: For more information about the syntax, actions, and options, for apr of i | es cr eat e command, open Zowe
CLI and issue the following command:

zowe profiles create cics -h

The result of the command displays as a success or failure message. Y ou can use your profile when you issue
commandsintheci ¢cs command group.

Commands
The Zowe CLI Plug-in for IBM CICS adds the following commands to Zowe CL1I:

» Defining resources to CICS on page 69
« Deleting CICS resources on page 70

» Discarding CICS resources on page 70
* Getting CICS resources on page 70

« Installing resourcesto CICS on page 70
» Refreshing CICS programs on page 70

Defining resources to CICS

The define command lets you define programs and transactions to CICS so that you can deploy and test the changes
to your CICS application. To display alist of possible objects and options, issue the following command:

zowe cics define -h

Example:

Define a program named my Pr ogr amto the region named ny Regi on in the CICS system definition (CSD) group
nmy G oup:

zowe cics define program nyProgram nyG oup --regi on-nane myRegi on



| User Guide | 70

Deleting CICS resources

The delete command lets you delete previously defined CICS programs or transactions to help you deploy and test the
changes to your CICS application. To display alist of possible objects and options, issue the following command:

zowe cics delete -h

Example:
Delete a program named PGM 123 from the CICS region named MY REGION:

zowe cics del ete program PGVL23 --regi on- nane MYREG ON

Discarding CICS resources

The discard command lets you remove existing CICS program or transaction definitions to help you deploy and test
the changes to your CICS application. To display alist of possible objects and options, issue the following command:

zowe cics discard -h

Example:
Discard a program named PGM 123 from the CICS region named MY REGION:

zowe cics discard program PGML23 --regi on- name MYREG ON

Getting CICS resources

The get command lets you get alist of programs and transactions that are installed in your CICS region so that you
can determine if they were installed successfully and defined properly. To display alist of objects and options, issue
the following command:

zowe cics get -h

Example:

Return alist of program resources from a CICS region named MY REGION:
zowe cics get resource Cl CSProgram --regi on- nane MYREG ON

Installing resources to CICS

Theinstall command lets you install resources, such as programs and transactions, to a CICS region so that you can
deploy and test the changesto your CICS application. To display alist of possible objects and options, issue the
following command:

zowe cics install -h

Example:
Install atransaction named TRNL1 to the region named MY REGION in the CSD group named MY GRP:

zowe cics install transaction TRN1L MYCRP --regi on- name MYREG ON

Refreshing CICS programs

The refresh command lets you refresh changes to a CICS program so that you can deploy and test the changes to your
CICS application. To display alist of objects and options, issue the following command:

zowe cics refresh -h

Example:



| User Guide | 71

Refresh a program named PGM 123 from the region named MY REGION:

zowe cics refresh PGML23 --regi on- name MYREG ON

Zowe CLI plug-in for IBM Db2 Database

The Zowe CLI plug-in for IBM® Db2® Database |ets you interact with Db2 for Z/OS to perform tasks through Zowe
CLI and integrate with modern devel opment tools. The plug-in also lets you interact with Db2 to advance continuous
integration and to validate product quality and stability.

Zowe CLI Plug-in for IBM Db2 Database |ets you execute SQL statements against a Db2 region, export a Db2 table,
and call astored procedure. The plug-in also exposesits APl so that the plug-in can be used directly in other products.

¢ Usecaseson page 71

* Prerequisites on page 71

e Instaling on page 71

» Addressing the license requirement on page 72
» Creating a user profile on page 73

e Commands on page 73

Use cases

Use cases#for Zowe CLI Db2 plug-in include:

e Execute SQL and interact with databases.

» Execute afile with SQL statements.

« Export tablesto alocal file on your computer in SQL format.
» Call astored procedure and pass parameters.

Prerequisites

Before you install the plug-in, meet the following prerequisites:

e Installing Zowe CLI on page 39 on your computer.

Installing

There are two methods that you can use to install the Zowe CLI Plug-in for IBM Db2 Database - install from an
onlineregistry or install from the local package.

Installing from online registry
If you installed Zowe CLI from online registry, complete the following steps:

1. Open acommand line window and issue the following command:

zowe plugins install @rightside/ db2@ at est
2. After the command execution completes, issue the following command to validate that the installation completed
successfully.
zowe plugins validate db2
Successful validation of the IBM Db2 plug-in returns the response: Successful |y val i dat ed.
3. Addressing the license requirement on page 72 to begin using the plug-in.
Installing from local package
Follow these procedures if you downloaded the Zowe installation package:
Downloading the ODBC driver
Download the ODBC driver before you install the Db2 plug-in.



| User Guide | 72

Follow these steps:

1

3.

Download the ODBC CLI Driver. Use the table within the download URL to select the correct CLI Driver for
your platform and architecture.

Create a new directory named odbc_cl i on your computer. Remember the path to the new directory. Y ou will
need to provide the full path to this directory immediately before you install the Db2 plug-in.

Place the ODBC driver intheodbc_cl i folder. Do not extract the ODBC driver.

Y ou downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe CLI.

Installing the Plug-in

Now that the Db2 ODBC CLI driver is downloaded, set the IBM_DB_INSTALLER URL environment variable and
install the Db2 plug-into Zowe CLI.

Follow these steps:

1

5.

Open a command line window and change the directory to the location where you extracted the zowe- cl i -
bundl e. zi p file. If you do not have the zowe- cl i - bundl e. zi p file, seethe topic Install Zowe CLI from
local packagein Installing Zowe CLI on page 39 for information about how to obtain and extract it.

From acommand line window, set thel BM DB _| NSTALLER URL environment variable by issuing the
following command:

» Windows operating systems:

set |1 BM DB | NSTALLER URL=<pat h_t o_your _odbc_f ol der >/ odbc_cl i
e Linux and Mac operating systems:

export | BM DB | NSTALLER URL=<path_to_your _odbc_fol der>/odbc_cli

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli, you would issue
the following command:

set | BM DB | NSTALLER URL=C:\ odbc_cl i

Issue the following command to install the plug-in:

zowe plugins install zowe-db2.tgz

(Optional) After the command execution completes, issue the following command to validate that the installation
completed successfully.

zowe plugins validate db2

Successful validation of the IBM Db2 plug-in returns the response: Successful 'y val i dat ed.
Addressing the license requirement on page 72 to begin using the plug-in.

Addressing the license requirement

The following steps are required for both the registry and offline package installation methods:

1

Locate your client copy of the Db2 license. Y ou must have a properly licensed and configured Db2 instance for
the Db2 plugin to successfully connect to Db2 on z/OS.

Note: Thelicense must be of version 11.1 if the Db2 server isnot db2connect act i vat ed. You can buy a
db2connect license from IBM. The connectivity can be enabled either on server using db2connectactivate utility
or on client using client side license file. To know more about DB2 license and purchasing cost, please contact
IBM Customer Support.


https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url

| User Guide | 73

2. Copy your Db2 licensefile and place it in the following directory.

« Windows:

<zowe_homne>\ pl ugi ns\i nst al | ed\ node_nodul es\ @r i ght si de\ db2\ node_nodul es
\ibmdb\installer\clidriver\license

* Linux:

<zowe_hone>/ pl ugi ns/installed/|ib/node_nodul es/ @ri ghtsi de/ db2/
node_nodul es/i bmdb/installer/clidriver/license

Tip: By default, <zowe_home>issetto~/ . zowe on\*NIX systems, and C: \ User s\ <Your _User >\ . zowe
on Windows systems.

After the licenseis copied, you can use the Db2 plugin functionality.

Creating a user profile
Before you start using the IBM Db2 plug-in, create a profile.
Issue the command - DI SPLAY DDF in the SPUFI or ask your DBA for the following information:

e TheDb2 server host name

e The Db2 server port number

* The database name (you can also use the location)

e The user name

e The password

« If your Db2 systems use a secure connection, you can also provide an SSL/TSL certificatefile.

To create adb2 profile in Zowe CLI, issue acommand in the command shell in the following format:

zowe profiles create db2 <profile name> -H <host> -P <port> -d <database> -u
<user> -p <password>

The profileis created successfully with the following output:

Profile created successfully! Path:

/ home/ user/.zowe/ profil es/ db2/<profil e name>.yani

type: db2

nane: <profile name>

host nane: <host >

port: <port>

usernanme: securely_stored

password: securely stored

dat abase: <dat abase>

Review the created profile and edit if necessary using the profile update
command.

Commands
The following commands can be issued with the Zowe CLI Plug-in for IBM Db2:

e Cadling a stored procedure on page 74
» Executing an SQL statement on page 74
» Exporting atablein SQL format on page 74

Tip: At any point, you can issue the help command - h to see alist of available commands.



| User Guide | 74

Calling a stored procedure

Issue the following command to call a stored procedure that returns aresult set:
$ zowe db2 call sp "DEMOUSER. EMPBYNQ(' 000120')"
Issue the following command to call a stored procedure and pass parameters:
$ zowe db2 call sp "DEMOUSER SUM 40, 2, ?)" --paraneters 0
Issue the following command to call a stored procedure and pass a placeholder buffer:
$ zowe db2 call sp "DEMOUSER. Tl ME1(?)" --paraneters "....placehol der..

Executing an SQL statement

Issue the following command to count rows in the EMP table:
$ zowe db2 execute sql -q "SELECT COUNT(*) AS TOTAL FROM DSN81210. EMP; "
Issue the following command to get a department name by ID:

$ zowe db2 execute sql -qg "SELECT DEPTNAME FROM DSN81210. DEPT WHERE
DEPTNO=' DO1'
Exporting a table in SQL format
Issue the following command to export the PRQJ table and save the generated SQL statements:

$ zowe db2 export table DSN81210. PRQJ
I ssue the following command to export the PRQJ table and save the output to afile:
$ zowe db2 export table DSN81210. PRQJ --outfile projects-backup. sql

Y ou can also pipe the output to gzip for on-the-fly compression.

VSCode Extension for Zowe

The Visua Studio Code (VSCode) Extension for Zowe lets you interact with data sets that are stored on IBM z/0OS
mainframe. Install the extension directly to V SCode to enable the extension within the GUI. Y ou can explore data
sets, view their contents, make changes, and upload the changes to the mainframe. For some users, it can be more
convenient to interact with data sets through a GUI rather than using command-line interfaces or 3270 emulators. The
extension is powered by Zowe CLI.

Note: The primary documentation, for this plug-in is available on the Visual Studio Code Marketplace. Thistopicis
intended to be an overview of the extension.

* Prerequisites on page 74
« Installing on page 75
e Use-Caseson page 75

Prerequisites

Before you use the V SCode extension, meet the following prerequisites on your computer:

* Install VSCode.

e Installing Zowe CLI on page 39.

» Create a least one Zowe CLI 'zosmf' profile so that the extension can communicate with the mainframe. See
Creating Zowe CL | profiles on page 60.


https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://code.visualstudio.com/

| User Guide | 75

Installing

1. Address Prerequisites on page 74.

2. Open VSCode. Navigate to the Extensions tab on the left side of the UI.
3. Click the green I nstall button to install the plug-in.

4. Restart VSCode. The plug-inisnow installed and available for use.

Tip: For information about how to install the extension from aVSIX file and run system tests on the extension, see
the Developer README filein the Zowe V SCode extension GitHub repository.

Y ou can also watch the following video to learn how to install and use the Zowe V SCode Extension. If you read this
doc in PDF format, you can click here to watch the video.

Use-Cases

As an developer, you can use V SCode Extension for Zowe to perform the following tasks.

* View and filter mainframe data sets.

« Create download, edit, upload, and delete PDS and PDS members.

» Use"safe save" to safely resolve conflicts when a data set is changed during local editing.
» Switch between Zowe CLI profilesto quickly target different mainframe systems.

Note: For detailed step-by-step instructions for using the plug-in and more information about each feature, see Zowe
on the Visual Studio Code Marketplace.


https://youtu.be/la1_Ss27fn8
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe




Chapter

3

Extending

Topics:

* Developing for APl Mediation
Layer
* Developing for Zowe CLI

* Developing for Zowe Application
Framework




| Extending | 78

Developing for APl Mediation Layer

Onboarding Overview

Overview of APIs

Before identifying the APl you want to expose in the APl Mediation Layer, it is useful to consider the structure

of APIs. An application programming interface (API) is a set of rules that allow programsto talk to each other. A
developer creates an APl on aserver and allows a client to talk to the API. Representational State Transfer (REST)
determines the look of an API and is a set of rules that devel opers follow when creating an API. One of these rules
states that a user should be able to get a piece of data (resource) through URL endpoints using HTTP. These resources
are usualy represented in the form of JSON or XML documents. The preferred documentation typein Zoweisin the
JSON format.

A REST AP service can provide one or more REST APIs and usually provides the latest version of each API. A
REST serviceis hosted on aweb server which can host one or more services, often referred to as applications. A
web server that hosts multiple services or applicationsis referred to as aweb application server. Examples of web
application servers are Apache Tomcat or WebSphere Liberty.

Note: Definitions used in this procedure follow the OpenAPI specification. Each API hasits own title, description,
and version (versioned using Semantic Versioning 2.0.0).

The following diagram shows the relations between various types of services, their APIs, REST API endpoints, and
the API gateway:


http://tomcat.apache.org/
https://developer.ibm.com/wasdev/websphere-liberty/
https://swagger.io/specification/
https://semver.org/spec/v2.0.0.html

| Extending | 79

API Gateway

/api/vl/service
/api/v2/service

lapi/v2/service

/api/vl/service

Vi

\

/ \ :
/ Web A\g[
¢ «Servige» A ¢ «Servicé\:
servijcel service:
<API» «<API»

/vl /vl /v
/endpointl /endpointl /e
/endpoint2 /endpoint2 /e

0 y; b “—
/
/ \
y \
/ \
Vi \
A service usually provides one API \ N
A web server can host
A service can run one or more API services
in its own embedded web server

Sample REST API Service

In microservice architecture, aweb server usually provides asingle service. A typical example of asingle service
implementation is a Spring Boot web application.

To demonstrate the concepts that apply to REST API services, we use the following example of a Spring Boot REST
API service: https://github.com/swagger-api/swagger-sampl es/tree/master/javaljava-spring-boot. This exampleis used
in the REST API onboarding guide: REST API without code changes required.

Y ou can build this service using instructions in the source code of the Spring Boot REST API service example
(https://github.com/swagger-api/swagger-sampl es/bl ob/master/javaljava-spring-boot/READM E.md).

The Sample REST API Service has abase URL. When you start this service on your computer, the service base URL
is:http://1ocal host: 8080.

Note: If aserviceis deployed to aweb application server, the base URL of the service (application) has the following
format: ht t ps: // appl i cati on-server - host nanme: port/applicati on- nane.



| Extending | 80

This sample service provides one API that has the base path / v2, which is represented in the base URL of the API
ashttp://1ocal host: 8080/ v2.Inthisbase URL,/ v2 isaqualifier of the base path that was chosen by the
developer of this API. Each API has a base path depending on the particular implementation of the service.

This sample API has only one single endpoint:
e /[ pets/{id} -FindpetbyID.

This endpoint in the sample service returns information about a pet when the { i d} isbetween 0 and 10. If {i d} is
greater than 0 or a non-integer then it returns an error. These are conditions set in the sample service.

Tip: Access http://localhost:8080/v2/pets/1 to see what this REST API endpoint does. Y ou should get the following
response:

{
"category": {
"id": 2,

b
"id" 1,

"name": "Cat 1",
"photoUrls": |
“url 1",

“url 2"

]

: tatus": "avail abl e",
"tags": |

"id" 1,
"nanme": "tagl"

n | dll 2,
"name": "tag2"

Note: The onboarding guides demonstrate how to add the Sample REST APl Serviceto the APl Mediation Layer to
make the service available through the pet st or e service ID.

The following diagram shows the relations between the Sample REST API Service and its corresponding API, REST
API endpoint, and API gateway:



| Extending | 81

API Gateway AP| Gateway routes
lapi/v2/petstore HTTP requests to /v2 of the API in the petstore se
(" «Service»
petstore
Y
«API»
v2
/pets
5 £

The petstore service provides one API (/v2)
This service runs in its own embedded web server

This sample service provides a Swagger document in JSON format at the following URL:
http://1 ocal host: 8080/ v2/ swagger . j son
The Swagger document is used by the API Catalog to display the APl documentation.

API Service Types
The process of onboarding depends on the method that is used to develop the API service.

While any REST API service can be added to the API Mediation Layer, this documentation focuses on following
types of REST APIs:

« Servicesthat can be updated to support the APl Mediation Layer natively by updating the service code:

* JavaREST APIswith Spring Boot on page 91

e JavaJersey REST APIson page 112

« JavaREST APIs service without Spring Boot on page 102
» REST APIswithout code changes required on page 117

Tip: When developing a new service, we recommend that you update the code to support the API Mediation Layer
natively. Use the previously listed onboarding guides for services that can be updated to support the APl Mediation
Layer natively. The benefit of supporting the APl Mediation Layer natively isthat it requires less configuration for
the system administrator. Such service can be moved to different systems, can be listened to on a different port, or
additional instances can be started without the need to change configuration of the APl Mediation Layer.



| Extending | 82

Zowe APl Mediation Layer Security
e How API ML transport security works on page 82

» Transport layer security on page 82
e Authentication on page 82
e Zowe APl ML services on page 83
e Zowe APl ML TLS requirements on page 83
e Authentication for APl ML services on page 84
« Authorization on page 84
e APl ML truststore and keystore on page 84
e Authentication to the Discovery Service on page 85
» Certificate management in Zowe APl Mediation Layer on page 85

* Running on localhost on page 85

¢ How to start APl ML on localhost with full HTTPS on page 85
» Certificate management script on page 85
« Generate certificates for localhost on page 85
« Generate acertificate for a new service on localhost on page 85
e Add aservice with an existing certificate to APl ML on localhost on page 86
e Loginto Discovery Service on locahost on page 86
e Zowe runtime on z/OS on page 86

e Certificatesfor zZ/OS installation from the Zowe PAX file on page 86

« Import the local CA certificate to your browser on page 86

» Generate a keystore and truststore for a new service on z/OS on page 87
e Add aservice with an existing certificate to APl ML on z/OS on page 88

« Procedureif the serviceis not trusted on page 88
e Trust az/OSMF certificate on page 89
» Disable certificate validation on page 90

How API ML transport security works

Security within the APl Mediaiton Layer (APl ML) is performed on several levels. This article describes how API
ML uses Transport Layer Security (TLS). Asasystem administrator or API developer, use this guide to familiarize
yourself with the following security concepts:

Transport layer security

Secure data during data-transport by using the TL'S protocol for al connectionsto APl Mediation Layer services.
Whileit is possible to disable the TL S protocol for debugging purposes or other use-cases, the enabled TL S protocol
is the default mode.

Authentication

Authentication is the method of how an entity, whether it be auser (API Client) or an application (APl Service),
provesitstrue identity.

API ML uses the following authentication methods:
e User ID and password

e Theuser ID and password are used to retreive authentication tokens.
« Requests originate from a user.
e Theuser ID and password are validated by a z/OS security manager and a token isissued that is then used to
access the API service.
* TLSclient certificates

» Certificates are for service-only requests.



| Extending | 83

Zowe API ML services
The following range of service types apply to the Zowe APl ML:
e ZoweAPI ML services

» Gateway Service (GW) The Gateway is the access point for API clients that require accessto APl services.
API services can be accessed through the Gateway by API Clients. The Gateway receives information about an
API Service from the Discovery Service.

» Discovery Service (DS) The Discovery Service collects information about APl services and provides this
information to the Gateway and other services. APl ML internal services are also registered to the Discovery
Service.

e API Catalog (AC) The Catalog displays information about API services through aweb Ul. The Catalog
receives information about an API service from the Discovery Service.

e Authentication and Authorization Service (AAS)

AAS provides authentication and authorization functionality to check user access to resources on z/OS. The API
ML uses ZZOSMF API for authentication. For more information, see: APIML wiki
« API Clients

External applications, users, or other APl services that are accessing API services viathe APl Gateway

* API Services
Applications that are accessed through the API Gateway. API services register themselves to the Discovery
Service and can access other services through the Gateway. If an APl serviceisinstalled in such away that direct

accessis possible, API services can access other services without the Gateway. When API's access other services,
they can also function as API clients.

Zowe API ML TLS requirements

The API ML TLSrequires serversto provide HTTPS ports. Each of the APl ML services has the following specific
requirements:

e API Client

e TheAPI Client is hot a server

* Requirestrust of the API Gateway

« Hasatruststore that contains certificates required to trust the Gateway
» Gateway Service

* Providesan HTTPS port
» Hasakeystore with a server certificate

« The certificate needs to be trusted by API Clients
« Thiscertificate should be trusted by web browsers because the APl Gateway can be used to display web

Uls
» Hasatruststore that contains certificates needed to trust APl Services
* API Catalog

e Providesan HTTPS port
» Hasakeystore with a server certificate

e The certificate needs to be trusted by the APl Gateway
« Thiscertificate does not need to be trusted by anyone else
» Discovery Service
e Providesan HTTPS port
» Hasakeystore with a server certificate

» The certificate needs to be trusted by API Clients
* Hasatruststore that contains certificates needed to trust APl services


https://github.com/zowe/api-layer/wiki/Zowe-Authentication-and-Authorization-Service

| Extending | 84

* API Service

* Providesan HTTPS port
» Hasakeystore with aserver and client certificate

e The server certificate needs to be trusted by the Gateway
e Theclient certificate needsto be trusted by the Discovery Service
e Theclient and server certificates can be the same
» These certificates do not need to be trusted by anyone else
» Hasatruststore that contains one or more certificates that are required to trust the Gateway and Discovery

Service
Authentication for API ML services
¢ API Gateway

« APl Gateway currently does not handle authentication.
* Requests are sent to the API services that need to handle authentication
e API Catalog

« API Catalog is accessed by users and requires protection by alogin
» Protected accessis performed by the Authentication and Authorization Service
» Discovery Service

» Discovery Serviceis accessed by APl Services
« Thisaccess (reading information and registration) requires protection needs by a client certificate
e (Optional) Access can be granted to users (administrators)

e API Services

* Authentication is service-dependent
* Recommended to use the Authentication and Authorization Service for authentication

Authorization
Authorization is a method used to determine access rights of an entity.

Inthe API ML, authorization is performed by the zZ/OS security manager (CA ACF2, IBM RACF, CA Top Secret).
An authentication token is used as proof of valid authentication. The authorization checks, however, are always
performed by the z/OS security manager.

API ML truststore and keystore

A keystore isarepository of security certificates consisting of either authorization certificates or public key
certificates with corresponding private keys (PK), used in TLS encryption. A keystore can be stored in Java specific
format (JKS) or use the standard format (PKCS12). The Zowe APl ML uses PKCS12 to enable the keystores to be
used by other technologies used in Zowe (Node,js).

The API ML local certificate authority (CA)

« TheAPI ML local CA containsalocal CA certificate and a private key that needs to be securely stored
» Usedto sign certificates of services
e TheAPI ML local CA certificateistrusted by API services and clients

The APl ML keystore

» Server certificate of the Gateway (with PK). This can be signed by the local CA or an external CA
» Server certificate of the Discovery Service (with PK). This can be signed by the local CA

» Server certificate of the Catalog (with PK). This can be signed by the local CA

e TheAPI ML keystoreisused by APl ML services

The APl ML truststore
e The APl ML truststore contains alocal CA public certificate


https://www.ca.com/us/products/ca-acf2.html
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_042.htm
https://www.ca.com/us/products/ca-top-secret.html

| Extending | 85

» Contains an external CA public certificate (optional)
» Can contain self-signed certificates of APl Servicesthat are not signed by the local or external CA
e Used by APl ML services

Zowe cor e services

e Services can use the same keystore and truststore as APIML for simpler installation and management
e Alternatively, services can have individual storesfor higher security

API service keystore (for each service)

« Containsaserver and client certificate signed by the local CA
API servicetruststore (for each service)

e (Optional) Containsalocal CA and external CA certificates
Client certificates

* A client certificate is a certificate that is used for validation of the HTTPS client. The client certificate of a
Discovery Service client can be the same certificate as the server certificate of the services which the Discovery
Service client uses.

Authentication to the Discovery Service
The Discovery Service has the following types of users that require authentication:
e Administratorsand developerswho need to log in to the homepage of the Discovery Service

These users need to provide valid user ID and password to the z/OS system where Zowe isinstalled

» Servicesthat need toregister to the Discovery Service
These services are not users that have a user 1D and password but are other services. They authenticate using
client certificate. The client certificate isthe same TL S certificate that the service uses for HTTPS communication.

Certificate management in Zowe APIl Mediation Layer
Running on localhost
How to start APl ML on localhost with full HTTPS

The https://github.com/zowe/api-layer repository already contains pre-generated certificates that can be used to start
API ML with HTTPS on your computer. The certificates are not trusted by your browser so you can either ignore the
security warning or generate your own certificates and add them to the truststore of your browser or system.

The certificates are described in more detail in the https://github.com/zowe/api-layer/bl ob/master/keystore/
README.md.

Certificate management script

Zowe API Mediation Layer provides a script that can used on Windows, Mac, Linux, and zZ/OS to generate a
certificate and keystore for the local CA, APl Mediation Layer, and services.

This script is stored in scripts/apiml_cm.sh. Itisa UNIX shell script that can be executed by Bash or z/OS Shell. For
Windows, install Bash by going to the following link: cmder.

Generate certificates for localhost

Use the following script in the root of the api - | ayer repository to generate certificates for localhost:
scripts/apim _cmsh --action setup

This script creates the certificates and keystore for the API Mediation Layer in your current workspace.
Generate a certificate for a new service on localhost

To generate a certificate for a new service on localhost, see https://github.com/zowe/api-layer/bl ob/master/keystore/
REA DM E.md#generating-certificate-for-a-new-service-on-local host


https://github.com/zowe/api-layer/blob/master/scripts/apiml_cm.sh
http://cmder.net/

| Extending | 86

Add a service with an existing certificate to APl ML on localhost

Theinstructions are described at: https://github.com/zowe/api-layer/blob/master/keystore/READM E.md#trust-
certificates-of -other-services

Log in to Discovery Service on localhost
To access Discovery Service on localhost provide avalid client certificate.
The certificateis stored inthekeyst or e/ | ocal host /1 ocal host . keyst or e. p12 keystore.

Some utilitiesincluding HTTPie require the certificate to be in PEM format. You canfind itin keyst or e/
| ocal host /| ocal host. pem

Since the Discovery Serviceisusing HTTPS, your client also requires verification of the validity of its certificate.
Verification is performed by trusting the local CA certificate which isstore at keyst or e/ | ocal _ca/
| ocal ca. cer.

The following is an example of how to access Discovery Service from CLI with full certificate validation:

http --cert=keystore/l ocal host/I| ocal host. pem --verify=keystore/local _ca/
| ocal ca.cer -j GET https://local host: 10011/ eur eka/ apps/

Zowe runtime on z/OS
Certificates for z/OS installation from the Zowe PAX file

Certificates for the APl ML local CA and API ML service are automatically generated by installing the Zowe runtime
on z/OS from the PAX file. Following the instructions in Installing the Zowe runtime on z/OS

These certificates are generated by the certificate management script api m _cm sh that isinstalled to
$ZONE_ROOT_DI R/ api - nedi ati on/ scripts/apim _cm sh.

$ZONE_ROOT_DI Risthe directory where you installed the Zowe runtime.

The certificates are generated to the directory $ZONE_ROOT_DI R/ api - medi at i on/ keyst ore.
APl ML keystore and truststore:

« $ZONE_ROOT_DI R/ api - nedi ati on/ keystore/l ocal /| ocal host. keyst ore. p12

e used for the HTTPS servers
» containsthe APIML server certificate signed by the local CA and private key for the server
e $ZOWNE_ROOT_DI R/ api - nedi ati on/ keystore/l ocal /1l ocal host.truststore.pl2

» useto vaidate trust when communicating with the services that are registered to the APIML
« containsthe root certificate of the local CA (not the server certificate)

» containsthelocal CA public certificate

» can contain additional certificate to trust servicesthat are not signed by local CA

API ML keystores and truststores needs be accessible by the user 1D that executes the Zowe runtime.
Loca CA:
« $ZOWNE_ROOT_DI R/ api - medi ati on/ keystoree/l ocal _ca/l ocal ca. cer

e public certificate of local CA
e $ZOWNE_ROOT DI R/ api - nedi ati on/ keystore/l ocal ca/l ocal ca. keystore. pl2

o private key of thelocal CA
Thelocal CA keystore isonly accessible by the user that isinstalls and manages the Zowe runtime.
Import the local CA certificate to your browser

Trust inthe APl ML server is anecessary precondition to properly encrypt traffic between web browsers and REST
API client applications. Ensure this trust through the installation of a Certificate Authority (CA) public certificate.

By default, API ML createsalocal CA. Import the CA public certificate to the truststore for REST API clients and to
your browser. Y ou can also import the certificate to your root certificate store.


https://zowe.github.io/docs-site/latest/user-guide/install-zos.html

| Extending | 87

Note: The public certificate in the PEM format is stored at $ZONE_ROOT_DI R/ api - medi at i on/ keyst or e/
| ocal _cal/l ocal ca. cer where $ZONE_ROOT_DI Risthe directory that was used for the Zowe runtime during

installation.

The certificate is stored in UTF-8 encoding so you need to transfer it as a binary file. Since this is the certificate that

your browser is going to trust, it is recommended to use a secure connection for transfer.

Follow these steps:

1. Download thelocal CA certificate to your computer. Use one of the following methods to download the local CA

certificate to your computer:
* UseZowe CLI (Recommended) Issue teh following command:

zowe zos-files downl oad uss-file --binary $ZOANE_ROOT_DI R/ api - nedi ati on/
keystore/l ocal _cal/l ocal ca. cer

* Usesft p Issuethe following command:

sftp <systenr
get $ZOWE _ROOT_DI R/ api - nedi ati on/ keystore/l ocal ca/l ocal ca. cer

To verify that the file has been transferred correctly, open the file. The following heading and closing shoulf
appear:

----- BEG N CERTI FI CATE- - - - -
~----END CERTI FI CATE- - - - -

2. Import the certificate to your root certificate store and trust it.
e For Windows Run the following command:
certutil -enterprise -f -v -AddStore "Root" | ocal ca. cer

Note: Ensure that you open the terminal as administrator. Thiswill install the certificate to the Trusted Root
Certification Authorities.

* For macOS Run the following command:

$ sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/
System keychai n | ocal ca. cer

» For Firefox You can manually import your root certificate viathe Firefox settings, or force Firefox to use the

Windows truststore:
Note: Firefox usesits own certificate truststore.

Create a new Javascript file firefox-windows-truststorejsat C: \ Program Fil es (x86)\ Mozill a
Fi r ef ox\ def aul t s\ pr ef with the following content:

/* Enabl e experinental Wndows truststore support */
pref ("security.enterprise_roots. enabl ed", true);

Generate a keystore and truststore for a new service on z/OS

Y ou can generate a keystore and truststore for a new service by calling theapi m _cm sh script in the directory
with APl Mediation Layer:

cd $ZOWE_ROOT_DI R/ api - nedi ati on

scripts/apim _cmsh --action new service --service-alias <alias> --service-

ext <ext> \

--servi ce-keystore <keystore_path> --service-truststore <truststore_path> \

--servi ce-dnane <dnane> --service-password <password> --service-validity
<days> \


https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://github.com/zowe/zowe-cli#zowe-cli--

| Extending | 88

--local -ca-fil enamre $ZONE_ROOT_DI R/ api - nedi ati on/ keystore/l ocal ca/l ocal ca

Theservi ce- al i as isan unique string to identify the key entry. All keystore entries (key and trusted certificate
entries) are accessed via unique aliases. Since the keystore will have only one certificate, you can omit this parameter
and use the default valuel ocal host .

Theservi ce- keyst or e isarepository of security certificates plus corresponding private keys. The

<keyst or e_pat h> isthe path excluding the extension to the keystore that will be generated. It can be an absolute
path or apath relative to the current working directory. The key store is generated in PKCS12 format with . p12
extension. It should be path in an existing directory where your service expects the keystore. For example: / opt /
nmyservi cel/ keyst ore/ servi ce. keyst ore.

Theservi ce-trust st or e contains certificates from other parties that you expect to communicate with, or from
Certificate Authorities that you trust to identify other parties. The <t r ust st or e_pat h> isthe path excluding the
extension to the trust store that will be generated. It can be an absolute path or a path relative to the current working
directory. The truststore is generated in PK CS12 format.

Theservi ce- ext specifiesthe X.509 extension that should be the Subject Alternate Name (SAN). The SAN has
contain host names that are used to access the service. Y ou need specify the same hostname that is used by the service
during APl Mediation Layer registration. For example:

"SAN=dns: | ocal host . | ocal donai n, dns: | ocal host, i p:127.0.0. 1"
Note: For moreinformation about SAN, see SAN or SubjectAlter nativeName at Java Keytool - Common Options.

Theser vi ce- dnane isthe X.509 Distinguished Name and is used to identify entities, such as those which are
named by the subject and issuer (signer) fields of X.509 certificates. For example:

"CN=Zowe Service, OU=API Medi ation Layer, O=Zowe Sanpl e, L=Prague, S=Prague,
c=Ccz"
Theservi ce-val i di ty isthenumber of days after that the certificate will expire.

Theser vi ce- passwor d isthe keystore password. The purpose of the password is the integrity check. The access
protection for the keystore and keystore need to be achieved by making them accessible only by the ZOVESVR user
ID and the system administrator.

Thel ocal - ca-fi | ename isthe path to the keystore that is used to sign your new certificate with the local CA
private key. If you an in the $ZOAE_RUNTI ME/ api - medi at i on-di r ect or y, you can omit this parameter. It
should point to the $ZONE_ROOT_DI R/ api - medi ati on/ keystore/l ocal _ca/l ocal ca.

Add a service with an existing certificate to APl ML on z/OS

The API Mediation Layer requires validatation of the certificate of each service that it accessed by the APl Mediation
Layer. The APl Mediation Layer requires validatation of the full certificate chain. Use one of the following methods:

» Import the public certificate of the root CA that has signed the certificate of the service to the APIML truststore.
« Ensurethat your service hasits own certificate. If it was signed by intermediate CA all intermediate CA
certificates ensure that all certificates are in its keystore.

Note: If the service does not provide intermediate CA certificates to the APIML then the validation fails. This can
be circumvented by importing the intermediate CA certificates to the API ML truststore.

Import a public certificate to the APIML truststore by calling in the directory with APl Mediation Layer:
cd $ZOWE_ROOT_DI R/ api - nedi ati on

scripts/apim _cmsh --action trust --certificate <path-to-certificate-in-
PEM format > --alias <alias>

Procedure if the service is not trusted
If you access a service that is not trusted, for example, by issuing a REST API request to it:

http --verify=keystore/local _ca/local ca.cer GET https://<gatewayHost>: <port ></
port >/ api/vl/ <untrustedService>/greeting


https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/keytoolDocs/commonoptions.html

| Extending | 89

Y ou will receive asimilar response:

HTTP/ 1.1 502
Cont ent - Type: application/json;charset=UTF-8
{

"messages”: |

{
"messageContent": "The certificate
of the service accessed by HTTPS using URI '/api/vl/
<untrust edServi ce>/greeting' is not trusted by the APl Gateway:
sun. security.validator. ValidatorException: PKIX path building fail ed:
sun. security. provi der. cert pat h. SunCert Pat hBui | der Excepti on: unable to find
valid certification path to requested target",
"messageKey": "apim .common.tlsError",
"messageNunber": "AM.0105",
"messageType”: "ERRCOR'

}

The response has the HTTP status code 502 Bad Gateway and a JSON response in the standardized format for error
messages. The message has key api m . comrmon. t | sErr or and the message number AML0105 and content that
explains detail s about the message.

If you receive this message, import the certificate of your service or the CA that has signed it to the truststore of the
APl Mediation Layer as described above.

Trust a zZ/OSMF certificate

The Zowe installation script tries to import zZZOSMF public certificates to the truststore of APl Mediation Layer
automatically. This requires the user 1D that is doing the installation to be able to read the ZZOSMF keyring.

If it is not possible, you will see following error message:
WARNI NG z/OSMF is not trusted by the APl Mediation Layer.

Toalow api M _cm sh to run, it should be sufficient to give CONTROL access for the user

of | RR. DI GTCERT. LI ST (needed for a SITE certificate) and UPDATE access for the user of

| RR. DI GTCERT. LI STRI NG but in some cases (for example, you have aready created a certificate), you might
have to permit the user CONTROL accessto | RR. DI GTCERT. **.

Follow these steps:

1. Add z/OSMF to the truststore manually as a user that has access rights to read the ZZOSMF keyring. The read
access to ZZOSMF keyring can be granted by the following commands:

* RACF

PERM T | RR. DI GTCERT. LI ST CLASS(FACI LI TY) |D(acid) ACCESS( CONTROL)
PERM T | RR. DI GTCERT. LI STRI NG CLASS(FACI LI TY) | D(aci d) ACCESS(UPDATE)

e Top Secret:

TSS ADD(dept) | BMFAC(| RR. DI GTCERT)
TSS PER(aci d) | BMFAC( | RR. DI GTCERT. LI ST) ACCESS( CONTROL)
TSS PER(aci d) | BMFAC(I RR. DI GTCERT. LI STRING) ACCESS( UPDATE)

e ACF2

ACF

SET RESOURCE( FAC)

RECKEY | RR ADD( DI GTCERT. LI ST Ul D(acid) -
SERVI CE( CONTROL) ALLOW

RECKEY | RR ADD( DI GTCERT. LI STRING Ul D(aci d) -


https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

| Extending | 90

SERVI CE( UPDATE) ALLOW
F ACF2, REBUI LD( FAC)

where;
* aci distheuser ID of the user that isinstalling Zowe.
1. Issuethe following command to find the name of the ZZOSMF keyring:

cat /var/zosnf/configuration/servers/zosnfServer/bootstrap.properties | grep
i zu. ssl . key. store. saf. keyring

Thiswill return aline like the following one:

i zu. ssl . key. store. saf . keyri ng=I ZUKeyri ng. | ZUDFLT
2. Run following commands as a superuser to import ZZOSMF certificates:

Note: This should be the same keyring name as specified in the PARMLIB member for ZZOSMF. For example, in
SYS1.PARMLIB(IZUPRMxXx) you will see aline like this:

KEYRI NG_NANME(' | ZUKeyr i ng. | ZUDFLT")

3. Substitute the value of the ZZOSMF keyring that is obtained above from boot st r ap. properti es inthevaue
of the- - zosnT - keyr i ng parameter:

su
cd $ZOWE_RUNTI ME/ api - nedi ati on
scripts/apim _cmsh --action trust-zosnf --zosnf-keyring
| ZUKeyring. | ZUDFLT --zosnf-userid | ZUSVR
If theimport is successful, restart the Zowe server to make the changes effective.
If the import is not successful, you may receive an error such as the following error:
keytool error (likely untranslated): java.io.|OException: The private key of
| ZUDFLT is not available or no authority to access the private key
It is not possible to read z/ OSMF keyring | ZUSVR/ | ZUKeyri ng. | ZUDFLT. The

effective user ID was: acid. You need to run this command as user that has
access to the z/ OSMF keyri ng:

Verify that you receive these messages in the log:

| CH408] USER(acid ) GROUP(group ) NAME(name )
| RR. DI GTCERT. GENCERT CL( FACI LI TY)
| NSUFFI Cl ENT ACCESS AUTHORI TY
FROM | RR. DI GTCERT. ** (G
ACCESS | NTENT( CONTROL) ACCESS ALLOAED( NONE )

If you receive these messages, permit the user to have CONTROL accessto | RR. DI GTCERT. * * with the following
RACF command or the equivalent command for ACF2 or Top Secret:

PERM T | RR DI GTCERT. ** CLASS(FACI LI TY) | D(aci d) ACCESS( CONTROL)

If theimport is successful, restart the Zowe server to make the changes effective.
Disable certificate validation

To use Zowe without setting up certificates, disable the validation of the TLS/SSL certificates by the API Mediation
Layer.

Update the following property:
-Dapim .security.verifySslCertificatesO Servi ces=fal se

in following shell scripts:



| Extending | 91

* $ZONE_RUNTI ME/ api - nedi ati on/ scri pts/api-medi ation-start-catal og. sh
* $ZOAE_RUNTI ME/ api - medi ati on/ scri pts/api -nedi ati on-start-di scovery. sh
e« $ZOWNE_RUNTI ME/ api - medi ati on/ scri pt s/ api -nedi ati on-start-gateway. sh

Java REST APIs with Spring Boot

Zowe API Mediation Layer (APl ML) provides a single point of access for mainframe service REST APIs. For a
high-level overview of this component, see APl Mediation Layer on page 8.

Note: Spring is aJava-based framework that lets you build web and enterprise applications. For more information,
see the Spring website.

Asan APl developer, use this guide to onboard your REST API service into the Zowe APl Mediation Layer. This
article outlines a step-by-step process to make your API service available in the APl Mediation Layer.

Prepare an existing Spring Boot REST API for onboarding on page 91
Add Zowe API enablersto your service on page 91

Add APl ML onboarding configuration on page 93

Externalize APl ML configuration parameters on page 101

Test your service on page 101

Review the configuration examples of the discoverable client on page 102

o0~ wbdh PR

Prepare an existing Spring Boot REST API for onboarding

The Spring Boot API onboarding process follows these general steps. Further detail about how to perform these steps
is described later in this article.

Follow these steps:
1. Add enabler annotations to your service code and update the build scripts:
e @EnableApiDiscovery

This annotation exposes your Swagger (OpenAPl) documentation in the Zowe ecosystem to enable/make your
micro service discoverable in the Zowe ecosystem.

Note: The @EnableA piDiscovery annotation uses the Spring Fox library. If your service uses this library
already, some fine tuning may be necessary.
e @ComponentScan({" com.ca.mfaas.enable", " com.ca.mfaas.product"})

This annotation makes an APl documentation endpoint visible within the Spring context.
2. Update your service configuration file to include Zowe APl Mediation Layer specific settings.
3. Externalize the API ML site-specific configuration settings.
4. Test your changes.

Add Zowe API enablers to your service

In order to onboard a REST API with the Zowe ecosystem, you add the Zowe Artifactory repository definition to the
list of repositories, then add the Spring enabler to the list of your dependencies, and finally add enabler annotations to
your service code. Enablers prepare your service for discovery and swagger documentation retrieval.

Follow these steps:

1. Addthe Zowe Artifactory repository definition to the list of repositoriesin Gradle or Maven build systems. Use
the code block that corresponds to your build system.

e InaGradle build system, add the following codeto the bui | d. gr adl e fileintother eposi t ori es block.
Note: Ensure that zou are using valid Zowe Artifactory credentials.
maven {

url "https://gizaartifactory.jfrog.iolgizaartifactory/libs-rel ease'
credentials {


https://spring.io/

| Extending | 92

usernanme 'apil ayer-build'
password ' | H 7sj JmAxL5k7obuf 80CF +t CLQYZPMVpDob50JGLNI ='
}
}

Note: You can definethegr adl e. properti es filewhere you can set your username, password, and the
read-only repo URL for access to the Zowe Artifactory. By defining thegr adl e. pr operti es, you do not
need to hardcode the username, password, and read-only repo URL inyour gr adl e. bui | d file.

Example:

# Artifactory repositories for builds
artifactoryMavenRepo=https://gizaartifactory.jfrog.io/
gi zaartifactory/libs-rel ease

# Artifactory credentials for builds (not publishing):
mavenUser =api | ayer-bui l d
mavenPasswor d=l H 7sj JmAxL5k70buf 80OF +t CLQYZPM/pDob50JGLNI =

e InaMaven build system, follow these steps:

a) Add the following codeto the pom xmi file:

<r epository>

<i d>d zaartificatory</id>

<url >https://gizaartifactory.jfrog.iol/gizaartifactory/libs-
rel ease</url >
</repository>

b) Createaset ti ngs. xm fileand copy the following XML code block which defines the login credentials
for the Zowe Artifactory. Use valid credentials.

<?xm version="1.0" encodi ng="UTF-8"?>

<settings xm ns="http://mven. apache. org/ SETTI NGS/ 1. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ SETTI NGS/ 1. 0. 0
htt ps:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">
<servers>
<server >
<i d>d zaartificatory</id>
<user name>{arti factoryUser}</user nane>
<password>{artifact or yPasswor d} </ passwor d>
</ server>
</ servers>
</settings>

c) Copy theset ti ngs. xnl fileinsidethe ${ user . hone}/. n2/ directory.
2. Add aJAR packageto the list of dependenciesin Gradle or Maven build systems. Zowe APl Mediation Layer
supports Spring Boot versions 1.5.9 and 2.0.4.

» If you use Spring Boot release 1.5.x in a Gradle build system, add the following code to the build.gradle file
into thedependenci es block:

conpi l e group: 'comca. nfaas.sdk', nane: 'nfaas-integration-enabl er-
spring-vl-springboot-1.5.9. RELEASE , version: '0.3.0- SNAPSHOT'

« If you use Spring Boot release 1.5.x in aMaven build system, add the following code to thepom xm file:

<dependency>
<gr oupl d>com ca. nf aas. sdk</ gr oupl d>



| Extending | 93

<artifactl|d>nfaas-integration-enabl er-spring-vl-
spri ngboot - 1. 5. 9. RELEASE</ arti fact|d>
<versi on>0. 3. 0- SNAPSHOT</ ver si on>
</ dependency>

« |f you use the Spring Boot release 2.0.x in a Gradle build system, add the following code to the
bui | d. gr adl e fileintothedependenci es block:

conmpi l e group: 'com ca. nfaas. sdk', nane: 'nfaas-integration-enabl er-
spring-v2-springboot-2.0.4. RELEASE , version: '0.3.0-SNAPSHOT'

» If you use the Spring Boot release 2.0.x in a Maven build system, add the following code to thepom xmi file:

<dependency>
<gr oupl d>com ca. nf aas. sdk</ gr oupl d>
<artifactld>nfaas-integration-enabl er-spring-v2-
spri ngboot - 2. 0. 4. RELEASE</ arti fact| d>
<ver si on>0. 3. 0- SNAPSHOT</ ver si on>
</ dependency>

3. Add the following annotations to the main class of your Spring Boot, or add these annotations to an extra Spring
configuration class:

e (@onponent Scan({"com ca. nf aas. enabl e", "com ca. nfaas. product"})
e (@nabl eApi Di scovery

Example:

package com ca. nfaas. Di scover abl ed i ent Sanpl eAppl i cati on;

i ﬁport com ca. nf aas. enabl e. Enabl eApi Di scovery;
i mport org.springfranework. cont ext.annot ati on. Conponent Scan;

@nabl eApi Di scovery
@onponent Scan({"com ca. nf aas. enabl e", "com ca. nf aas. product"})

publ i c class Discoverabl edientSanpl eApplication {...

Y ou are now ready to build your service to include the code pieces that make it discoverable in the API Mediation
Layer and to add Swagger documentation.

Add API ML onboarding configuration

Asan APl service developer, you set multiple configuration settings in your application.yml that correspond to the
APl ML. These settings enable an API to be discoverable and included in the API catalog. Some of the settings

in the application.yml are internal and are set by the APl service developer. Some settings are externalized and

set by the customer system administrator. Those external settings are service parameters and are in the format:

${ environment.*}.

Important! Spring Boot configuration can be externalized in multiple ways. For more information see: Externalized
configuration. This Zowe onboarding documentation appliesto API services that use an application.yml file for
configuration. If your service uses a different configuration option, transform the provided configuration sample to
the format that your API service uses.

Tip: For information about how to set your configuration when running a Spring Boot application under an external
servlet container (TomCat), see the following short stackoverflow article: External configuration for spring-boot
application.

Follow these steps:


https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application

| Extending | 94

1. Addthefollowing #MFAAS configuration section in your appl i cati on. yn :

HHHHH SR HHH R R R R R R R R R R R R R R R R R R R R R R R R R R R
# MFAAS configuration section

HHHHH R
nf aas:
di scovery:
serviceld: ${environnent. servicel d}
| ocations: ${environment.di scoverylLocati ons}
enabl ed: ${environnent. di scoveryEnabl ed: t rue}
endpoi nt s:
st at usPage: ${nfaas.server.schene}://
${ nf aas. servi ce. host nane}: ${ nf aas. server. port} ${ nf aas. server. cont ext Pat h}/
application/info
heal t hPage: ${nfaas. server.schene}://
${ nf aas. servi ce. host name}: ${ nf aas. server. port}${nf aas. server. cont ext Pat h}/
application/health
homePage: ${nfaas.server.schene}://
${ nf aas. servi ce. host nane}: ${ nf aas. server. port} ${ nf aas. server. cont ext Pat h}/
i nfo:
serviceTitle: ${environnment.serviceTitle}
description: ${environment.serviceDescription}
# swagger Locat i on:
resource_l ocation_of your_static_swagger_doc.json
fetchRegistry: fal se
region: default
servi ce:
host nane: ${environnent. host nane}
i pAddress: ${environnent.ipAddress}
catal og-ui-tile:
i d: your Product Fani | yl d
title: Your APl service product famly title in the APl catal og
dashboard tile
description: Your APl service product fam |y description in the
APl cat al og dashboard tile
version: 1.0.0
server:
schene: http
port: ${environnent.port}
cont ext Pat h: /your Servi ceUrl Prefix

eur eka:
i nstance:
appnane: ${nfaas. di scovery. servi cel d}
host name: ${nf aas. servi ce. host nane}
st at usPageUr | Pat h: ${nf aas. di scovery. endpoi nts. st at usPage}
heal t hCheckUr | : ${nfaas. di scovery. endpoi nts. heal t hPage}
homePageUr | : ${nfaas. di scovery. endpoi nts. honePage}
nmet adat a- map:
rout ed- servi ces

api _vi:

gateway-url: "api/vl"

service-url: ${nfaas.server.context Pat h}
api - doc:

gateway-url: "api/vl/ api-doc"

service-url: ${nfaas.server. contextPath}/api-doc

nf aas:

api -i nf o:

api Ver si onProperties:
v1:



| Extending | 95

title: Your APl title for swagger JSON which
is displayed in APl Catalog / service / APl Information
description: Your APl description for
swagger JSON
version: 1.0.0
basePackage
your . servi ce. base. package. f or. swagger . annot at ed. control |l ers
# api Pattern: /vl/.* # alternative to
basePackage for exposing endpoints which natch the regex pattern to
swagger JSON
di scovery:
catal ogUi Ti | e:
id: ${nfaas.catal og-ui-tile.id}
title: ${nfaas.catalog-ui-tile.title}
description: ${nfaas. catal og-ui -
tile.description}
version: ${nfaas.catal og-ui-tile.version}
enabl eApi Doc:
${nf aas. di scovery. i nfo. enabl eApi Doc: true}
servi ce:
title: ${nfaas.discovery.info.serviceTitle}
description: ${nfaas.discovery.info.description}
client:
enabl ed: ${nf aas. di scovery. enabl ed}
heal t hcheck:
enabl ed: true
serviceUrl:
def aul t Zone: ${nfaas. di scovery. | ocati ons}
fetchRegistry: ${nfaas. discovery.fetchRegistry}
regi on: ${nfaas.discovery.region}

HARHH TR R R R R R R R R R R R i
# Application configuration section

HEHH AR AR R R R R R R R R R R R R R R R R
server:
# address: ${nfaas.service.ipAddress}
port: ${nfaas.server.port}
servl et:
cont ext Pat h: ${nf aas. server. cont ext Pat h}

Spring:
application:
name: ${nfaas. di scovery. servi cel d}

Important: Add this configuration also to theappl i cati on. ym used for testing. Failure to add this
configuration to theappl i cati on. ym will cause your teststo fail.



| Extending | 96

2. Change the MFaaS parameters to correspond with your APl service specifications. Most of these internal
parameters contain "your service" text.

Note: ${ nf aas. *} variables are used throughout the appl i cat i on. ym sample to reduce the number of
required changes.

Tip: When existing parameters set by the system administrator are already present in your configuration file (for
example, host nanme, address, context Path, andport), werecommend that you replace them with
the corresponding M FaaS properties.

a. Discovery Parameters

mfaas.discovery.serviceld

Specifies the service instance identifier to register in the APl ML installation. The service ID isused in the
URL for routing to the API service through the gateway. The service ID uniquely identifies instances of a
microservicein the APl ML. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

*  When two API services use the same service ID, the APl Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

* Thesame service ID should be set for only multiple API service instances for API scalability.
e Theservice ID value must contain only lowercase alphanumeric characters.
e Theservice ID cannot contain more than 40 characters.

* TheservicelD islinked to security resources. Changes to the service ID require an update of security
resources.

e TheserviceID must matchthespri ng. appl i cati on. name parameter.
Examples:
« |If the customer system administrator setsthe service ID to sysvi ewl pr 1, the APl URL inthe API
Gateway appears as the following URL:
https://gateway: port/api/vl/sysview prl/endpointl/...
« |f the customer system administrator sets the service ID to vantageprodl, the APl URL in the APl Gateway
appears as the following URL.:
http://gateway: port/api/vl/ vantageprodl/ endpointl/. ..
mfaas.discovery.locations

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

http://eureka: password@a41. 202. 65. 33: 10311/ eur eka/
mfaas.discovery.enabled

Specifies whether the API service instance is to be discovered in the APl ML. The system administrator at the
customer site defines this parameter. Set this parameter to t r ue if the API ML isinstalled and configured.
Otherwise, you can set this parameter to f al se to exclude an API service instances from the API ML.

mfaas.discovery.fetchRegistry

Specifies whether the API serviceisto receive regular update notifications from the discovery service. Under
most circumstances, you can accept the default value of f al se for the parameter.

mfaas.discovery.region

Specifies the geographical region. This parameter is required by the Discovery client. Under most
circumstances you can accept the value def aul t for the parameter.



| Extending | 97

b. Service and Server Parameters

mfaas.service.hosthname

Specifies the hostname of the system where the API service instance runs. This parameter is externalized and
is set by the customer system administrator. The administrator ensures the hostname can be resolved by DSN
to the |P address that is accessible by applications running on their zZ/OS systems.

mfaas.serviceipAddress

Specifiesthe local P address of the system where the API service instance runs. This |P address may or may
not be a public IP address. This parameter is externalized and set by the customer system administrator.

mfaas.server.scheme

Specifies whether the API serviceis using the HTTPS protocol. Thisvalue canbesettoht t ps orhtt p
depending on whether your serviceis using SSL.
mfaas.server .port

Specifies the port that is used by the API service instance. This parameter is externalized and set by the
customer system administrator.
mfaas.server.contextPath

Specifies the prefix that is used within your API service URL path.
Examples:

« |If your API service does not use an extra prefix in the URL (for example, ht t p: / / host : port/
endpoi nt 1/), set thisvalueto/ .

« |If your API service uses an extra URL prefix set the parameter to that prefix value. For the URL:
http://host:port/fil emaster/endpointl/,setthisparameterto/fil emaster.

« Inboth examples, the API service URL appears as the following URL when routed through the Gateway:

http://gateway: port/servicel d/ endpoi nt 1/

c. API Catalog Parameters

These parameters are used to populate the API Catalog. The API Catalog contains information about every
registered APl service. The Catalog also groups related APIs. Each API group has its own name and description.



| Extending | 98

Catalog groups are constructed in real-time based on information that is provided by the API services. Each group
isdisplayed as atilein the APl Catalog Ul dashboard.

* mfaas.catalog-ui-tile.id

Specifies the unique identifier for the API services product family. Thisisthe grouping value used by the API
ML to group multiple API services together into "tiles". Each unique identifier represents asingle APl Catalog
Ul dashboard tile. Specify avalue that does not interfere with API services from other products.

« mfaas.catalog-ui-tiletitle

Specifies the title of the API services product family. Thisvalueisdisplayed in the APl Catalog Ul dashboard
asthetiletitle
» mfaas.catalog-ui-tile.description

Specifies the detailed description of the API services product family. Thisvaueis displayed in the AP
Catalog Ul dashboard as the tile description

« mfaas.catalog-ui-tile.version

Specifies the semantic version of this API Catalog tile. Increase the version when you introduce new changes
to the API services product family details (title and description).

» mfaas.discovery.info.serviceTitle

Specifies the human readable name of the API service instance (for example, "Endevor Prod” or " Sysview
LPAR1"). Thisvalueisdisplayed in the APl Catalog when a specific API serviceinstance is selected. This
parameter is externalized and set by the customer system administrator.

API Catalog - Available

MFaas Microservice to locate and display APl documentation for MFaaS discovered microservices

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
* mfaas.discovery.info.description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance” or "CA SY SVIEW running on LPARL". Thisvaueis
displayed in the API Catalog when a specific APl service instance is selected. This parameter is externalized
and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
Describe the service so that the end user knows the function of the service.

» mfaas.discovery.info.swagger L ocation

Specifies the location of a static swagger document. The JISON document contained in thisfile is displayed
instead of the automatically generated APl documentation. The JSON file must contain avalid OpenAPI 2.x
Specification document. Thisvalueis optional and commented out by default.

Note: Specifying aswagger Locat i on value disables the automated JSON API documentation generation
with the SpringFox library. By disabling auto-generation, you need to keep the contents of the manual swagger



| Extending | 99

definition consistent with your endpoints. We recommend to use auto-generation to prevent incorrect endpoint
definitions in the static swagger documentation.

d. Metadata Parameters
The routing rules can be modified with parameters in the metadata configuration code block.

Note: If your REST API does not conform to Zowe APl Mediation layer REST API Building codes, configure
routing to transform your actual endpoints (serviceUrl) to gatewayUrl format. For more information see: REST
API Building Codes

e eureka.instance. net adat a- map. rout ed- servi ces. <prefi x>

Specifies aname for routing rules group. This parameter is only for logical grouping of further parameters.
Y ou can specify an arbitrary value but it is a good devel opment practice to mention the group purposein the
name.

Examples:
api - doc
api _vl
api _v2

e eureka.instance. net adat a- map. rout ed- servi ces. <prefi x>. gat ewayUr |

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

* et adat a- map. r out ed- servi ces. <prefi x>. servi ceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

Important! Ensure that each of the values for gatewayUrl parameter are unique in the configuration.
Duplicate gatewayUrl values may cause requests to be routed to the wrong service URL.

Note: The endpoint / api - doc returns the API service Swagger JSON. This endpoint is introduced by the
@nabl eM aasl| nf o annotation and is utilized by the API Catal og.

e. Swagger Api-Doc Parameters

Configures API Version Header Information, specifically the InfoObject section, and adjusts Swagger
documentation that your API service returns. Use the following format:

api -i nf o:
api Ver si onProperti es:
v1:

title: Your API title for swagger JSON which is displayed in API
Catalog / service / APl Information

description: Your APl description for swagger JSON

version: 1.0.0

basePackage:
your . servi ce. base. package. f or. swagger . annot at ed. control |l ers


https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://swagger.io/specification/#infoObject

| Extending | 100

# api Pattern: /vl/.* # alternative to basePackage for exposing
endpoi nts which match the regex pattern to swagger JSON

The following parameters describe the function of the specific version of an API. Thisinformation isincluded in
the swagger JSON and displayed in the API Catal og:

Title API Catalod

Description This is the REST API for the API Catalog microservice. The API Catalod is one of the API Mediation Layer compone

Version 10C

e vl

Specifies the major version of your service API: v1, v2, etc.
o title

Specifies the title of your service API.
e description

Specifies the high-level function description of your service API.
e version

Specifies the actual version of the API in semantic format.
* basePackage

Specifies the package where the API islocated. This option only exposes endpoints that are defined in a
specified java package. The parameters basePackage and api Pat t er n are mutually exclusive. Specify
only one of them and remove or comment out the second one.

e apiPattern

This option exposes any endpoints that match a specified regular expression. The parameters basePackage
and api Pat t er n are mutually exclusive. Specify just one of them and remove or comment out the second
one.

Tip: You have three options to make your endpoints discoverable and exposed: basePackage,
api Pat t er n, or none (if you do not specify a parameter). If basePackage or api Pat t er n are not
defined, all endpointsin the Spring Boot app are exposed.

Setup keystore with the service certificate

To register with the APl Mediation Layer, aservice is required to have a certificate that istrusted by APl Mediation
Layer.

Follow these steps:
1. Follow instructions at Generating certificate for anew service on localhost

When a service is running on localhost, the command can have the following format:

<api -l ayer-repository>/scripts/apim _cmsh --action new service --service-
alias |ocal host --service-ext SAN=dns: | ocal host.| ocal domai n, dns: | ocal host
--servi ce-keystore keystore/l ocal host. keystore. pl2 --service-truststore
keystore/l ocal host.truststore.pl2 --service-dnanme "CN=Sanpl e REST API
Service, OU=Mai nfrane, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-
password password --service-validity 365 --local-ca-fil ename <api -1 ayer-
reposi tory>/ keystore/l ocal _cal/l ocal ca

Alternatively, for the purpose of local development, copy or usethe <api - | ayer - r eposi t ory>/
keystore/l ocal host.truststore. pl2inyour service without generating a new certificate.


https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost

| Extending | 101

2. Update the configuration of your serviceappl i cati on. ym to contain the HTTPS configuration by adding the
following code:

server:
ssl :
protocol : TLSv1.2
ci phers:
TLS_RSA W TH_AES 128_CBC_SHA, TLS DHE_RSA W TH_AES 256_CBC_SHA, TLS ECDH RSA W TH_AES_
keyAl i as: | ocal host
keyPassword: password
keySt ore: keystore/local host. keystore. pl2
keySt oreType: PKCS12
keySt or ePasswor d: password
trust Store: keystore/local host.truststore.pl2
trust StoreType: PKCS12
trust St orePassword: password

Note: You need to define both keystore and truststore even if your server is not using HTTPS port.

Externalize API ML configuration parameters
The following list summarizes the APl ML parameters that are set by the customer system administrator:

 nfaas. discovery. enabl ed: ${environnment. di scoveryEnabl ed: t r ue}

+ nfaas. discovery.locations: ${environnment.discoverylLocati ons}

« nfaas. di scovery.servicel D ${environnent. servicel d}

o nfaas.discovery.info.serviceTitle: ${environnent.serviceTitle}

 nfaas. discovery.info.description: ${environnent. serviceDescription}
+ nfaas. service. hostnanme: ${environnent. host nane}

+ nfaas.service.ipAddress: ${environnment.i pAddress}

o nfaas.server.port: ${environnent.port}

Tip: Spring Boot applications are configured intheappl i cati on. ym and boot strap. ym filesthat

are located in the USS file system. However, system administrators prefer to provide configuration through the
mainframe sequential data set (or PDS member). To override Java values, use Spring Boot with an external YML file,
environment variables, and Java System properties. For Zowe APl Mediation Layer applications, we recommend that
you use Java System properties.

Java System properties are defined using - D options for Java. Java System properties can override any configuration.
Those propertiesthat are likely to change are defined as ${ envi r onnment . var i abl eNane} :

| JO="$1 JO - Denvi ronnent . di scover yEnabl ed=. . "
| JO="$I JO - Denvi ronnent . di scoverylLocati ons=.."

O="%$1JO -Denvironnent. servi celd=.."

O="%$1JO -Denvi ronnent.serviceTitle=.."
O="$1JO - Denvi ronnent . servi ceDescription=.."
O="$%$1JO -Denvi ronnent. host nane=. . "

O="$1JO - Denvi ronnent . i pAddr ess=. . "

J
J
J
J
J
JO="$1JO - Denvi ronnent. port=.."

Thedi scoverylLocat i ons (public URL of the discovery service) value isfound in the APl Meditation Layer
configuration, inthe* . PARMLI B( MASXPRM) member and assigned to the MFS_EUREKA variable.

Example:

MFS_EUREKA="ht t p: / / eur eka: passwor d@41. 202. 65. 33: 10011/ eur eka/ ")

Test your service

To test that your API instance is working and is discoverable, use the following validation tests:



| Extending | 102

Validate that your APl instance is still working
Follow these steps:

1. Disablediscovery by setting di scover yEnabl ed=f al se inyour APl service instance configuration.
2. Runyour teststo check that they are working as before.

Validate that your APl instance is discoverable
Follow these steps:

1. Point your configuration of APl instance to use the following Discovery Service:

http://eureka: password@ ocal host: 10011/ eur eka

2. Start up the API serviceinstance.

3. Check that your API service instance and each of its endpoints are displayed in the API Catalog
https://1 ocal host: 10010/ ui / v1/ caapi cat al og/

4. Check that you can access your API service endpoints through the Gateway .

Example:
https://I ocal host: 10010/ api / v1/

1. Check that you can still access your API service endpoints directly outside of the Gateway.

Review the configuration examples of the discoverable client

Refer to the Discoverable Client APl Sample Service in the API ML git repository.

Java REST APIs service without Spring Boot

Asan APl developer, use this guide to onboard a Java REST API service that is built without Spring Boot with the
Zowe API Mediation Layer. This article outlines a step-by-step process to onboard a Java REST API application with
the APl Mediation Layer. More detail about each of these steps is described later in thisarticle.

Follow these steps:
1. Get enablersfrom the Artifactory on page 103

» Gradle guide on page 103

« Maven guide on page 103

(Optional) Add Swagger API documentation to your project on page 104
Add endpointsto your API for APl Mediation Layer integration on page 105
Add configuration for Discovery client on page 106

Add a context listener on page 110

arcwDd

a. Add acontext listener class on page 110
b. Register a context listener on page 110
6. Run your service on page 111
7. (Optional) Validate discovery of the API service by the Discovery Service on page 111

Notes:

» Thisonboarding procedure uses the Spring framework for implementation of a REST API service, and describes
how to generate Swagger APl documentation using a Springfox library.

* If you use another framework that is based on a Servlet API, you can use Ser vl et Cont ext Li st ener thatis
described later in this article.

« |If you use aframework that does not have a Ser vl et Cont ext Li st ener class, seethe add context listener
section in this article for details about how to register and unregister your service with the APl Mediation Layer.


https://github.com/zowe/api-layer

| Extending | 103

Prerequisites
» Ensurethat your REST API servicethat iswritten in Java.
« Ensurethat your service has an endpoint that generates Swagger documentation.
Get enablers from the Artifactory

Thefirst step to onboard a Java REST API into the Zowe ecosystem is to get enabler annotations from the
Artifactory. Enablers prepare your service for discovery in the APl Mediation Layer and for the retrieval of Swagger
documentation.

Y ou can use either Gradle or Maven build automation systems.

Gradle guide

Use the following procedure if you use Gradle as your build automation system.
Follow these steps:

1. Create agradle.propertiesfilein the root of your project.

2. Inthe gradle.propertiesfile, set the following URL of the repository. Use the values provided in the following
code block for user credentials to access the Artifactory:

# Repository URL for getting the enabler-java artifact
artifactoryMavenRepo=https://gizaartifactory.jfrog.io/gizaartifactory/
| i bs-rel ease

# Artifactory credentials for builds:
mavenUser =api | ayer-bui | d
mavenPasswor d=I H 7sj JmAXxL5k7obuf 80O +t CLQYZPM/pDob50JGLNI =

Thisfile specifies the URL of the repository of the Artifactory. The enabler-java artifacts are downloaded from
this repository.
3. Add thefollowing Gradle code block tothe bui | d. gr adl e file:

ext. mavenRepository = {
maven {
url artifactoryMavenSnapshot Repo
credentials {
user nane mavenUser
password mavenPassword

}

repositories nmavenRepositories

Theext object declaresthe mavenReposi t ory property. This property is used as the project repository.

4. Inthesamebui | d. gr adl e file, add the following code to the dependencies code block to add the enabler-java
artifact as a dependency of your project:

conpi |l e(group: 'com ca. nfaas.sdk', nanme: 'nfaas-integration-enabler-java'
version: '0.2.0")

5. Inyour project directory, runthegr adl e bui | d command to build your project.
Maven guide
Use the following procedure if you use Maven as your build automation system.

Follow these steps:



| Extending | 104

1. Addthefollowing xml tags within the newly created pom xni file:

<repositories>
<repository>
<id>libs-rel ease</i d>
<name>| i bs-r el ease</ nane>
<url>https://gizaartifactory.jfrog.iol/gizaartifactory/libs-
rel ease</url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

Thisfile specifies the URL of the repository of the Artifactory where you download the enabler-java artifacts.

2. Inthesamepom xni file, copy the following xml tags to add the enabler-java artifact as a dependency of your
project:

<dependency>
<gr oupl d>com ca. nf aas. sdk</ gr oupl d>
<artifactld>nfaas-integration-enabler-java</artifactld>
<ver si on>0. 2. 0</ ver si on>

</ dependency>

3. Createasettings. xm fileand copy the following xml code block which defines the credentials for the
Artifactory:

<?xm version="1.0" encodi ng="UTF-8"?>

<settings xm ns="http://mven. apache. or g/ SETTI NGS/ 1. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ SETTI NGS/ 1. 0. 0
htt ps:// maven. apache. or g/ xsd/ settings-1. 0. 0. xsd">
<servers>
<server >
<i d>li bs-rel ease</i d>
<user nanme>api | ayer - bui | d</ user nanme>
<passwor d>| Hj 7sj ImAxL5k7obuf 80CF +t CLQYZPMVpDob50JGLNI =</ passwor d>
</ server>
</ servers>
</settings>

4. Copythesettings. xm fileinsidethe${user. home}/. n2/ directory.
5. Inthedirectory of your project, runthemvn package command to build the project.
(Optional) Add Swagger APl documentation to your project

If your application already has Swagger APl documentation enabled, skip this step. Use the following procedure if
your application does not have Swagger APl documentation.

Follow these steps:
1. Add a Springfox Swagger dependency.
« For Gradle add the following dependency inbui | d. gr adl e:

compi l e "i 0. spri ngfox: spri ngfox-swagger 2: 2. 8. 0"
» For Maven add the following dependency in pom xmi :
<dependency>

<groupl d>i o. spri ngf ox</ gr oupl d>
<artifactld>springfox-swagger2</artifactld>



| Extending | 105

<versi on>2. 8. 0</ versi on>
</ dependency>

2. Add a Spring configuration class to your project:

package com ca. nfaas. hel | ospri ng. confi gurati on;

i mport org.springfranmework. cont ext.annot ati on. Bean
i mport org.springfranmework. cont ext. annot ati on. Confi gurati on
i mport org.springframewor k. web. servl et. config.annot ati on. Enabl eWwebMc;
i mport
org. spri ngfranmewor k. web. servl et. confi g. annot ati on. WebMvcConf i gur er Adapt er
i mport springfox. docunment ati on. bui |l ders. Pat hSel ect or s;
i mport springfox.docunent ati on. bui |l ders. Request Handl er Sel ect ors;
i mport springfox.docunent ati on. servi ce. Api | nf o;
i mport springfox.docunent ati on. servi ce. Cont act ;
i mport springfox. docunent ati on. spi . Docunment ati onType;
i mport springfox. docunentation. spring.web. pl ugi ns. Docket ;
i mport springfox. docunment ati on. swagger 2. annot at i ons. Enabl eSwagger 2;

i mport java.util.Arraylist;

@Confi guration
@Enabl eSwagger 2
@nabl eWwebM/c
public class Swagger Confi gurati on extends WebMscConfi gur er Adapter {
@Bean
public Docket api() {
return new Docket ( Docunent ati onType. SWAGCGER 2)
.select ()
. api s( Request Handl er Sel ect ors. any())
. pat hs(Pat hSel ectors. any())
L bui 1 d()
.api I nfo(new Api I nf o(
"Spring REST API",
"Exanpl e of REST API",
"1.0.0",
nul |,
nul |,
nul |,
nul |,
new ArraylLi st<>()

)
}

3. Customize this configuration according to your specifications. For more information about customization

properties, see Springfox documentation.

Add endpoints to your API for API Mediation Layer integration

To integrate your service with the APl Mediation Layer, add the following endpoints to your application:

Swagger documentation endpoint

The endpoint for the Swagger documentation.
Health endpoint

The endpoint used for health checks by the Discovery Service.
Info endpoint

The endpoint to get information about the service.

The following java code is an example of these endpoints added to the Spring Controller;


https://springfox.github.io/springfox/docs/snapshot/#configuring-springfox

| Extending | 106

Example:

package com ca. nfaas. hel |l ospring.controller;

i mport com ca. nf aas. eur ekaservi ce. nodel . *;

i mport org.springfranmework. stereotype. Controller;

i mport org.springfranmewor k. web. bi nd. annot at i on. Get Mappi ng;

i mport org.springfranework. web. bi nd. annot ati on. ResponseBody;
i mport springfox.docunment ati on. annot ati ons. Api | gnor e;

@ontroll er
@i | gnor e

public class MaasController {

@zt Mappi ng( "/ api - doc")
public String api Doc() {

return "forward:/v2/ api -docs";
}

@@=t Mappi ng("/ appl i cati on/ health")

public @ResponseBody Heal th getHealth() {
return new Heal th("UP");

}

@@=t Mappi ng( "/ application/info")
publi c @ResponseBody ResponseEntity<EnptyJsonResponse>
get Di scoveryl nfo() {
Ht t pHeader s headers = new HttpHeaders();
header s. add(" Cont ent - Type", "application/json");
return new ResponseEntity(new EnptyJsonResponse(), headers,
Ht t pSt at us. OK) ;
}

Add configuration for Discovery client

After you add APl Mediation Layer integration endpoints, you are ready to add service configuration for Discovery
client.

Follow these steps:

1. Createthefileservi ce- confi gurati on.ym inyour resources directory.
2. Add the following configuration to your ser vi ce- confi gurati on.ym :

serviceld: hellospring
title: HelloWrld Spring REST AP
description: POC for exposing a Spring REST API
baseUrl: http://1ocal host: 10020/ hel | ospri ng
honePageRel ati veUr| :
st at usPageRel ativeUrl: /application/info
heal t hCheckRel ativeUrl: /application/health
di scoveryServiceUrl s:
- http://eureka: password@ ocal host: 10011/ eur eka

rout edServi ces:
- gatewayUrl: api/vl

serviceUrl: /hellospring/api/vl

- gatewayUrl: api/vl/ api-doc
serviceUrl: /hellospring/api-doc
api | nf o:
title: HelloWwrld Spring
description: REST APl for a Spring Application
version: 1.0.0



| Extending | 107

catal ogUi Ti | e:
id: helloworld-spring
title: Hellowrld Spring REST API
description: Proof of Concept application to denonstrate exposing a
REST APl in the MraaS ecosystem
version: 1.0.0

3. Customize your configuration parameters to correspond with your APl service specifications.
The following list describes the configuration parameters:
e serviceld

Specifies the service instance identifier that is registered in the APl Mediation Layer installation. The service
ID isused inthe URL for routing to the API service through the gateway. The service ID uniquely identifies



| Extending | 108

instances of amicroservice in the APl Mediation Layer. The system administrator at the customer site defines
this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

*  When two API services use the same service ID, the APl Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

e Thesame service ID should be set only for multiple API service instances for API scalability.
e Theservice ID value must contain only lowercase alphanumeric characters.
e Theservice ID cannot contain more than 40 characters.

» TheserviceD islinked to security resources. Changes to the service ID require an update of security
resources.

Examples:
» |If the customer system administrator setsthe service ID to sysvi ewl pr 1, the APl URL inthe API
Gateway appears as the following URL:
https://gateway: port/api/vl/ sysview prl/endpointl/...
e |f acustomer system administrator sets the service ID to vantageprodl, the APl URL in the APl Gateway
appears as the following URL :
http://gateway: port/api/vl/ vant ageprodl/ endpointl/. ..
title

Specifies the human readable name of the API service instance (for example, "Endevor Prod” or "Sysview
LPARL1"). Thisvalueisdisplayed in the APl Catalog when a specific APl service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of theti t | e. Use atitle that describes the
service instance so that the end user knows the specific purpose of the service instance.

description
Specifies a short description of the API service.
Example: "CA Endevor SCM - Production Instance” or "CA SY SVIEW running on LPAR1".

Thisvalueis displayed in the APl Catalog when a specific APl service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.
baseUr|

Specifiesthe URL to your service to the REST resource. It will be the prefix for the following URLS:

« homePageRelativeUr|
e statusPageRelativeUrl
« healthCheckRelativeUrl.

Examples:

e http://host:port/servicenamne for HTTP service
e https://host:port/servicenane for HTTPS service
homePageRelativeUr|

Specifies the relative path to the home page of your service. The path should start with / . If your service has
no home page, leave this parameter blank.

Examples:

« honmePageRel ati veUrl: The service has no home page
« honePageRel ativeUrl: [/ Theservice has home pagewith URL ${ baseUr |}/



| Extending | 109

statusPageRelativeUr|

Specifies the relative path to the status page of your service. Thisisthe endpoint that you defined in the
M aasCont rol | er controller intheget Di scover yl nf o method. Start this path with /.

Example:

e statusPageRel ativeUrl: /application/infotheresult URL will be ${ baseUrl}/
application/info

healthCheckRelativeUrl|

Specifies the relative path to the health check endpoint of your service. Thisis the endpoint that you defined in
the M aasCont r ol | er controller inthe get Heal t h method. Start this URL with/ .

Example:

* heal t hCheckRel ativeUrl: [application/health.Thisresultsinthe URL: ${ baseUr|}/
application/health

discoveryServiceUrls

Specifiesthe public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

 http://eureka: password@a41. 202. 65. 33: 10311/ eur eka/
routedServices

The routing rules between the gateway service and your service.
e routedServices.gatewayUr|

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.
* routedServices.serviceUr|

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

apilnfo.title

Specifiesthe title of your service API.
apilnfo.description

Specifies the high-level function description of your service API.
apilnfo.version

Specifies the actual version of the API in semantic format.
catalogUiTile.id

Specifies the unique identifier for the API services product family. Thisisthe grouping value used by the API
Mediation Layer to group multiple API servicestogether into "tiles’. Each unique identifier represents asingle
API Catalog Ul dashboard tile. Specify a value that does not interfere with API services from other products.

catalogUiTiletitle

Specifiesthe title of the API services product family. This value is displayed in the API catalog Ul dashboard
asthetiletitle.

catalogUiTile.description

Specifies the detailed description of the API services product family. Thisvalueis displayed in the API catalog
Ul dashboard as the tile description.

catalogUiTile.version

Specifies the semantic version of this API Catalog tile. Increase the number of the version when you introduce
new changes to the product family details of the API services including the title and description.



| Extending | 110

Add a context listener

The context listener invokesthe api Medi ati onC i ent. regi st er (confi g) method to register the
application with the APl Mediation Layer when the application starts. The context listener also invokes the

api Medi ati onCli ent. unregi st er () method before the application shuts down to unregister the application
in APl Mediation Layer.

Note: If you do not use a Java Serviet API based framework, you can till call the same methods for
api Medi ati onCl i ent to register and unregister your application.

Add a context listener class

Add the following code block to add a context listener class:

package com ca. nfaas. hell ospring.|istener;

i mport com ca. nf aas. eur ekaservi ce. client. Api Medi ati ond i ent;
i mport com ca. nf aas. eur ekaservi ce. client.config. Api Medi ati onServi ceConfi g;
i mport com ca. nf aas. eur ekaservi ce. client.inpl.Api Medi ati ondientlnpl;
i mport
com ca. nf aas. eur ekaservice.client.util.Api Medi ati onServi ceConfi gReader ;

i mport javax.servl et. Servl et Cont ext Event ;
i mport javax.servlet. Servl et Cont ext Li st ener;

public class Api Di scoveryLi stener inplenments Servl et Cont extListener {
private Api Medi ati onClient api Medi ati onCient;

@verride

public void contextlnitialized(ServletContextEvent sce) {
api Medi ati onCli ent = new Api Medi ationC ientlnpl ();
String configurationFile = "/service-configuration.ym";
Api Medi ati onServi ceConfig config = new

Api Medi at i onSer vi ceConfi gReader (confi gurationFile).readConfiguration();

api Medi ati onClient.register(config);

}

@verride
public voi d context Destroyed( Servl et Cont ext Event sce) {

api Medi ati onClient.unregister();

}

Register a context listener
Register a context listener to start Discovery client. Add the following code block to the deployment descriptor
web. xm to register a context listener:

<li stener>
<l i st ener-cl ass>com ca. nf aas. hel | ospring. i stener. Api Di scoverylLi stener</
l'i stener-class>
</listener>
Setup key store with the service certificate
All API servicesrequire a certificate that is trusted by APl Mediation Layer in order to register with it.

Follow these steps:



| Extending | 111

1. Follow instructions at Generating certificate for a new service on localhost

If the service runs on localhost, the command uses the following format:

<api -l ayer-repository>/scripts/apim _cmsh --action new service --service-
alias | ocal host --service-ext SAN=dns: | ocal host.| ocal domai n, dns: | ocal host
--servi ce-keystore keystore/l ocal host. keystore. pl2 --service-truststore
keystore/l ocal host.truststore.pl2 --service-dnanme "CN=Sanpl e REST API
Service, QOU=Mai nfrane, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-
password password --service-validity 365 --1ocal -ca-fil ename <api -1 ayer -
reposi tory>/ keystore/l ocal _cal/l ocal ca

Alternatively, copy or usethe<api - | ayer - r eposi t ory>/ keystore/ | ocal host.truststore. pl2
in your service without generating a new certificate, for local development.

2. Update the configuration of your serviceser vi ce- confi gurati on. ym tocontainthe HTTPS
configuration by adding the following code:

ssl :
protocol : TLSv1. 2
ci phers:
TLS_RSA W TH_AES 128 CBC_SHA, TLS DHE RSA W TH_AES 256_CBC_SHA, TLS ECDH RSA W TH_AES_
keyAl i as: | ocal host
keyPassword: password
keyStore: keystore/local host. keystore. pl2
keySt oreType: PKCS12
keySt or ePasswor d: password
trustStore: keystore/local host.truststore.pl2
trust St oreType: PKCS12
trust St orePassword: password

Note: You need to define both key store and trust store even if your server is not using HTTPS port.

Run your service

After you add all configurations and controllers, you are ready to run your service in the APl Mediation Layer
ecosystem.

Follow these steps:
1. Run the following servicesto onboard your application:

» Gateway Service
» Discovery Service
e API Catalog Service

Tip: For moreinformation about how to run the APl Mediation Layer locally,

see Running the APl Mediation Layer on Local Machine.
2. Runyour Java application.

Tip: Wait for the Discovery Service to discover your service. This process may take afew minutes.
3. Goto thefollowing URL to reach the APl Catal og through the Gateway (port 10010):
https://1 ocal host: 10010/ ui / v1/ api cat al og/

Y ou successfully onboarded your Java application with the APl Mediation Layer if your serviceis running and you
can access the APl documentation.

(Optional) Validate discovery of the API service by the Discovery Service
If your serviceis not visiblein the API Catalog, you can check if your service is discovered by the Discovery Service.

Follow these steps:


https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

| Extending | 112

1. Gotohttp://Iocal host: 10011.
2. Enter eureka as a username and password as a password.
3. Check if your application appearsin the Discovery Service Ul.

If your service appearsin the Discovery Service Ul but is not visible in the APl Catal og, check to ensure that your
configuration settings are correct.

Java Jersey REST APIs

Asan APl developer, use this guide to onboard your Java Jersey REST API serviceinto the Zowe APl Mediation
Layer. This article outlines a step-by-step process to make your APl service available in the APl Mediation Layer.

The following procedureis an overview of stepsto onboard a Java Jersey REST API application with the AP
Mediation Layer.

Follow these steps:

1. Get enablersfrom the Artifactory on page 112

2. Externalize parameters on page 114

3. Download Apache Tomcat and enable SSL on page 115
4. Runyour service on page 116

Get enablers from the Artifactory

Thefirst step to onboard a Java Jersey REST API into the Zowe ecosystem isto get enabler annotations from the
Artifactory. Enablers prepare your service for discovery and for the retrieval of Swagger documentation.

Y ou can use either Gradle or Maven build automation systems.
Gradle guide
Use the following procedure if you use Gradle as your build automation system.

Tip: To migrate from Maven to Gradle, go to your project directory and run gr adl e i ni t . This convertsthe
Maven build to a Gradle build by generating a setting.gradle file and a build.gradle file.

Follow these steps:

1. Create agradle.propertiesfilein the root of your project.
2. Inthe gradle.propertiesfile, set the following URL of the repository and customize the values of your credentials
to access the repository.

# Repository URL for getting the enabler-jersey artifact (" integration-
enabl er-java’)
artifactoryMavenRepo=https://gizaartifactory.jfrog.io/gizaartifactory/
I'i bs-rel ease

# Artifactory credentials for builds:
mavenUser ={ user nane}
mavenPasswor d={ passwor d}

Thisfile specifies the URL for the repository of the Artifactory. The enabler-jersey artifact is downloaded from
this repository.
3. Add thefollowing Gradle code block to the build.gradlefile:

ext. mavenRepository = {
maven {
url artifactoryMavenSnapshot Repo
credentials {
user name mavenUser
password mavenPassword

}



| Extending | 113

}

repositories mavenRepositories

Theext object declaresthe mavenReposi t ory property. This property is used as the project repository.

4. Inthe same build.gradlefile, add the following code to the dependencies code block to add the enabler-jersey
artifact as a dependency of your project:

compi |l e(group: 'com ca. nfaas. sdk', nane: ' nf aas-i nt egration-enabl er-
java', version: '0.2.0")

5. Inyour project directory, runthegr adl e bui | d command to build your project.
Maven guide
Use the following procedure if you use Maven as your build automation system.

Tip: To migrate from Gradle to Maven, go to your project directory andrun gr adl e i nst al | . Thiscommand
automatically generates a pom-default.xml inside the build/poms subfolder where al of the dependencies are
contained.

Follow these steps:
1. Add thefollowing xml tags within the newly created pom.xm file:

<repositories>
<reposi tory>
<id>l i bs-rel ease</i d>
<name>| i bs-rel ease</ nane>
<url >https://gizaartifactory.jfrog.io/gizaartifactory/libs-
rel ease</url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

Thisfile specifiesthe URL for the repository of the Artifactory where you download the enabler-jersey artifact.
2. Inthe samefile, copy the following xml tags to add the enabler-jersey artifact as a dependency of your project:

<dependency>
<gr oupl d>com ca. nf aas. sdk</ gr oupl d>
<artifactld>nfaas-integration-enabler-java</artifactld>
<ver si on>0. 2. 0</ ver si on>

</ dependency>

3. Create asettings.xml file and copy the following xml code block which defines the credentials for the Artifactory:
<?xm version="1.0" encodi ng="UTF-8"?>

<settings xm ns="http://mven. apache. or g/ SETTI NG5S/ 1. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ SETTI NGS/ 1. 0. 0
htt ps:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd" >
<servers>
<server>
<id>libs-rel ease</i d>
<user nanme>{ user nane} </ user nanme>
<passwor d>{ passwor d} </ passwor d>
</ server >
</ servers>
</settings>

4. Copy the settings.xml fileinside ${ user . horre}/ . n2/ directory.



5. Inthedirectory of your project, runthemvn package command to build the project.

Externalize parameters

In order to externalize parameters, you haveto create aSer vl et Cont ext Li st ener . To create your own

| Extending | 114

Ser vl et Cont ext Li st ener, register aSer vl et Cont ext Li st ener and enableit to read all the properties
defined inside the .ym file.

Follow these steps:

1. Define parameters that you want to externalize in a.yml file. Ensure that thisfileis placed in the WEB-INF

folder located in the module of your service. Check the Api Medi at i onSer vi ceConfi g. j ava classinside
com ca. nf aas. eur ekaservi ce. client. confi g packageinthei nt egrati on-enabl er-j avato
see the mapped parameters and make sure that theym  file follows the correct structure. The following example
shows the structure of the 'yml* file:

Example:

servi cel d:

eur eka:
host nane:
i pAddr ess:
port:

title:
descri

ption:

def aul t Zone:
baseUr| :
honePageRel ati veUr| :

st at usPageRel ati veUrl :
heal t hCheckRel ati veUrl :
di scoveryServi ceUrl s:

ssl :
verifySsl CertificatesCf Services: true
protocol : TLSv1.2
keyAl i as: | ocal host

keyPassword: password

keySt or e:

../ keystore/local host/I| ocal host. keystore. pl2

keySt or ePassword: password

keySt oreType: PKCS12

trust St ore:

trust St orePassword: password

trust StoreType: PKCS12
rout es:
gat ewayUr| :
servicelrl :
gat ewayUr| :
servicelUrl:
gatewayUr | :
serviceUrl :
gat ewayUr| :
servicelrl :
api | nf o:

ti

tle:

descri ption:

versi on:
catal ogUi Til e:

i d:

ti

tle:

descri pti on:
ver si on:

../ keystore/local host/ | ocal host.truststore.pl2



| Extending | 115

2. Beforethe web application is started (Tomcat), create a Ser vl et Cont ext Li st ener to run the defined code.

Example:
package com ca. hwsj ersey. | i st ener;
inport com ca. nfaas. eurekaservi ce. client. Api Medi ationC ient;
com ca. nf a:angL? ekaservice.client.config. Api Medi ati onServi ceConfi g;
com ca. nf a;ngLE ekaservice.client.inpl.Api Medi ati onClientl npl;
i mpor

com ca. nfaas. eur ekaservi ce.client.util.Api Medi ati onServi ceConfi gReader;

i mport j avax. servl et. Servl et Cont ext Event ;
i mport j avax.servlet. Servl et Cont ext Li st ener;

public class Api Di scoveryLi stener inplenents
Ser vl et Cont ext Li st ener {
private Api Medi ati onCient api Medi ationCient;

@verride

public void contextlnitialized(ServletContextEvent sce) {
api Medi ati onClient = new Api Medi ationC ientlnpl ();
String configurationFile = "/service-

configuration.ym?";
Api Medi ati onServi ceConfig config = new
Api Medi at i onSer vi ceConfi gReader (confi gurati onFile).readConfiguration();

api Medi ationClient.register(config);

}

@verride

public voi d context Destroyed( Servl et Cont ext Event sce) {
api Medi ati onCl i ent.unregister();

}

}

3. Register the listener. Use one of the following two options:

* Addthe @\bLi st ener annotation to the servlet.
» Reference the listener by adding the following code block to the deployment descriptor web.xml.

Example:
<listener>

<l i st ener-cl ass>your. cl ass. package. pat h</I| i st ener-cl ass>
</listener>

Download Apache Tomcat and enable SSL

To run Helloworld Jersey, requires the nstallation of Apache Tomcat. Asthe service uses HTTPS, configure Tomcat
to use SSL/TL S protocol.

Follow these steps:

1. Download Apache Tomcat 8.0.39 and install it.

2. Build Helloworld Jersey through IntelliJ or by running gr adl ew hel | owor | d-j er sey: bui | d inthe
terminal.



3.

| Extending | 116

Enable HTTPS for Apache Tomcat. There are few additional steps to enable HTTPS for Apache Tomcat.
a) Gototheapache-t ontat - 8. 0. 39- wi ndows- x64\ conf directory
Note: (the full path depends on where you decided to install Tomcat)

b) Opentheser ver. xm filewith atext editor as Administrator and add the following xml block: xm
<Connect or port="8080" protocol ="org. apache. coyote. httpll. Ht pl1Ni oProtocol "
maxThr eads="150" SSLEnabl ed="true" schenme="https" secure="true"

client Aut h="fal se" ssl Protocol ="TLS" keystoreFil e="{your-project-
directory}\api-Ilayer\keystore\l ocal host\| ocal host . keyst ore. p12"

keyst or ePass="password" /> Bealso suretocomment the HTTP connector which uses the same port.
¢) Navigate to the VEB- | NF/ located in hel | owor | d- j er sey module and add the following xml block to the
web. xnl file. This should be added right below the <ser vl et - mappi ng> tag:

<security-constraint>

<web-resource-col | ecti on>
<web-r esour ce- nane>Pr ot ect ed r esour ce</ web-r esour ce- nane>
<url-pattern>/*</url-pattern>
<ht t p- net hod>CET</ ht t p- met hod>
<ht t p- net hod>PCOST</ ht t p- net hod>

</ web-resource-col | ecti on>

<user - dat a- constrai nt >
<t ransport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>

</ user - dat a- constr ai nt >

</security-constraint>

Run your service

After you externalize the parameters to make them readabl e through Tomcat and enable SSL, you are ready to run
your service in the APIM Ecosystem.

Note: The following procedure uses| ocal host testing.

Follow these steps:

1

Run the following services to onboard your application:

Tip: For moreinformation about how to run the APl Mediation Layer locally, see Running the APl Mediation
Layer on Local Machine.

« Gateway Service

» Discovery Service

« APl Catalog Service

Rungr adl ew t oncat Run with these additional parameters: -

D avax. net. ssl . trust Store="<your-proj ect-directory>\api-

| ayer\ keyst ore\l ocal host\ | ocal host.truststore. pl2"

D avax. net. ssl . trust St or ePasswor d=" passwor d" . If you need some more information about SSL
configuration status while deploying, use this parameter - Dj avax. net . debug=SSL.

Tip: Wait for the services to be ready. This process may take afew minutes.
Navigate to following URL :
https://1 ocal host: 10011
Enter eureka as a username and password as a password and check if the serviceis registered to the discovery
service.
Go to the following URL to reach the API Catalog through the Gateway (port 10010) and check if the API

documentation of the serviceisretrieved:

https://1 ocal host: 10010/ ui / v1/ api cat al og/ #/ dashboar d


https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

| Extending | 117

Y ou successfully onboarded your Java Jersey application if see your service running and can access the API
documentation.

REST APIs without code changes required

Asauser of Zowe API Mediation Layer, onboard a REST API service with the Zowe APl Mediation Layer without
changing the code of the API service. The following procedure is an overview of stepsto onboard an APl service
through the APl Gateway in the APl Mediation Layer.

Follow these steps:

I dentify the API that you want to expose on page 117

Route your API on page 117

Define your service and APl in YAML format on page 118

Configuration parameters on page 119

Add and validate the definition in the APl Mediation Layer running on your machine on page 121
Add adefinition in the APl Mediation Layer in the Zowe runtime on page 122

(Optional) Check the log of the API Mediation Layer on page 122

(Optional) Reload the services definition after the update when the API Mediation Layer is already started on page
123

© N O A~AWDNE

Identify the API that you want to expose
Onboard an API service through the APl Gateway without making code changes.

Tip: For moreinformation about the structure of APIsand which APIsto exposein the Zowe APl Mediation Layer,
see Onboarding Overview on page 78.

Follow these steps:
1. Identify the following parameters of your APl service:

* Hostname
* Port
e (Optional) base path where the service is available. This URL is called base URL of the service.

Example:

In the sample service described earlier, the URL of the serviceis: htt p: / /1 ocal host : 8080.
2. ldentify all APIsthat this service provides that you want to expose through the API Gateway .

Example:

In the sample service, this REST API isthe one available at the path / v2 relative to base URL of the service. This
API isversion 2 of the Pet Store API.

3. Choosethe service ID of your service. The service ID identifies the service in the APl Gateway. The service ID is
an alphanumeric string in lowercase ASCI|I.
Example:

In the sample service, the service ID ispet st or e.

4. Decide which URL to useto make this APl available in the APl Gateway. This URL is refered to as the gateway
URL and is composed of the API type and the major version.

Example:

In the sample service, we provide a REST API. Thefirst segment is/ api . To indicate that thisis version 2, the
second segment is/ v2.

Route your API

After you identify the APIs you want to expose, define the routing of your API. Routing is the process of sending
requests from the API gateway to a specific API service. Route your API by using the same format asin the following
pet st or e example.



Note: The APl Gateway differentiates major versions of an API.

Example:

To access version 2 of thepet st or e APl use the following gateway URL:
htt ps://gat eway- host: port/api/v2/ petstore

The base URL of theversion 2 of the pet st or e APl is:

http://1 ocal host: 8080/ v2

The API Gateway routes REST API requests from the gateway URL ht t ps: // gat eway: port/api/v2/

| Extending | 118

pet st ore totheservicehtt p: / /1 ocal host : 8080/ v2. This method provides access to the service in the API

Gateway through the gateway URL.

Note: This method enables you to access the service through a stable URL and move the service to another machine
without changing the gateway URL. Accessing a service through the APl Gateway also enables you to have multiple

instances of the service running on different machines to achieve high-availability.

Define your service and APl in YAML format

Define your service and APl in YAML format in the same way as presented in the following sample pet st or e

service example.

Example:

To define your servicein YAML format, provide the following definitionin a YAML file asin the following sample

pet st or e service:

services
- serviceld: petstore
catalogUiTileld: static
title: Petstore Sanple Service
description: This is a sanple server Petstore service
i nst anceBaseUr| s:
- http://1ocal host: 8080
rout es:
- gatewayUrl: api/v2
serviceRel ativeUrl: /v2
api | nf o:
- apild: io.swagger.petstore
gatewayUrl : api/v2
swaggerUrl: http://1ocal host: 8080/ v2/ swagger.j son
version: 2.0.0

catal ogUi Til es:
static:
title: Static APl services

description: Services which denponstrate how to nmake an APl service

di scoverable in the API M. ecosystem usi ng YAML definitions

In this example, a suitable name for thefileispet st ore. ym .
Notes:

* Thefilename does not need to follow specific naming conventions but it requiresthe. ym extension.
» Thefile can contain one or more services defined under the ser vi ces: node.

« Each service hasaservice ID. In this example, the service ID ispet st or e. The service can have one or more

instances. In this case, only oneinstanceht t p: / /| ocal host : 8080 is used.

* A service can provide multiple APIs that are routed by the API Gateway. In this case, requests with the relative
base path api / v2 at the APl Gateway (full gateway URL: htt ps: // gat eway: port/api/v2/...)ae
routed to the relative base path / v2 at the full URL of the service (htt p: / /| ocal host : 8080/ v2/...).

Tips:



| Extending | 119

» There are more examples of APl definitions at thislink.
» For more details about how to use YAML format, see thislink

Configuration parameters
The following list describes the configuration parameters:
e serviceld

Specifies the service instance identifier that is registered in the APl Mediation Layer installation. The service ID is
used in the URL for routing to the API service through the gateway. The service ID uniquely identifies the service
in the APl Mediation Layer. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

*  When two API services use the same service ID, the API gateway considers the services to be clones (two
instances for the same service). An incoming APl request can be routed to either of them.

* Thesame service ID should be set only for multiple API service instances for APl scalability.
e Theservice ID value must contain only lowercase alphanumeric characters.
» Theservice ID cannot contain more than 40 characters.

* TheservicelD islinked to security resources. Changes to the service ID require an update of security
resources.

Examples:

» |If the customer system administrator setsthe service ID tosysvi ew pr 1, the APl URL inthe APl Gateway
appears as the following URL :

https://gateway: port/api/vl/sysview pril/...

e |If customer system administrator setsthe service ID to vant agepr odl, the APl URL inthe APl Gateway
appears as the following URL :

http://gateway:port/api/v1/vantageprodl/...
o title

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). Thisvaueisdisplayed in the API catalog when a specific APl service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of thet i t | e. Use atitle that describes the service
instance so that the end user knows the specific purpose of the service instance.

e description
Specifies a short description of the API service.
Example: "CA Endevor SCM - Production Instance" or "CA SY SVIEW running on LPAR1".

Thisvaueis displayed in the API Catalog when a specific API service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.


https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

| Extending | 120

instanceBaseUrls
Specifiesalist of base URLsto your service to the REST resource. It will be the prefix for the following URLS:

« homePageRelativeUr|
e statusPageRelativeUr|
e healthCheckRelativeUrl

Examples:

e - http://host:port/filenasterplusforanHTTP service
e - https://host:port/endevor foran HTTPS service

Y ou can provide one URL if your service has one instance. If your service provides multiple instances for the
high-availability then you can provide URL s to these instances.

- https://host1: port1/endevor
https://host 2: port 2/ endevor

homePageRelativeUr|

Specifies the relative path to the homepage of your service. The path should start with / . If your service has no
homepage, omit this parameter.

Examples:

* honePageRel ativeUrl: / The service has homepage with URL ${ baseUr| }/

« honePageRel ativeUrl: /ui/ Theservice hashomepagewith URL ${ baseUr |}/ ui/
 honePageRel ati veUrl: Theservice has homepage with URL ${ baseUr | }
statusPageRelativeUr|

Specifies the relative path to the status page of your service. Start this path with / . If you service has not a status
page, omit this parameter.

Example:

» statusPageRel ativeUrl: /application/infotheresult URL will be ${ baseUrl}/
application/info
healthCheckRelativeUr|

Specifiesthe relative path to the health check endpoint of your service. Start this URL with/ . If your service does
not have a health check endpoint, omit this parameter.

Example:

* heal t hCheckRel ativeUrl: [application/health.Thisresultsinthe URL: ${ baseUr|}/
application/health
routes

The routing rules between the gateway service and your service.
e routes.gatewayUrl

Both gatewayUr| and serviceUr| parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gatewayUr| parameter sets the target endpoint on the gateway.

e routes.serviceUrl

Both gatewayUr| and serviceUr| parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The serviceUr| parameter points to the target endpoint on the gateway.

apilnfo
This section defines APIs that are provided by the service. Currently, only one API is supported.



| Extending | 121

* apilnfo.apild

Specifiesthe API identifier that is registered in the APl Mediation Layer installation. The API 1D uniquely
identifies the API in the APl Mediation Layer. The same API can be provided by multiple service. The API ID
can be used to locate same APIs that are provided by different services. The creator of the API definesthis|ID.
The API ID needs to be string up to 64 characters that is using lowercase alphanumeric charactersand adot: . . It
is recommended to use your organization as the prefix.

Examples:

e org.zowe.file
e CcOm ca. sysvi ew
e comibm zosnf

e apilnfo.gatewayUr|

The base path at the API gateway where the API is available. It should be the same as a gatewayUr| value in the
routes sections.

» apilnfo.swagger Ur|

(Optional) Specifiesthe HTTP or HTTPS address where the Swagger JSON document that provides the API
documentation for this API is available.

» apilnfo.documentationUrl|

(Optional) Specifies a URL to awebsite where external documentation is provided. This can be used when
swaggerUrl is not provided.
» apilnfo.version

(Optional) Specifies the actual version of the API in semantic versioning format. This can be used when
swaggerUrl is not provided.
e catalogUiTileld

Specifies the unique identifier for the API services group. Thisisthe grouping value used by the APl Mediation
Layer to group multiple API services together into "tiles'. Each unique identifier represents a single API Catalog
Ul dashboard tile. Specify the value based on the ID of the defined tile.

« catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that hasitstile ID asakey. A tile can be
used by multiple services.

catal ogUi Til es:
tilel:
title: Tile 1
description: This is the first tile with IDtilel
tile2:
title: Tile 2
description: This is the second tile with IDtile2

« catalogUiTile{tileld}.title

Specifies the title of the API services product family. Thisvalueisdisplayed in the API catalog Ul dashboard as
thetiletitle.

« catalogUiTile{tileld}.description

Specifies the detailed description of the APl Catalog Ul dashboard tile. This value is displayed in the API catalog
Ul dashboard as the tile description.

Add and validate the definition in the APl Mediation Layer running on your machine

After you define the servicein YAML format, you are ready to add your service definition to the APl Mediation
Layer ecosystem.

The following procedure describes how to add your service to the APl Mediation Layer on your local machine.


https://semver.org/

| Extending | 122

Follow these steps:

1. Copy or moveyour YAML filetotheconfi g/ | ocal / api - def s directory in the directory with API
Mediation layer.

2. Start the APl Mediation Layer services.
Tip: For more information about how to run the APl Mediation Layer locally, see Running the APl Mediation
Layer on Local Machine.

3. Run your Java application.

Tip: Wait for the services to be ready. This process may take afew minutes.
4. Go to thefollowing URL to reach the APl Gateway (port 10010) and see the paths that are routed by the API
Gateway:

https://1 ocal host: 10010/ appl i cati on/ rout es
The following line should appear:
[api/v2/ petstore/**: "petstore"

Thisline indicates that requests to relative gateway paths that start with / api / v2/ pet st or e/ arerouted to the
service with the service ID pet st or e.

Y ou successfully defined your Java application if your service is running and you can access the service
endpoints. The following example is the service endpoint for the sample application:

https://1 ocal host: 10010/ api / v2/ pet store/ pets/1

Add a definition in the APl Mediation Layer in the Zowe runtime

After you define and validate the service in YAML format, you are ready to add your service definition to the API
Mediation Layer running as part of the Zowe runtime installation.

Follow these steps:

1. Locate the Zowe runtime directory. The Zowe runtime directory is chosen during Zowe installation. The location
of thedirectory isinthezowe- i nst al | . yam fileinthevariablei nstal | : rootDir.

Note: We use the ${ zoweRunt i ne} symbol in following instructions.

2. Copy your YAML filetothe ${ zoweRunt i me}/ api - medi at i on/ api - def s directory.

Run your application.

4. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the update when
the APl Mediation Layer is already started on page 123.

5. Goto thefollowing URL to reach the APl Gateway (default port 7554) and see the paths that are routed by the
API Gateway: https.//${ zoweHostname} : ${ gatewayHttpsPort} /application/routes

w

The following line should appear:
[apil/v2/ petstore/**: "petstore"

Thislineindicates that requests to the relative gateway paths that start with/ api / v2/ pet st or e/ arerouted to
the service with service ID pet st or e.

Y ou successfully defined your Java application if your service is running and you can access its
endpoints. The endpoint displayed for the sample applicationis: htt ps: / /| ${ zoweHost nane} :
${gat ewayHt t psPort}/api/v2/ petstore/pets/1

(Optional) Check the log of the API Mediation Layer
The APl Mediation Layer prints the following messagesto its log when the API definitions are processed:

Scanning directory with static services definition: config/local/
api - def s


https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

| Extending | 123

Static APl definition file: /Users/plape03/workspace/ api -1 ayer/
confi g/l ocal / api - def s/ pet store. ynl
Addi ng static instance STATI C-| ocal host: petstore: 8080 for service ID
petstore mapped to URL http://| ocal host: 8080

(Optional) Reload the services definition after the update when the API Mediation Layer is already
started

The following procedure enables you to refresh the API definitions after you change the definitions when the AP
Mediation Layer is aready running.

Follow these steps:
1. UseaREST API client to issue a POST request to the Discovery Service (port 10011):
http://1ocal host: 10011/ di scovery/api/vl/stati cApi

The Discovery Service requires authentication by aclient certificate. If the APl Mediation Layer isrunning on
your local machine, the certificate is stored at keyst or e/ | ocal host /| ocal host . pem

This example uses the HTTPie command-line HTTP client:

http --cert=keystore/l ocal host/I| ocal host. pem --verify=keystore/
| ocal _cal/local ca.cer -j POST https://local host: 10011/ di scovery/ api/v1l/
stati cApi

2. Check if your updated definition is effective.

Notes:

« |t can take up to 30 seconds for the API Gateway to pick up the new routing.
« The basic authentication will be replaced by client certificates when the Discovery Service is updated to use
HTTPS.

Developing for Zowe CLI

Developing for Zowe CLI
Y ou can extend Zowe CLI by developing plug-ins and contributing code to the base Zowe CL1 or existing plug-ins.
Note: You can also Extending Zowe CLI on page 65.
e How can | contribute? on page 123
» Getting started on page 124
How can | contribute?
Y ou can contribute to Zowe CL1 in the following ways:

1. Add new commands, options, or other improvements to the base CLI.
2. Develop aplug-in that users can install to Zowe CLI.

See Getting started on page 124 to get started with development today!
Y ou might want to contribute to Zowe CLI to accomplish the following:

» Provide new scriptable functionality for yourself, your organization, or to a broader community.
* Make use of Zowe CLI infrastructure (profiles and programmatic APIS).
« Participate in the Zowe CLI community space.

The following plug-in projects have been devel oped:


https://httpie.org

| Extending | 124

e Zowe CLI Plug-in for IBM Db2
e Zowe CLI Plug-infor IBM CICS

Getting started

If you want to start working with the code immediately, check out the Zowe CLI core repository and the contribution
guidelines.

The zowe-cli-sample-plugin GitHub repository contains a sample plug-in that adheres to the guidelines for
contributing to Zowe CLI projects. Follow the associated Tutorials on page 124 to learn about how to work with
our sample plug-in, build new commands, or build a new Zowe CLI plug-in.

Tutorials
Follow these tutorials to get started working with the sample plug-in:

1. Setting up your development environment on page 125 - Clone the project and prepare your local
environment.

2. Installing the sample plug-in on page 126 - Install the sample plug-in to Zowe CLI1 and run as-is.

3. Extending a plug-in on page 128 - Extend the sample plug-in with anew by creating a programmatic AP,
definition, and handler.

4. Developing a new plug-in on page 131 - Create anew CLI plug-in that uses Zowe CLI| programmatic APIs
and a diff package to compare two data sets.

5. Implementing profilesin a plug-in on page 136 - Implement user profiles with the plug-in.
Plug-in Development Overview

At ahighlevel, aplug-in must havei nper at i ve- f r amewor k configuration (sample here). This configuration is
discovered by i nper at i ve- f r anewor k through the package.,jsoni nper at i ve key.

In addition to the configuration, a Zowe CLI1 plug-in will minimally contain the following:

1. Programmatic API - Node,js programmatic APIs to be called by your handler or other Node.js applications.
2. Command definition - The syntax definition for your command.
3. Handler implementation - To invoke your programmatic API to display information in the format that you

defined in the definition.
Developer Documentation and Guidelines

In addition to the Tutorials on page 124, the following guidelines and documentation will assist you during
development:

Imperative CLI Framework Documentation

Imperative CLI1 Framework documentation is a key source of information to learn about the features of Imperative
CLI Framework (the code framework that you use to build plug-ins for Zowe CLI). Refer to these supplementary
documents during devel opment to learn about specific features such as:

e Auto-generated help

¢ JSON responses

e User profiles

e Logging, progress bars, experimental commands, and more!

Contribution Guidelines
The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CL1 plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining automated tests,
developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly:

For moreinformation about ... See:

General guidelinesthat apply to contributing to Zowe Contribution Guidelines
CLI and Plug-ins



https://github.com/zowe/zowe-cli-db2-plugin
https://github.com/zowe/zowe-cli-cics-plugin
https://github.com/zowe/zowe-cli
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli-sample-plugin
https://github.com/zowe/zowe-cli-sample-plugin/src/imperative.ts
https://github.com/zowe/zowe-cli-sample-plugin/package.json
https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md

| Extending | 125

For moreinformation about ... See:

Conventions and best practices for creating packages and Package and Plug-in Guidelines
plug-insfor Zowe CLI

Guidelines for running tests on Zowe CL | Testing Guidelines
Guidelines for running tests on the plug-ins that you Plug-in Testing Guidelines
build

Versioning conventions for Zowe CLI and Plug-ins Versioning Guidelines

Setting up your development environment
Before you follow the development tutorials for creating a Zowe CLI1 plug-in, follow these steps to set up your
environment.
Prequisites
Methods to install Zowe CLI on page 39.

Initial setup
To create your development space, you will clone and build zowe-cli-sample-plugin from source.

Before you clone the repository, create alocal development folder named zowe-t ut ori al . You will clone and
build al projectsin thisfolder.

Clone zowe-cli-sample-plugin and build from source

Clone the repository into your development folder to match the following structure:

zowe-tutori al
### zowe-cli - sanpl e- pl ugi n

Follow these steps:

cd toyour zowe- t ut ori al folder.

git clone https://github.com zowe/ zowe-cl i - sanpl e- pl ugi n
cd toyour zowe- cl i - sanpl e- pl ugi n folder.

npm i nstal |

npm run build

o wDdh e

Thefirst time that you build, the script will interactively ask you for the location of your Zowe CLI directory.
Subsequent builds will not ask again.

The build script creates symbolic links. On Windows, you might need to have Administrator privileges to create
those symbolic links.

(Optional) Run the automated tests

We recommend running automated tests on all code changes. Follow these steps:

1. cdtothe__tests__ /__resources__/properti es folder.

2. Copy exanpl e_properties.yam tocustom properties.yamn .

3. Edit the propertieswithin cust om properti es. yanm tocontain valid system information for your site.
4, cdtoyour zowe-cl i - sanpl e- pl ugi n folder

5 npmrun test

Next steps

After you complete your setup, follow the Installing the sample plug-in on page 126 tutorial to install this sample
plug-in to Zowe CLI.


https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md
https://github.com/zowe/zowe-cli-sample-plugin

| Extending | 126

Installing the sample plug-in
Before you begin, Setting up your development environment on page 125 your local environment to install a plug-
in.
Overview

Thistutorial coversinstalling and running this bundled Zowe CLI plugin as-is (without modification), which will
display your current directory contents.

The plug-in adds a command to the CLI that lists the contents of a directory on your computer.

Installing the sample plug-in to Zowe CLI

To begin, cd into your zowe- t ut ori al folder.

Issue the following commands to install the sample plug-in to Zowe CL1I:
zowe plugins install ./zowe-cli-sanple-plugin
Viewing the installed plug-in

Issuezowe - - hel p inthe command line to return information for the installed zowe- cl i - sanpl e command
group:



| Extending | 127

Welcome to Zowe CLI!

Zowe CLI is a command line interface (CLI) that provides a si
streamlined way to interact with IBM z/0S.

For additional Zowe CLI documentation, visit https://zowe.gitl

For Zowe CLI support, visit https://zowe.org.

zowe [group]

diagnostics Run diagnostics

plugins Install and manage plug-ins

profiles Create and manage configuration profil
provisioning | pv Perform z/0SMF provisioning tasks on P

Templates in the Service Catalog and P
Instances in the Service Registry.
zos-console | console Issue z/0S console commands and collec

zos-files | files Manage z/0S data sets

zos-jobs | jobs Manage z/0S jobs

zos-tso | tso Issue TSO commands and interact with T
zosmf Interact with z/0SMF

zowe-cli-sample | zcsp Zowe CLI sample plug-in

Figure 1: Installed Sample Plugin

Using the installed plug-in

To use the plug-in functionality, issue: zowe zowe-cli-sanple list directory-contents:



$ zowe zowe-cli-sample list directory-contents
We just got a valid z/OSMF status response from system

16822
33286
16822
33206
33206
33206

Thu
Thu
Thu
Thu
Thu
Thu

Sep
Sep
Sep
Sep
Sep
Sep

20
20
20
20
20
20

2018
2018
2018
2018
2018
2018

e9:
e9:
e9:
e9:
e9:
e9:

52:
40 :
54:
40:
409:
49:

20
e7
20
e7
e7
e7

GMT-e4ee
GMT-e4ee
GMT-e4ee
GMT-e4ee
GMT-e4ee
GMT-e4ee

(Eastern
(Eastern
(Eastern
(Eastern
(Eastern
(Eastern

| Extending | 128

Daylight
Daylight
Daylight
Daylight
Daylight
Daylight

Thu
Thu
Thu
Thu
Thu

20
20
20
20
20

2018
2018
2018
2018
2018

@9:
@9:
©9:40:
09:40:

106:

40:
40:

e7
e7
e7
e7
27

33206
16822
16822

Daylight
Daylight
Daylight
Daylight
Daylight

Sep
Sep
Sep
Sep
Sep

GMT-0400 (Eastern
GMT-e40e (Eastern
GMT-e4ee (Eastern
GMT-e4ee (Eastern

16822 GMT-e4ee (Eastern

Figure 2: Sample Plugin Output

Testing the installed plug-in
To run automated tests against the plug-in, cd into your zowe- t ut ori al / zowe- cl i - sanpl e- pl ugi n folder.
I ssue the following command:

e npmrun test

Next steps

Y ou successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in on page 128 tutorial to learn
about devel oping new commands for this plug-in.

Extending a plug-in
Before you begin, be sure to complete the Installing the sample plug-in on page 126 tutorial.

Overview
Thistutorial demonstrates how to extend the plug-in that is bundled with this sample by:

1. Creating a new programmatic API
2. Creating anew command definition
3. Creating anew handler

Well do thisby using @r i ght si de/ i nper at i ve infrastructure to surface REST API data on our Zowe CL |
plug-in.

Specifically, we're going to show data from this URI by Typicode. Typicode serves sample REST JSON data for
testing purposes.

At the end of thistutorial, you will be able to use a new command from the Zowe CLI interface: zowe zowe-cl i -
sanmpl e list typicode-todos

Completed source for this tutorial can be found onthet ypi code- t odos branch of the zowe-cli-sample-plugin
repository.


https://jsonplaceholder.typicode.com/todos
https://jsonplaceholder.typicode.com/

| Extending | 129

Creating a Typescript interface for the Typicode response data
First, we'll create a Typescript interface to map the response data from a server.

Withinzowe- cl i - sanpl e- pl ugi n/ src/ api , create afolder named doc to contain our interface (sometimes
referred to as a"document” or "doc"). Within the doc folder, create afilenamed | Todo. t s.

Thel Todo. t s filewill contain the following:

export interface | Todo {
user |l d: nunber;
i d: nunber;
title: string;
conpl et ed: bool ean;

}

Creating a programmatic API

Next, well create aNode.js API that our command handler uses. This API can also be used in any Node.js
application, because these Node.js APIs make use of REST APIs, Node.js APIs, other NPM packages, or custom
logic to provide higher level functions than are served by any single API.

Adjacent to the existing file named zowe- cl i - sanpl e- pl ugi n/ src/ api/ Fil es. ts, createafile
Typi code. ts.

Typi code. t sshould contain the following:

import { | Todo } from"./doc/| Todo";
inmport { RestClient, AbstractSession, |nperativeExpect, Logger } from
" @rightsidel/inperative";

export class Typi code {
public static readonly TODO URI = "/todos";

public static getTodos(session: AbstractSession): Prom se<l|Todo[]> {
Logger . get AppLogger () .trace(" Typi code. get Todos() cal |l ed");
return Restdient.get Expect JSON<I Todo[ ] >(sessi on,
Typi code. TODO URI ) ;

public static getTodo(session: AbstractSession, id: nunber):
Proni se<| Todo> {
Logger . get AppLogger () .trace(" Typi code. get Todos() called with id " +

id);
| mper ati veExpect .t oNot BeNul | Or Undef i ned(id, "id nmust be provided");
const resource = Typicode. TODO URI + "/" + id;
return Restdient.get Expect JSON<I Todo>(sessi on, resource);
}

}

The Typi code class provides two programmatic APIs, get Todos and get Todo, to get an array of | Todo
objects or a specific | Todo respectively. The Node.js APIsuse @r i ght si de/ i nper at i ve infrastructure to
provide logging, parameter validation, and to call aREST API. See the Imperative CLI Framework documentation for
more information.

Exporting interface and programmatic API for other Node.js applications

Update zowe-cli-sample-plugin/src/index.ts to contain the following:

export * from"./api/doc/l| Todo";
export * from"./api/ Typi code";


https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli-sample-plugin/src/index.ts

| Extending | 130

A sampleinvocation of your APl might look similar to the following, if it were used by a separate, standalone Node.js
application:

i mport { Typicode } from" @rightside/zowe-cli-sanpl e-plugin";
i mport { Session, Inperative } from"@rightside/inperative";
import { inspect } from"util";

const session = new Session({ hostnanme: "jsonplacehol der.typicode.cont'});
(async () => {

const firstTodo = await Typi code. get Todo(session, 1);

| mper ati ve. consol e. debug("First todo was: " + inspect(firstTodo));

HO;

Checkpoint

Issue npm run bui | d to verify aclean compilation and confirm that no lint errors are present. At this point in this
tutorial, you have a programmatic API that will be used by your handler or another Node.js application. Next you'll
define the command syntax for the command that will use your programmatic Node.js APIs.

Defining command syntax

Within Zowe CLI, the full command that we want to createiszowe zowe-cli-sanple |ist typicode-
t odos. Navigatetozowe- cl i - sanpl e-pl ugi n/ src/cli/li st andcreateafoldert ypi code-t odos.
Within this folder, create Ty pi codeTodos. defi ni ti on. ts. Itscontent should be as follows:

import { | CommandDefinition } from"@rightside/inperative";
export const Typi codeTodosDefinition: |ConmrandDefinition = {
nane: "typicode-todos",
aliases: ["td"],
summary: "Lists typicode todos",
description: "List typicode REST sanple data",
type: "command",
handl er: _ _dirname + "/ Typi codeTodos. handl er ™,
options: [
{
nane: "id",
description: "The todo to list",
type: "nunber”

li
This describes the syntax of your command.

Defining command handler

Also withinthet ypi code- t odos folder, create Typi codeTodos. handl er . t s. Add the following code to
the new file:

i mport { | CommandHandl er, | Handl erParaneters, TextUWils, Session } from
" @rightsidel/inperative";

import { Typicode } from"../../../api/Typi code";

export default class Typi codeTodosHandl er inpl enments | ConmandHandl er {

public static readonly TYPI CODE_HOST = "jsonpl acehol der.typi code. cont;
public async process(parans: |Handl erParaneters): Pronise<void> {

const session = new Session({ hostnane:
Typi codeTodosHandl er. TYPI CODE_HOST} ) ;
i f (params.argunents.id) {
const todo = await Typi code. get Todo(sessi on,
par ans. argunents. i d);
par ans. r esponse. dat a. set bj (t odo) ;



| Extending | 131

par ans. r esponse. consol e. | og( Text Uil s. prettyJson(todo));
} else {

const todos = await Typi code. get Todos(sessi on);

par ans. r esponse. dat a. set Obj (t odos) ;

par ans. r esponse. consol e. | og( Text Uil s. prettyJson(todos));

}

Thei f statement checksif auser providesan - - i d flag. If yes, we call get Todo. Otherwise, we call get Todos.
If the Typicode API throws an error, the @r i ght si de/ i nper at i ve infrastructure will automatically surface
this.

Defining command to list group

Within thefilezowe- cl i - sanpl e- pl ugin/src/cli/list/List.definition.ts,addthefollowing
code below other i nport statements near the top of thefile:

i mport { Typi codeTodosDefinition } from"./typicode-todos/
Typi codeTodos. definition";

Then add Typi codeTodosDef i ni ti on tothe children array. For example:
children: [DirectoryContentsDefinition, TypicodeTodosDefinition]

Checkpoint

Issuenpm run bui | d to verify aclean compilation and confirm that no lint errors are present. Y ou now have a
handler, definition, and your command has been defined to thel i st group of the command.

Using the installed plug-in
Issue the command: zowe zowe-cli-sanple |ist typicode-todos

Refertozowe zowe-cli-sanple |ist typicode-todos --hel pfor moreinformation about your
command and to see how text in the command definition is presented to the end user. Y ou can also see how to use
your optional - - i d flag:

zowe zowe-cli-sample list typicode-todos --id 4

et porro tempora

Summary

Y ou extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a command
definition with a handler. For an official plugin, you would also add JSDoc to your code and create automated tests.

Next steps

Try the Developing a new plug-in on page 131 tutorial next to create anew plug-in for Zowe CLI.
Developing a new plug-in

Before you begin this tutorial, make sure that you completed the Extending a plug-in on page 128 tutorial.


http://usejsdoc.org/

| Extending | 132

Overview

This tutorial demonstrates how to create a brand new Zowe CLI plug-in that uses Zowe CL1 Node.js programmatic
APls.

At the end of thistutorial, you will have created a data set diff utility plug-in for Zowe CLI, from which you can pipe
your plugin's output to athird-party utility for a side-by-side diff of data set member contents.

Files changed (1) =rcw

E cntl{iefbr14) Old — cntl{iefbr15) New

Completed source for this tutorial can be found on thedevel op- a- pl ugi n branch of the zowe-cli-sample-plugin
repository.

Cloning the sample plug-in source

Clone the sample repo, delete the irrelevant source, and create a brand new plug-in. Follow these steps:

1. cdintoyour zowe-t ut ori al folder

2. git clone https://github.com zowe/ zowe-cli-sanple-plugin files-util

3. cd files-util

4. Deletethe. gi t (hidden) folder.

5. Deleteal content withinthesr ¢/ api,src/cli,anddocs folders.

6. Deleteal content withinthe  _tests / system /api, tests [/ system /cli,
__tests_ /api,and__tests__/cli folders

7. git init

8. git add .

9. git commt -m"initial"
Changing package.json

Use a unique npmname for your plugin. Change package. j son namefield asfollows:
"nanme": "@rightside/files-util",

Issue the command npm i nst al | against the local repository.
Adjusting Imperative CLI Framework configuration

Changei nper ati ve. t s to contain the following:

inmport { IlnperativeConfig } from"@rightside/inperative";

const config: IlnperativeConfig = {
commandModul ed obs: ["**/cli/*/*.definition! (.d).*s"],
r oot CormandDescription: "Files utilty plugin for Zowe CLI",
envVari abl ePrefix: "FILES UTIL_PLUG N',



| Extending | 133

def aul t Home: "~/ .files_util _plugin",
product Di spl ayNanme: "Files Uil Plugin",
name: "files-util"

1
export = config;

Here we adjusted the description and other fieldsinthei nper at i ve JSON configuration to be relevant to this
plug-in.

Adding third-party packages

Well use the following packages to create a programmatic API:

e npminstall --save diff
e npminstall -D @ypes/diff

Creating a Node.js programmatic API

Infiles-util/src/api,cresteafilenamed Dat aSet Di f f. ts. Thecontent of Dat aSet Di f f . t s should
be the following:

i mport { AbstractSession } from"@rightside/inperative";

i mport { Downl oad, | Downl oadOpti ons, | ZosFil esResponse } from " @ri ghtsi de/
core";

import * as diff from"diff";

inmport { readFileSync } from"fs";

export class DataSetDiff {

public static async diff(session: AbstractSession, oldDataSet: string,
newDat aSet: string) ({

let error;
| et response: | ZosFil esResponse;

const options: |Downl oadOptions = {
ext ensi on: "dat",
jié

try {
response = await Downl oad. dat aSet (sessi on, ol dDataSet, options);

} catch (err) {
error = "oldDataSet: " + err;
throw error;

}

try {
response = await Downl oad. dat aSet (sessi on, newDat aSet, options);

} catch (err) {

error = "newDataSet: " + err;

throw error;
}
const regex = /\.|\(/gi; // Replace . and ( with /
const regex2 = /\)/qgi; /1l Replace ) with .

/1 convert the old data set nanme to use as a path/file
let file = ol dDat aSet.repl ace(regex, "/");

file = file.replace(regex2, ".") + "dat";

/1 Load the downl oaded contents of 'ol dDataSet'

const ol dContent = readFileSync( ${file} ).toString();

/1 convert the new data set nanme to use as a path/file



| Extending | 134

file = newDat aSet.repl ace(regex, "/");

file = file.replace(regex2, ".") + "dat";

/'l Load the downl oaded contents of 'ol dDataSet'

const newContent = readFileSync( ${file} ).toString();

return diff.createTwoFi | esPat ch(ol dDat aSet, newDat aSet, ol dContent,
newContent, "dd", "New');

}
}
Exporting your API

Infiles-util/src,changei ndex. t s to contain the following:

export * from"./api/DataSetD ff";

Checkpoint

At this point, you should be able to rebuild the plug-in without errorsvianpm run bui | d. You included third
party dependencies, created a programmatic API, and customized this new plug-in project. Next, you'll define the
command to invoke your programmatic API.

Defining commands

Infiles-util/src/cli,createafolder nameddi f f.Withinthedi f f folder, create afile
D ff.definition.ts.ltscontent should be asfollows:

import { | CommandDefinition } from"@rightside/inperative";
import { DataSetsDefinition } from"./data-sets/DataSets.definition";
const IssueDefinition: |ComuandDefinition = {

nane: "diff",

summary: "Diff two data sets content",

description: "Uses open source diff packages to diff two data sets

content",
type: "group",
children: [DataSetsDefinition]

H
export = IssueDefinition;

Alsowithinthedi f f folder, create afolder named dat a- set s. Withinthedat a- set s folder create
Dat aSets. definition.ts andDat aSets. handl er.ts.

Dat aSet s. defi ni ti on. ts should contain:

import { | CommandDefinition } from"@rightside/inperative";

export const DataSetsDefinition: |ConmrandDefinition = {
nane: "data-sets",
aliases: ["ds"],
summary: "data sets to diff",
description: "diff the first data set with the second",
type: "command",
handl er: _ dirnane + "/DataSets. handl er”,
positional s: [

nane: "ol dDataSet",
description: "The old data set",
type: "string"

name: "newDat aSet",
description: "The new data set",



| Extending | 135

type: "string"

]1
profile: {

required: ["zosnf"]
}

b
Dat aSet s. handl er. t s should contain the following:

i mport { | CommandHandl er, | Handl erParaneters, TextUWils, Session } from
" @rightsidel/inperative";
import { DataSetDiff } from"../../../api/DataSetDi ff";

export default class DataSetsDi ffHandl er inplenents | CommandHandl er {
public async process(parans: |Handl erParaneters): Proni se<void> {

const profile = parans.profiles.get("zosnf");
const session = new Session({
type: "basic",
host nanme: profile. host,
port: profile.port,
user: profile.user,
password: profile. pass,
base64EncodedAut h: profile. auth,
rej ect Unaut hori zed: profile.rejectUnauthorized,
) :
const resp = await DataSetDiff.diff(session,
par ans. ar gunent s. ol dDat aSet, parans. ar gunent s. newDat aSet ) ;
par ans. r esponse. consol e. | og(resp);

}
Trying your command

Be sureto build your plug-invianpm run bui | d.

Install your plug-ininto Zowe CLI viazowe pl ugins install.

Issue the following command. Replace the data set names with valid mainframe data set names on your system:

zowe files-util diff data-sets ™ .cntl(iefbrig)™

The raw diff output is displayed as a command response:

zowe files-util diff data-sets .cntl(iefbrlgd)”

.cntl(iefbri4)
.cntl(iefbris) New

@@ -1,2 +1,2 @@

// $ JOB 165300000

-/ JEXEC EXEC PGM=IEFBR14
+//EXEC EXEC PGM=IEFBR15




| Extending | 136

Bringing together new tools!

The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for combining
different developer tools for new and interesting uses.

diff2html is afreetool to generate HTML side-by-side diffsto help see actual differencesin diff output.

Install thedi f f 2ht M CLI vianpminstall -g diff2htm -cli.Then, pipeyour Zowe CL plugin's output
intodi ff2ht m to generate diff HTML and launch aweb browser that contains the content in the screen shot at the
Overview on page 132.

e zowe files-util diff data-sets "keldal6.work.jcl(iefbrl4)"
"kel dal6.work.jcl (iefbrl5)" | diff2html -i stdin

Next steps

Try the Implementing profilesin aplug-in on page 136 tutorial to learn about using profiles with your plug-in.

Implementing profiles in a plug-in
Y ou can use this profile template to create a profile for your product.
The profile definitionisplaced inthei nper ati ve. t s file.

somepr oduct will be the profile name that you might require on various commands to have credentials loaded
from a secure credential manager and retain host/port information (so that you can easily swap to different servers)
from the CL1).

By default, if your plug-inisinstalled into Zowe CLI that contains a profile definition like this, commands will
automatically be created under zowe profil es ... tocreate validate, set default, list, etc... for your profile.

profiles: [
{
type: "soneproduct",
schema: {
type: "object",
title: "Configuration profile for SOVE PRODUCT",
description: "Configuration profile for SOVE PRODUCT ",
properties: {
host: {
type: "string"
optionDefinition: {
type: "string"
nane: "host",
alias:["H'],
required: true
description: "Host nane of your SOVE PRODUCT REST APl server"

}
}!
port: {
type: "nunber",
optionDefinition: {
type: "nunber",
nanme: "port",
alias:["P"],
required: true,
description: "Port nunber of your SOVE PRODUCT REST API

}
}1
user: {
type: "string",
optionDefinition: {
type: "string",

server"


https://diff2html.xyz/

| Extending | 137

name: "user",
alias:["u"],
required: true
description: "User nane to authenticate to your SOVE PRODUCT
REST APl server"
¥
secure: true
1
password: {
type: "string"
optionDefinition: {
type: "string",
nane: "password",
alias:["p"],
required: true
description: "Password to authenticate to your SOVE PRODUCT
REST APl server"
¥
secure: true
1
s

required: ["host", "port", "user", "password"],

c’reat eProfil eExanpl es: [

{

options: "spprofile --host zos123 --port 1234 --user ibnuser --
password myp4ss",

description: "Create a SOVE PRODUCT profile named 'spprofile' to
connect to SOVE PRODUCT at host zos123 and port 1234"

}
]
}

Next steps

If you completed all previous tutorials, you now understand the basics of extending and developing plug-ins for
Zowe CLI. Next, we recommend reviewing the project Contribution Guidelines on page 124 and |mperative CLI
Framework Documentation on page 124 to learn more.

Developing for Zowe Application Framework

Extending the Zowe Application Framework (zLUX)

Y ou can create plug-ins to extend the capabilities of the Zowe Application Framework.

Creating application plug-ins

An application plug-in isan installable set of filesthat present resources in aweb-based user interface, as a set of
RESTful services, or in aweb-based user interface and as a set of RESTful services.

Before you build an application plug-in, you must set the UNIX environment variables that support the plug-in
environment.

Setting the environment variables for plug-in development

To set up the environment, the node must be accessible on the PATH. To determine if the node is already on the
PATH, issue the following command from the command line:

node --version



| Extending | 138

If the version isreturned, the node is already on the PATH.

If nothing is returned from the command, you can set the PATH using the NODE_HOME variable. The
NODE_HOME variable must be set to the directory of the node install. Y ou can usethe export command to set the
directory. For example:

export NODE HOVE=node_installation_directory

Using this directory, the node will be included on the PATH innodeSer ver . sh. (nodeSer ver . shislocated in
zl ux- app- server/ bi n).

Using the sample application plug-in
Y ou can experiment with the sample application plug-in called sanpl e- app that is provided.

To build the sample application plug-in, node and npm must be included in the PATH. You can usethenpm r un
bui | d or npm st art command to build the sample application plug-in. These commands are configured in
package. j son.

Note:

« If you change the source code for the sample application, you must rebuild it.
e If you want to modify sanpl e- app, youmust run_npm i nst al | _ inthe Zowe Desktop and the sanpl e-
app/ webC i ent . Then, youcanrun_npm run buil d_insanpl e- app/ webd i ent .

« Ensurethat you set the \WD_DESKTOP_DI R system variable to the Zowe Desktop plug-in location. For example:
<ZLUX_ CAP>/ zI| ux- app- manager/ vi rt ual - deskt op.

1. Addanitemtosanpl e- app. Thefollowing figure shows an excerpt from app. conponent . ts:
export class AppConponent {
itens = ["a", 'b'", 'c', '"d]
title = "app';
hel | oText: string;
server ResponseMessage: string;

2. Savethe changesto app. conponent . ts.
3. Issueone of the following commands:

« Torebuild the application plug-in, issue the following command:
npm run build

* Torebuild the application plug-in and wait for additional changesto app. conponent . t s, issuethe
following command:
npm start

4. Reload the web page.
5. If you make changes to the sample application source code, follow these steps to rebuild the application:

a. Navigatetothesanpl e- app subdirectory where you made the source code changes.
b. Issuethe following command:
npm run build

c. Reload the web page.

Plug-ins definition and structure

The Zowe Application Server (zI ux- ser ver - f r amewor k) enables extensiblity with application plug-ins.
Application plug-ins are a subcategory of the unit of extensibility in the server called a plug-in.

Thefilesthat define a plug-in are located in the pl ugi nsDi r directory.



| Extending | 139

Application plug-in filesystem structure

An application plug-in can be loaded from afilesystem that is accessible to the Zowe Application Server, or it can be
loaded dynamically at runtime. When accessed from afilesystem, there are important considerations for the devel oper
and the user asto where to place the files for proper build, packaging, and operation.

Root files and directories
Theroot of an application plug-in directory contains the following files and directories.
pluginDefinition.json

Thisfile describes an application plug-in to the Zowe Application Server. (A plug-in isthe unit of extensibility for the
Zowe Application Server. An application plug-in isa plug-in of the type "Application”, the most common and visible
type of plug-in.) A definition file informs the server whether the application plug-in has server-side dataservices,
client-side web content, or both.

Dev and source content

Aside from demonstration or open source application plug-ins, the following directories should not be visible on a
deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application plug-in has router-type dataservices, they are interpreted by the Zowe Application Server by
attaching them as ExpressJS routers. It is recommended that you write application plug-ins using Typescript, because
it facilitates well-structured code. Use of Typescript results in build steps because the pre-transpilation Typescript
content is not to be consumed by NodeJS. Therefore, keep server-side source code inthe nodeSer ver directory. At
runtime, the server loads router dataservicesfromthel i b directory.

webClient

When an application plug-in has the webContent attribute in its definition, the server serves static content for a
client. To optimize loading of the application plug-in to the user, use Typescript to write the application plug-in and
then package it using Webpack. Use of Typescript and Webpack result in build steps because the pre-transpilation
Typescript and the pre-webpack content are not to be consumed by the browser. Therefore, separate the source code
from the served content by placing source codeinthewebC i ent directory.

Runtime content

At runtime, the following set of directories are used by the server and client.

lib

Thel i b directory iswhere router-type dataservices are loaded by use in the Zowe Application Server. If the JS
filesthat are loaded from thel i b directory require NodeJS modules, which are not provided by the server base (the
moduleszl ux- ser ver - f r amewor k requires are added to NODE_PATH at runtime), then you must include these
modulesin| i b/ node_nodul es for local directory lookup or ensure that they are found on the NODE_PATH

environment variable. nodeSer ver / node_nodul es isnot automatically accessed at runtime because it isadev
and build directory.

web

Theweb directory iswhere the server serves static content for an application plug-in that includes the webContent
attribute in its definition. Typically, this directory contains the output of awebpack build. Anything you placein this
directory can be accessed by aclient, so only include content that is intended to be consumed by clients.

Location of plug-in files
Thefilesthat define aplug-in are located inthe pl ugi nsDi r directory.
pluginsDir directory

At startup, the server reads from the pl ugi nsDi r directory. The server loads the valid plug-ins that are found by
the information that is provided in the JSON files.



| Extending | 140

Withinthe pl ugi nsDi r directory are a collection of JSON files. Each file has two attributes, which serveto locate
aplug-in on disk:

location: Thisisadirectory path that isrelative to the server's executable (such aszIl ux- app- server/ bi n/
nodeSer ver . sh) at whichapl ugi nDefi ni ti on. j son fileisexpected to be found.

identifier: The unique string (commonly styled as a Java resource) of a plug-in, which must match what isin the
p! ugi nDefinition.jsonfile

Plug-in definition file

pl ugi nDefi ni ti on.j son isafilethat describesaplug-in. Each plug-in requires thisfile, because it defines
how the server will register and use the backend of an application plug-in (called a plug-in in the terminology of the
proxy server). The attributes in each file are dependent upon the pl ugi nType attribute. Consider the following

pl ugi nDefi ni tion.json filefromsanpl e- app:

{
"identifier": "comrs. nvd. nypl ugi n",
"api Version": "1.0",
"pl ugi nVersion": "1.0",
"pl ugi nType": "application",
"webContent": {
"framework": "angul ar 2",
"l aunchDefinition":
"pl ugi nShort NaneKey": "hel | oWorl dTitl e",
"pl ugi nShort NaneDefaul t": "Hello Wrld",
"imageSrc": "assets/icon. png"
I
"descriptionKey": "MPI ugi nDescription",
"descriptionDefault”: "Base MVD plugin tenplate",
"i sSi ngl eW ndowApp": true,
"def aul t Wndowst yl e": {
"wi dth": 400,
"hei ght": 300
}
"dat aServices": [
{
"type": "router",
"name": "hello",
"servi ceLookupMet hod": "external",
"fileName": "helloWrld.js",
"routerFactory": "hell oWrl dRouter",
"dependenci esl ncl uded": true
}
]
}

Plug-in attributes

There are two categories of attributes: General and Application.

General attributes

identifier

Every application plug-in must have a unique string ID that associatesit with a URL space on the server.
apiVersion

The version number for the pluginDefinition scheme and application plug-in or dataservice requirements. The default
is1.0.0.

pluginVersion



| Extending | 141

The version number of the individual plug-in.

pluginType

A string that specifies the type of plug-in. The type of plug-in determines the other attributes that are valid in the
definition.

« application: Defines the plug-in as an application plug-in. Application plug-ins are composed of a collection
of web content for presentation in the Zowe web component (such as the Zowe Desktop), or a collection of
dataservices (REST and websocket), or both.

* library: Definesthe plug-in as alibrary that serves static content at a known URL space.
* node authentication: Authentication and Authorization handlers for the Zowe Application Server.

Application attributes

When aplug-inis of pluginType application, the following attributes are valid:
webContent

An object that defines several attributes about the content that is shown in aweb Ul.
dataServices

An array of objects that describe REST or websocket dataservices.
configurationData

An object that describes the resource structure that the application plug-in uses for storing user, group, and server
data.

Application web content attributes

An application that has the webContent attribute defined provides content that is displayed in a Zowe web UI.
The following attributes determine some of this behavior:

framework

States the type of web framework that is used, which determines the other attributes that are valid in webContent.

« angular2: Defines the application as having an Angular (2+) web framework component. This is the standard for
a"native" framework Zowe application.

« iframe: Defines the application as being external to the native Zowe web application environment, but instead
embedded in an iframe wrapper.

launchDefinition

An object that details several attributes for presenting the application in aweb UL.

« pluginShortNameDefault: A string that gives a name to the application when i18n is not present. Whenil8nis
present, i18nis applied by using the pluginShortNameKey.

» descriptionDefault: A longer string that specifies a description of the application within a Ul. The description is
seen when i18n is not present. When i18n is present, i18n is applied by using the descriptionKey.

* imageSrc: Therelative path (from/ web) to asmall image file that represents the application icon.
defaultWindowStyle
An object that details the placement of a default window for the application in aweb Ul.

« width: The default width of the application plug-in window, in pixels.
» height: The default height of the application plug-in window, in pixels.

IFrame application web content

In addition to the general web content attributes, when the framework of an application is "iframe", you must specify
the page that is being embedded in the iframe. To do so, incude the attribute startingPage within webContent.
startingPage is relative to the application's/ web directory.



| Extending | 142

Specify startingPage as arelative path rather than an absolute path because the pl ugi nDef i ni ti on. j son fileis
intended to be read-only, and therefore would not work well when the hostname of a page changes.

Within an |Frame, the application plug-in still has access to the globals that are used by Zowe for application-to-
application communication; simply access window.parent.ZoweZLUX.

Dataservices

Dataservices are a dynamic component of the backend of a Zowe application. Dataservices are optional, because the

proxy server might only serve static content for a particular application. However, when included in an application, a
dataservice defines a URL space for which the server will run the extensible code from the application. Dataservices

are primarily intended to be used to create REST APIs and Websocket channels.

Defining a dataservice

Within the sanpl e- app repository, in the top directory, you will find apl ugi nDef i ni ti on. j son file. Each
application requires thisfile, because it defines how the server registers and uses the backend of an application (called
aplug-in in the terminology of the proxy server).

Within the JSON file, thereisatop level attribute, dataServices:

"dat aServices": |

{
"type": "router",
"nanme": "hello",
"servi ceLookupMet hod": "external",
"fileName": "helloWrld.js",
"routerFactory”: "hell owrl dRouter",
"dependenci esl ncl uded": true

}

]

Dataservices defined in pluginDefinition

The following attributes are valid for each dataservice in the dataServices array:
type

Specify one of the following values:

e router: Router dataservices are dataservices that run under the proxy server, and use ExpressJS Routers for
attaching actions to URL s and methods.

» service Service dataservices are dataservices that run under ZSS, and utilize the API of ZSS dataservices for
attaching actions to URL s and methods.

name

The name of the service that must be unique for each pl ugi nDef i ni ti on. j son file. The nameisused to
reference the dataservice during logging and it is also is used in the construction of the URL space that the dataservice
occupies.

servicel. ookupM ethod
Specify ext er nal unless otherwise instructed.
fileName

The name of thefile that isthe entry point for construction of the dataservice, relative to the application's/ | i b
directory. In the case of sanpl e- app, upon transpilation of the typescript code, javascript files are placed into the /
| i b directory.

router Factory (Optional)



| Extending | 143

When you use arouter dataservice, the dataservice isincluded in the proxy server through ar equi r e() statement.
If the dataservice's exports are defined such that the router is provided through a factory of a specific name, you must
state the name of the exported factory using this attribute.

dependenciesl ncluded

Must bet r ue for anything in the pl ugi nDef i ni ti on. j son file. (This setting is false only when adding
dataservicesto the server dynamically.)

Dataservice API

The API for a dataservice can be categorized as Router-based or ZSS-based, and Wehsocket or not.

Note: Each Router dataservice can safely import express, express-ws, and bluebird without requiring the modules
to be present, because these modules exist in the proxy server's directory and the NODE_MODULES environment
variable can include this directory.

Router-based dataservices
HTTP/REST router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For
more information, see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from aroot /' path, as
the paths specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pl ugi nDef i ni ti on
specification for routerFactory above, or by the module constructor.

Anexampleisavailableinsanpl e- app/ nodeServer/ts/ helloWrld.ts
Websocket router dataservices
ExpressJS routers are fairly flexible, so the contract to create the Router for Websockets is not significantly different.

Here, the express-ws package is used, which adds websockets through the ws package to ExpressJS.

The two changes between a websocket-based router and a normal router are that the method is'ws), asin

rout er.ws(<url >, <cal | back>), and the callback provides the websocket on which you must define event
listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for
websocket router dataservicesis primarily provided in these packages.

Anexampleisavailablein zl ux- server - franmewor k/ pl ugi ns/term nal - proxy/|ib/
term nal Proxy.js

Router dataservice context

Every router-based dataservice is provided with a Cont ext object upon creation that provides definitions of its
surroundings and the functions that are helpful. The following items are present in the Cont ext object:

serviceDefinition

The dataservice definition, originaly from the pl ugi nDefi ni ti on. j son filewithin aplug-in.
serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within a plug-in.
makeSublogger

A function to create a Zowe Logger with a new name, which is appended to the unique name of the dataservice.
addBodyParseMiddleware


http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://www.npmjs.com

| Extending | 144

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.
plugin
An object that contains more context from the plug-in scope, including:

* pluginDef: The contents of the pl ugi nDef i ni ti on. j son filethat contains this dataservice.
» server: An object that contains information about the server's configuration such as:

« app: Information about the product, which includes the productCode (for example: ZLUX).
» user: Configuration information of the server, such asthe port on which it is listening.

Zowe Desktop and window management

The Zowe Desktop is aweb component of Zowe, which is an implementation of \VDW ndowiVanagenent , the
interface that is used to create a window manager.

The code for this softwareisinthe zl ux- app- manager repository.
The interface for building an aternative window manager isin the zl ux- pl at f or mrepository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in.
Application plug-ins are plug-ins of the type "application”, and therefore the Zowe Desktop operates around a
collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window
management, such as application-to-application communication, Logging, URI lookup, and Auth are not described
here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call ismadeto/ pl ugi ns?t ype=appl i cati on. The GET call returns
aJSON list of all application plug-ins that are on the server, which can be accessed by the user. Application plug-ins
can be composed of dataservices, web content, or both. Application plug-ins that have web content are presented in
the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon
with adescription. Theicon that is used, and the description that is presented are based on the application plug-in's
Pl ugi nDef i ni ti on'swebCont ent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager.
Use the Plugin Manager to determine whether a plug-in is present before you act upon the existence of that plug-in.
When the Zowe Desktop is running, you can access the Plugin Manager through ZoweZLUX. Pl ugi nManager

The following are the functions you can use on the Plugin Manager:
e getPlugin(pluginID: string)

* Accepts astring of aunique plug-in 1D, and returns the Plugin Definition Object (DesktopPluginDefinition)
that is associated with it, if found.

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager.

The Application Manager can facilitate communication between application plug-ins, but formal application-to-
application communication should be performed by calls to the Dispatcher. The Application Manager is not normally
directly accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:



| Extending | 145

Function

Description

spawnAppl i cati on(pl ugi n:

Deskt opPl ugi nDefinition,

| aunchMet adat a: any):

Prom se<MVDHost i ng. | nst ancel d>;

kil l Application(plugin: ZLUX. Pl ugi n,

appl d: MWDHost i ng. I nst ancel d): voi d;
showAppl i cat i onW ndow( pl ugi n:

Deskt opPl ugi nDefinitionlnpl): void,;

i sAppl i cati onRunni ng(pl ugi n:

Deskt opPl ugi nDefinitionlnpl): bool ean;

Opens an application instance into the Window Manager,
with or without context on what actionsit should
perform after creation.

Removes an application instance from the Window
Manager.

Makes an open application instance visible within the
Window Manager.

Determines if any instances of the application are openin
the Window Manager.

Windows and Viewports

When a user clicks an application plug-in'sicon on the taskbar, an instance of the application plug-in is started
and presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance
of an application plug-in's web content within Zowe is given context and can listen on events about the Viewport

and Window it exists within, regardless of whether the Window Manager implementation utilizes these constructs
visually. It is possible to create a Window Manager that only displays one application plug-in at atime, or to have a
drawer-and-panel Ul rather than atrue windowed UI.

When the Window is created, the application plug-in's web content is encapsul ated dependent upon its framework
type. The following are valid framework types:

e "angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework
objects are given through @injectables and imports.

« "iframe": The web content can be written using any framework, but isincluded through an iframe tag. Application
plug-ins within an iframe can access framework objects through parent.RocketMVD and callbacks.

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsul ate an instance of an application plug-in's web content, but otherwise do not add to the Ul (they
do not present Chrome as a Window does). Each instance of an application plug-in is associated with a viewport,
and operations to act upon a particular application plug-in instance should be done by specifying a viewport for an
application plug-in, to differentiate which instance is the target of an action. Actions performed against viewports
should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

Function

Description

creat eVi ewport (providers:
Resol vedRef | ecti veProvider[]):
MVDHost i ng. Vi ewport | d;

regi ster Vi ewport (viewportld:
MVDHost i ng. Vi ewport |l d, instanceld:
MVDHost i ng. | nstancel d): voi d;

destroyVi ewport (vi ewportld:
MVDHost i ng. Vi ewportld): void;

get Appl i cationl nstancel d(vi ewportld:
MVDHost i ng. Vi ewport | d):

MVDHost i ng. I nstanceld | null;

Creates a viewport into which an application plug-in's
webcontent can be embedded.

Registers a previously created viewport to an application
plug-in instance.

Removes a viewport from the Window Manager.

Returnsthe ID of an application plug-in's instance from
within aviewport within the Window Manager.




| Extending | 146

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs.
iframe application plug-insindirectly benefit from some of these hooks due to the wrapper acting upon them, but
Angular application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.
Plug-in definition

@ nj ect (Angul ar 2l nj ecti onTokens. PLUG N_DEFI NI TI ON) private pl ugi nDefinition:
ZLUX. Cont ai ner Pl ugi nDef i ni ti on

Provides the plug-in definition that is associated with this application plug-in. Thisinjectable can be used to gain
context about the application plug-in. It can aso be used by the application plug-in with other application plug-in
framework objects to perform a contextual action.

Logger
@ nj ect (Angul ar 21 nj ecti onTokens. LOGGER) private | ogger: ZLUX. ConponentLogger

Provides alogger that is named after the application plug-in's plugin definition ID.

Launch Metadata
@ nj ect (Angul ar 21 nj ecti onTokens. LAUNCH METADATA) private | aunchMet adata: any

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default
view.

Viewport Events

@ nj ect (Angul ar 21 nj ect i onTokens. VI EWPORT_EVENTS) private vi ewportEvents:
Angul ar 2Pl ugi nVi ewport Event s

Presents hooks that can be subscribed to for event listening. Events include:
resi zed: Subject<{w dth: nunmber, height: nunber}>
Fires when the viewport's size has changed.

Window Events

@ nj ect (Angul ar 2l nj ecti onTokens. W NDOW _ACTI ONS) private w ndowActi ons:
Angul ar 2Pl ugi nW ndowAct i ons

Presents hooks that can be subscribed to for event listening. The eventsinclude:

Event Description

maxi m zed: Subj ect <voi d> Fires when the Window is maximized.

m ni m zed: Subj ect <voi d> Fires when the Window is minimized.

restored: Subject<void> Fires when the Window is restored from aminimized
state.

noved: Subject<{top: nunber, left: Fires when the Window is moved.

nunber} >

resi zed: Subject<{w dth: nunber, Fires when the Window is resized.

hei ght: nunber}>

titl eChanged: Subject<string> Fires when the Window's title changes.




| Extending | 147

Window Actions

@ nj ect (Angul ar 2l nj ecti onTokens. W NDOW _ACTI ONS) private w ndowActi ons:
Angul ar 2Pl ugi nW ndowAct i ons

An application plug-in can request actions to be performed on the Window through the following:

ltem Description

close(): void Closes the Window of the application plug-in instance.

maxi m ze(): void Maximizes the Window of the application plug-in
instance.

mnimze(): void Minimizes the Window of the application plug-in
instance.

restore(): void Restores the Window of the application plug-in instance
from aminimized state.

setTitle(title: string):void Setsthetitle of the Window.

set Position(pos: {top: nunber, Sets the position of the Window on the page and the size

left: nunmber, w dth: nunber, height: of the window.

nunber}): void

spawnCont ext Menu( xPos: nunber, yPos: Opens a context menu on the application plug-in

nunber, items: ContextMenulteni]): instance, which uses the Context Menu framework.

voi d

regi sterC oseHandl er (handl er: () => Registers a handler, which is called when the Window

Prom se<void>): void and application plug-in instance are closed.

Configuration Dataservice

The Configuration Dataservice is an essential component of the Zowe Application Framework, which acts as a JSON
resource storage service, and is accessible externally by REST API and internally to the server by dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges
within a Zowe ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration
Dataservice works with data for plug-ins. Every resource that is stored in the Configuration Service is stored for a
particular plug-in, and valid resources to be accessed are determined by the definition of each plug-in in how it uses
the Configuration Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-
in lists the valid resources, and the administrators can set permissions for the users who can view or modify these
resources.

Resource Scope

Data s stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the
Dataserviceisto facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes
that encompass the Scope from which they are viewing the data.

When a user stores aresource, the resource is stored within a Scope but only if the user has access privilege to update
within that Scope.

Scopeis one of the following:

Product



| Extending | 148

Configuration defaults that come with the product. Cannot be modified.

Site

Datathat can be used between multiple instances of the Zowe Application Server.
Instance

Data within an individual Zowe Application Server.

Group

Datathat is shared between multiple usersin a group.(Pending)

User

Datafor an individual user.(Pending)

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User
and Group scope queries will be rejected if not logged in due to the requirement to pull resources from a specific
user. Because of this, User and Group scopes will not be functional until the Security Framework is merged into the
mainline.

Where Product is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the
authentication of the session. Thisway, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do thisis to use the
REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance,
then the datain Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might
have only been the settings they saved within their own User scope (if the broader scopes do not have data for the
resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action
will be rejected because of the preferences set by the administrator to disallow changes to the Instance scope by
ordinary users.

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired
operation.

The HTTP URL scheme for the configuration dataserviceis:

<Server >/ pl ugi ns/comrs. confi gj s/ services/datal/ <plugin | D>/ <Scope>/ <r esour ce>/
<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of aresource as a collection of elements, or adirectory. To access a single el ement, you must use the query
parameter "name="

REST query parameters

Name (string)

Get or put asingle element rather than a collection.

Recur sive (boolean)

When performing a DELETE, specifies whether to delete subresources too.
Listing (boolean)



| Extending | 149

When performing a GET against a resource with content subresources, | i st i ng=t r ue will provide the names of
the subresources rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".
GET

GET / pl ugi ns/com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>?
nane=<el enent >

« Thisreturns JISON with the attribute "content” being a JSON resource that is the entire configuration that was
reguested. For example:

/ plugi ns/comrs. configjs/services/datal/org. opennmai nf rame. zowe. codeedi t or/ user/
sessi ons/ def aul t ?nane=t abs

The parts of the URL are:

* Plugin: org.openmainframe.zowe.codeeditor
e Scope: user

* Resource: sessions

* Subresource; default
* Element = tabs

The response body isa JSON config:

{
" _object Type" : "comrs.config.resource",
" _metadataVersion" : "1.1",
"resource" : "org.opennmai nfranme. zowe. codeedi t or/ USER/ sessi ons/ defaul t",
"contents" : {
" metadataVersion" : "1.1",
" _obj ect Type" : "org.opennai nfranme. zowe. codeedi t or. sessi ons. t abs",
"tabs" :
"title" : "TSSPG REXX. EXEC( ARCTEST2) ",
"filePath" : "TSSPG REXX. EXEC( ARCTEST2) ",
"isDataset" : true
¥
"title" : ".profile",
"filePath" : "/ul/tsspg/.profile"
}
]
}
}

GET / pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>

This returns JISON with the attribute cont ent being a JSON object that has each attribute being another JSON
object, which isa single configuration element.

GET / pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>
(When subresources exist.)

Thisreturns alisting of subresources that can, in turn, be queried.

PUT

PUT / pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>?
nane=<el enent >



| Extending | 150

Stores a single element (must be a JSON object {...} ) within the requested scope, ignoring aggregation policies,
depending on the user privilege. For example:

/ pl ugi ns/comrs. configjs/services/data/org. opennmai nf rame. zowe. codeedi t or/ user/
sessi ons/ def aul t ?nane=t abs

Body:
{ .
" _metadat aVersion" : "1.1",
" _object Type" : "org.opennai nfranme. zowe. codeedi t or. sessi ons. t abs",
"tabs" : [{
"title” : ".profile",
"filePath" : "/u/tsspg/.profile"
oA
"title" : "TSSPG REXX. EXEC( ARCTEST2) ",
"filePath" : "TSSPG REXX. EXEC( ARCTEST2) ",
"isDataset" : true
}!
"title" : ".emacs",
"filePath" : "/u/tsspg/.enacs"
}
]
}
Response:
{ _ :
" _object Type" : "comrs.config.resourceUpdate",
" metadataVersion" : "1.1",
"resource" : "org.opennai nframe. zowe. codeedi t or/ USER/ sessi ons/ defaul t",
"result" : "Replaced item"
}
DELETE

DELETE/ pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>?
recursive=true

Deletes dll filesin all leaf resources below the resource specified.

DELETE/ pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>?
nane=<el enent >

Deletesasinglefilein aleaf resource.
DELETE/ pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ <scope>/ <r esour ce>

» Deletesal filesin aleaf resource.
* Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might
be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user isable to do a PUT, POST, or DELETE to alevel above User, such
as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different.
Compare the following two commands:

GET / pl ugi ns/com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ user/ <resour ce>

Gets the content for the current user.



| Extending | 151

GET / pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ user s/ <user nanme>/ <r esour ce>
Gets the content for a specific user if authorized.

Thisisthe same structure that is used for the Group scope. When requesting content from the Group scope, the user is
checked to seeif they are authorized to make the request for the specific group. For example:

GET / pl ugi ns/ com rs. confi gj s/ servi ces/ dat a/ <pl ugi n>/ gr oup/ <gr oupnane>/
<resour ce>

Gets the content for the given group, if the user is authorized.

Application API
Retrieves and stores configuration information from specific scopes.
Note: This API should only be used for configuration administration user interfaces.

ZLUX. Uri Broker. pl ugi nConf i gFor ScopeUri (pl ugi nDefinition: ZLUX Plugin, scope:
string, resourcePath:string, resourceNane:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information,
issimply to "consume” it. It "asks" for configurations using the User scope, and allows the configuration service to
decide which configuration information to retrieve and how to aggregate it. (See below on how the configuration
service evaluates what to return for this type of request).

ZLUX. Uri Broker. pl ugi nConfi gUri (pl ugi nDefinition: ZLUX Pl ugin,
resour cePat h: string, resourceNane:string): string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored
within the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the depl oy directory of aZowe installation, each plug-in might optionally have an _i nt er nal directory.
An example of such apathis:

depl oy/ i nstance/ ZLUX/ pl ugi nSt or age/ <pl ugi nNanme>/ _i nt er nal
Within each _i nt er nal directory, the following directories might exist:

e services/<servi cenane>: Configuration resources for the specific service.
e pl ugi n: Configuration resources that are visible to al servicesin the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context
Object.

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource
structure to make use of the Configuration Dataservice. The resource structure definition isincluded in the plug-in's
p! ugi nDefinition.jsonfile

For each resource and subresource, you can define an aggr egat i onPol i cy to control how the data of a broader
scope alters the resource data that is returned to a user when requesting a resource from a narrower Scope.

For example:

"configurationData": { //is a direct attribute of the pluginDefinition
JSON
"resources": { //always required
"preferences": {

"l ocationType": "relative", //this is the only option for now, but
| ater absol ute paths may be accepted
"aggregationPolicy": "override" //override and none for now, but

nore in the future



| Extending | 152

}

essions": { //the name at this level represents the nane
used within a URL, such as /plugins/comrs.configjs/services/data/
or g. opennmi nf rame. zowe. codeedi t or/ user/ sessi ons
"aggregationPolicy": "none",
"subResources": {
"sessi onNane":

"variable": true, //if variable=true is present, the resource
must be the only one in that group but the nane of the resource is
substituted for the nane given in the REST request, so it represents nore
t han one
"aggregationPolicy": "none"

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes
together when a user requests a resource. If the user requests a resource from the User scope, the data from the User
scope might replace or be merged with the data from a broader scope such as Instance, to make a combined resource
object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as
the attribute aggr egat i onPol i cy within aresource.

The following policies are currently implemented:

« NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there
are no user-saved settings for the query, in which case the dataservice attempts to send data that isfound at a
broader scope.

 OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level
found, and joins the resource's properties from narrower scopes, overriding broader attributes with narrower ones,
when found.
URI Broker

The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe
Application Server by constructing URIs that use the context from the calling application plug-in.

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible
through iframe. Thisis because it is attached to a globa when within the Zowe Desktop. For more information, see
Zowe Desktop and window management on page 144. Access the URI Broker through one of two locations:

Natively:
wi ndow. ZoweZLUX. uri Br oker
Inaniframe:

wi ndow. par ent. ZoweZLUX. uri Br oker

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to
call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices on page 142.



| Extending | 153

HTTP Dataservice URI

pl ugi NRESTUri (pl ugi n: ZLUX. Pl ugi n, serviceNanme: string, relativePath:string):
string

Returns: A URI for making an HT TP service request.
Websocket Dataservice URI

pl ugi nWsUr i (pl ugi n: ZLUX. Pl ugi n, serviceName:string, relativePath:string):
string

Returns: A URI for making a Websocket connection to the service.
Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the
Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are afew URIs that can be built:
Standard configuration access

p! ugi nConfi gUri (pl ugi nDefinition: ZLUX. Pl ugin, resourcePath:string,
resourceNane?:string): string

Returns: A URI for accessing the requested resource under the user's storage.
Scoped configuration access

pl ugi nConf i gFor ScopeUri (pl ugi nDefinition: ZLUX. Plugin, scope: string,
resourcePat h: string, resourceNane?:string): string

Returns: A URI for accessing a specific scope for a given resource.
Accessing static content

Content under an application plug-in'sweb directory is static content accessible by a browser. This can be accessed
through:

p! ugi nResour ceUri (pl ugi nDefinition: ZLUX Plugin, relativePath: string): string
Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure on page 139.
Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you
must access on that application plug-in, you can get the root:

pl ugi nRoot Uri (pl ugi nDefinition: ZLUX. Plugin): string
Returns: A URI to the root of the application plug-in.
Server queries

A client can find different information about a server's configuration or the configuration as seen by the current user
by accessing specific APIs.

Accessing a list of plug-ins
pl ugi nLi st Uri (plugi nType: ZLUX. Pl ugi nType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as"Application”
or "al".



| Extending | 154

Application-to-application communication

Zowe application plug-ins can opt-in to various application framework abilities, such as the ability to have a Logger,
use of a URI builder utility, and more. One ahility that is unique to a Zowe environment with multiple application
plug-insisthe ability for one application plug-in to communicate with another. The application framework provides
constructs that facilitate this ability. The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the
features that utilize them such as the framework’s Context menu.

1. Why use application-to-application communication? on page 154
2. Actionson page 154

3. Recognizers on page 156

4. Dispatcher on page 157

Why use application-to-application communication?

When working with a computer, people often use multiple applications to accomplish atask, for example checking a
dashboard before using a detailed program or checking email before opening a bank statement in a browser. In many
environments, the relationship between one program and another is not well defined (you might open one program
to learn of a situation, which you solve by opening another program and typing or pasting in content). Or perhaps
ahyperlink is provided or an attachment, which opens a program using a lookup table of which the program isthe
default for handling a certain file extension. The application framework attempts to solve this problem by creating
structured messages that can be sent from one application plug-in to another. An application plug-in has a context of
the information that it contains. Y ou can use this context to invoke an action on another application plug-in that is
better suited to handle some of the information discovered in the first application plug-in. Well-structured messages
facilitate knowing what application plug-inis"right" to handle a situation, and explain in detail what that application
plug-in should do. Thisway, rather than finding out that the attachment with the extension ".dat" was not meant for
atext editor, but instead for an email client, one application plug-in might instead be able to invoke an action on an
application plug-in, which can handle opening of an email for the purpose of forwarding to others (a more specific
task than can be explained with filename extensions).

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the application
framework, the unit of application-to-application communication is an Action. The typescript definition of an Action
isasfollows:

export class Action inplenents ZLUX. Action {
id: string; /1 id of action itself.
i 18nNaneKey: string; [/ future proofing for | 18N
defaul t Nane: string; // default nane for display purposes, wo | 18N
description: string;
target Mbde: Acti onTar get Mode;
type: ActionType; /1 "launch", "nessage"
target Pl ugi nl D: string;
pri maryArgunent: any;

constructor(id: string,
def aul t Name: string,
target Mode: Acti onTar get Mode,
type: ActionType,
target Pl ugi nl D: string,
pri mar yAr gunent : any) {
this.id =id;
t hi s. def aul t Name = def aul t Nane;
/1 proper nanme for |ID/type
this.targetPluginl D = targetPl ugi nl D
this. target Mode = target Mode;
this.type = type;
this. primaryArgunent = pri maryArgunent;



| Extending | 155

get Def aul t Name():string {
return this.defaultNang;
}

}

An Action has a specific structure of datathat is passed, to be filled in with the context at runtime, and a specific
target to receive the data. The Action is dispatched to the target in one of several modes, for example: to target a
specific instance of an application plug-in, an instance, or to create a new instance. The Action can be less detailed
than amessage. It can be arequest to minimize, maximize, close, launch, and more. Finally, all of thisinformation is
related to aunique ID and localization string such that it can be managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application
plug-in you are targeting. Y ou can instruct the framework how to target the application plug-in with a target mode
fromthe Acti onTar get Mode enum

export enum Acti onTar get Mode {

Pl ugi nCr eat e, /1 require pluginType

Pl ugi nFi nduUni queOr Cr eat e, /1 required Applnstance/lD

Pl ugi nFi ndAnyOr Cr eat e, /1 plugin type

[/ TODO Pl ugi nFi ndAnyOr Fai |

System /1l sonething that is always present

}

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action.
The behavior can be quite different, from simple messaging to requesting that an application plug-in be minimized.
The types are defined by an enum

export enum Acti onType { /1 not all actions are meani ngful for al
target nodes

Launch, /1 essentially do nothing after target node

Focus, /1 bring to fore, but nothing else

Rout e, /'l sub-navigate or "route" in target

Message, /1l "onMessage" style event to plugin

Met hod, /1 Method call on instance, nore strongly
typed

Mnimze

Maxi m ze,

d ose, /1 may need to call a "close handler"

}

Loading actions
Actions can be created dynamically at runtime, or saved and loaded by the system at login.
Dynamically

Y ou can create Actions by calling the following Dispatcher method: nakeAct i on(i d: string,
def aul t Name: string, targetMde: ActionTargetMode, type: ActionType,
target Plugi nlD: string, prinmaryArgunent: any):Action

Saved on system
Actions can be stored in JSON files that are loaded at login. The JSON structureis as follows:

"actions": [

"id":"org.zowe. expl or er. opennenber",
"defaul t Nane":"Edit PDS in MVS Explorer",



| Extending | 156

"type":"Launch",
"target Mode": " Pl ugi nCreate",
"targetld":"org.zowe. expl orer",

"arg": {
"type": "edit_pds",
"pds":
"op": "deref",
"source": "event",
"pat h":
"full _path"
]
}
}

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging
window if you have no one to message. Recognizers are objects within the application framework that use the context
that the application plug-in provides to determine if there is a condition for which it makes sense to execute an
Action. Each recognizer has statements about what condition to recognize, and upon that statement being met, which
Action can be executed at that time. The invocation of the Action is not handled by the Recognizer; it ssimply detects
that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

export class RecognitionRule {
pr edi cat e: Recogni ti onCl ause;
actionl D:string;

construct or (predi cat e: Recogni ti onCl ause, actionlD:string){
this. predicate = predicate;
this.actionl D = actionl D
}
}

A clause, inturn, is associated with an operation, and the subclauses upon which the operation acts. The following
operations are supported:

export enum RecognitionQp {
AND,
R
NOT,
PROPERTY_EQ
SOURCE_PLUGQ N_TYPE, /1 syntactic sugar
M ME_TYPE, I/ ditto

}

Loading Recognizers at runtime

Y ou can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers
saved on the system, or by adding them dynamically.

Dynamically

Y ou can call the Dispatcher method, addRecogni zer ( pr edi cat e: Recogni ti onC ause,
actionl D:string):void



| Extending | 157

Saved on system
Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{

"recogni zers": [

"id":"<actionl D>",
"clause": {
<cl ause>
}
}
]
}

clause can take on one of two shapes:

"prop": ["<keyString>", <"valueString">]

Cr,
"op": "<op enum as string>",
"args": [
{<cl ause>}

]

Where this one can again, have subclauses.
Recognizer example

Recognizers can be simple or complex. The following is an example to illustrate the mechanism:

"recogni zers": [

"id":"org.zowe. expl or er. opennmenber",

"clause": {
"op": "AND',
"args": |

{"prop":["sourcePluginlD',"comrs. nvd.tn3270"]}, {"prop":
["screenl D', "I SRUDSM'] }

}
}
]
}

In this case, the Recognizer detects whether it is possible to run the or g. zowe. expl or er. opennenber
Action when the TN3270 Terminal application plug-in is on the screen ISRUDSM (an | SPF panel for browsing PDS
members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object
at runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime. Y ou can register
Actions and Recognizers on it, and later, invoke an Action through it. The dispatcher handles how the Action's effects
should be carried out, acting in combination with the Window Manager and application plug-ins to provide a channel
of communication.



| Extending | 158

Registry

The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object
at runtime. It contains information about which application plug-ins are present in the environment, and the abilities
of each application plug-in. Thisisimportant to application-to-application communication, because a target might not
be a specific application plug-in, but rather an application plug-in of a specific category, or with a specific featureset,
capable of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and Recognizers
that are saved on the system. Actions and Recognizers are loaded at login, and then later, through aform of
automation or by auser action, Recognizers can be polled to determine if thereis an Action that can be executed.

All of thisis handled by the Dispatcher, but the description of the behavior liesin the Action and Recognizer that

are used. In the Action and Recognizer descriptions above, there are two JSON definitions: One is a Recognizer that
recognizes when the Terminal application plug-inisin a certain state, and another is an Action that instructsthe MV S
Explorer to load a PDS member for editing. When you put the two together, a practical application isthat you can
launch the MV S Explorer to edit a PDS member that you have selected within the Terminal application plug-in.

Error reporting Ul

ThezLUX W dget s repository contains shared widget-like components of the Zowe Desktop, including Button,
Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across all applications,
use, reuse, and customize existing widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in awhile afew occur, but more commonly an

error occurs from misconfigured user settings. A user might request an action or command that requires certain
prerequisites, for example: a proper ZSS-Server configuration. If the program or method fails, the program should
notify the user through the Ul about the error and how to fix it. For the purposes of this discussion, we will use the
Workflow application plug-in inthe zl ux- wor kf | owrepository.

ZluxPopupManagerService

The ZI uxPopupManager Ser vi ce isastandard popup widget that can, through itsr eport Er r or () method,
be used to display errors with attributes that specify the title or error code, severity, text, whether it should block the
user from proceeding, whether it should output to the logger, and other options you want to add to the error dialog.
Zl uxPopupManager Ser vi ce usesboth ZI uxError Severity andError Report Struct.

“export declare class Zl uxPopupManager Servi ce {°

event sSubj ect: any;

i steners: any;

events: any;

| ogger: any;

constructor();

set Logger (|1 ogger: any): void;

on(nane: any, l|istener: any): void,

broadcast (nane: any, ...args: any[]): void;

processButtons(buttons: any[]): any[];

bl ock(): wvoid;

unbl ock(): void;

get Logger Severity(severity: Zl uxErrorSeverity): any;

reportError(severity: Zl uxErrorSeverity, title: string, text: string,
options?: any): Rx.Cbservabl e<any>;

}



| Extending | 159

ZluxErrorSeverity

Zl uxError Severi ty classifiesthe type of report. Under the popup-manager, there are the following types: error,
warning, and information. Each type has its own visual style. To accurately indicate the type of issue to the user, the
error or pop-up should be classified accordingly.

“export declare enum Zl uxErrorSeverity {°

ERROR = "error",
WARNI NG = "war ni ng",
I NFO = "info",

ErrorReportStruct

Err or Report St ruct contains the main interface that brings the specified parameters of r eport Err or ()
together.

“export interface ErrorReportStruct {°

severity: string;
nodal : bool ean;
text: string;
title: string;
buttons: string[];

Implementation

Import ZI uxPopupManager Ser vi ce and ZI uxEr r or Sever ity from widgets. If you are using additional
services with your error prompt, import those too (for example, Logger Ser vi ce to print to the logger or

d obal Vei | Ser vi ce to create avisible semi-transparent gray veil over the program and pause background
tasks). Here, widgetsisimported from node_nodul es\ @I ux\ soyou must ensure zLUX widgetsis used in your
package-| ock. j son or package. j son and you haverunnpm i nst al | .

i mport { ZI uxPopupManager Servi ce, Zl uxErrorSeverity } from' @l ux/w dgets';
Declaration

Create amember variable within the constructor of the class you want to use it for. For example, in the Workflow
application plug-in under \ zI ux- wor kf | ow\ sr c\ app\ app\ zosnf - server -confi g. conponent.tsis
aZosnf Ser ver Conf i gConponent classwith the pop-up manager service variable. To automatically report the
error to the console, you must set alogger.

“export class Zosnf Server Confi gConponent {°

construct or (
private popupManager: Zl uxPopupManager Service, )
{ popupManager. set Logger (|l ogger); } //Optional

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method.
The following example describes an instance of ther el oad() method in Workflow that catches an error when the
program attempts to retrieve a configuration fromaconf i gSer vi ce and set it to the program'st hi s. confi g.
This method fails when the user has a faulty zss-Server configuration and the error is caught and then sent to the class
popupManager variable from the constructor above.

“reload(): void {°

t hi s. gl obal Veil Servi ce. showveil ();



| Extending | 160

this. configService
. get Config()
.then(config => (this.config = config))
.then(_ => setTimeout(() => this.test(), 0))
.then(_ => this.global Veil Servi ce. hideVeil ())
.catch(err => {
t hi s. gl obal Vei |l Servi ce. hideVeil ()
let errorTitle: string = "Error";
| et errorMessage: string = "Server configuration not found. Please
check your zss server.";
const options = {
bl ocki ng: true

’ t hi s. popupManager . report Error (Zl uxError Severity. ERROR,
errorTitle.toString()+": "+err.status.toString(), errorMssage
+"\n"+err.toString(), options);

Here, theer r or Message clearly describes the error with a small degree of ambiguity asto account for all types of
errors that might occur from that method. The specifics of the error are then generated dynamically and are printed
withtheerr. toString(), which containsthe more specific information that is used to pinpoint the problem.
Thet hi s. popupManager . r eport () method triggers the error prompt to display. The error severity is set
with ZI uxError Severity. ERRORandtheerr. status.toString() describesthe status of the error
(often classified by a code, for example: 404). The optional parametersin opt i ons specify that this error will
block the user from interacting with the application plug-in until the error is closed or it until goes away on its own.
gl obal Vei | Servi ce isoptiona and is used to create a gray veil on the outside of the program when the error
iscaused. You must import gl obal Vei | Ser vi ce separately (seethe zl ux- wor kf | owrepository for more
information).

HTML

Thefinal step isto have the recently created error dialog display in the application plug-in. If you do

t hi s. popupManager . report () without adding the component to your template, the error will not be
displayed. Navigate to your component's. ht m file. On the Workflow application plug-in, thisfile will bein

\ zI ux-wor kf | owh src\ app\ app\ zosnf - server - confi g. conponent . ht m andthe only item left isto
add the popup manager component alongside your other classes.

<zl ux- popup- manager ></ z| ux- popup- nanager >

So now when the error is called, the new Ul element should resemble the following:

Error: 400 TH7/2018, 10:14-51 AM

Server configuration not found. Please check your zss
server. Response with status: 400 Bad Reguest for
URL: hitp:ffwal-vm-

la01:63213/config/com.rs_.zosmf workflows/user/zosmf/?
name=server-config

Close

The order in which you place the pop-up manager determines how the error dialog will overlap in your Ul. If you
want the error dialog to overlap other Ul elements, placeit at the end of the. ht m file. You can aso create custom
styling through a CSS template, and add it within the scope of your application plug-in.



| Extending | 161

Logging utility
Thezl ux- shar ed repository provides alogging utility for use by dataservices and web content for an application
plug-in.
Logging objects
Thelogging utility is based on the following objects:

e Component Loggers. Objects that log messages for an individual component of the environment, such asa REST
API for an application plug-in or to log user access.

» Destinations: Objects that are called when a component logger requests a message to be logged. Destinations
determine how something is logged, for example, to afile or to a console, and what formatting is applied.

» Logger: Central logging object, which can spawn component loggers and attach destinations.
Logger IDs

Because Zowe application plug-ins have unique identifiers, both dataservices and an application plug-in's web content
are provided with a component logger that knows this unique ID such that messages that are logged can be prefixed
with the ID. With the association of logging to IDs, you can control verbosity of logs by setting log verbosity by ID.

Accessing logger objects

Logger

The core logger object is attached as a global for low-level access.

App Server

NodelS uses gl obal asitsglobal object, so the logger is attached to: gl obal . COM RS_COVMON_LOGGER
Web

Browsers usewi ndow asthe global object, so the logger is attached to: wi ndow. COM RS _COVMON_L OGGER
Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the
application plug-in framework to create these loggers for you. An application plug-in's component logger is presented
to dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic Dataservices on page 142.

Web

(Angular App Instance Injectible). See L ogger in Zowe Desktop and window management on page 144.

Logger API

The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComnmponent Logger function Creates a component logger conponent | DSt ri ng
- Automatically done by
the application framework
for dataservices and web
content

set LogLevel For Conporfentthame Sets the verbosity of an conponent I DSt ri ng,
existing component logger | ogLevel

Component Logger API

The following constants and functions are available to each component logger.



| Extending | 162

Attribute Type Description Arguments

SEVERE const Isaconst for | ogLevel

WARNI NG const Isaconst for | ogLevel

I NFO const Isaconst for | ogLevel

FI NE const Isaconst for | ogLevel

FI NER const Isaconst for | ogLevel

FI NEST const Isaconst for | ogLevel

| og function Used to writealog, | ogLevel ,
specifying the log level nmessageString

severe function UsedtowriteaSEVERE  messageString
log.

war n function Used to writeaWARNING nessageStri ng
log.

info function Used towritean INFOlog. nessageStri ng

debug function UsedtowriteaFINElog. nessageString

makeSubl ogger function Creates anew component  conponent NaneSuf fi x

logger with an ID appended
by the string given

Log Levels

Anenum, LogLevel , exists for specifying the verbosity level of alogger. The mapping is:

Level Number
SEVERE
WARNING
INFO
FINE
FINER
FINEST

g b W N » O

Note: The default log level for alogger isINFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity alog message should be visible. You
can configure the server or client to show more or less verbose messages by using the core logger's APl objects.

Example: Y ou want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging
information.

| ogger . set LogLevel For Conponent Nane(' or g. zowe. f 0o. bar', LogLevel . DEBUG
Configuring logging verbosity

The application plug-in framework provides ways to specify what component |oggers you would like to set default
verbosity for, such that you can easily turn logging on or off.



| Extending | 163

Server startup logging configuration

The server configuration file allows for specification of default log levels, as atop-level attribute| ogLevel , which
takes key-value pairs where the key is aregex pattern for component 1Ds, and the value is an integer for the log
levels.

For example:

"l ogLevel ": {
"comrs.configjs.data.access": 2,
//the string given is a regex pattern string, so .* at the end here wll
cover that service and its subl oggers.
"com rs. nypl ugi n. nyservice.*": 4

/1

[l ' ' char reserved, and ' ' at beginning reserved for server. Just as
We reserve

/1 " _internal' for plugin config data for config service.

/1 _unp = universal node proxy core | ogging

/1" _unp.dsauth": 2
}l

For more information about the server configuration file, see Zowe Application Framework configuration on page 43.

Stand up alocal version of the Example Zowe Application Server

Thezl ux- app- server repository isan example of a server built upon the application framework. Within the
repository, you will find a collection of build, deploy, and run scripts and configuration files that will help you to
configure asimple Zowe Application Server with afew applications included.

Server layout

At the core of the application infrastructure backend is an extensible server, written for nodeJS and utilizing
expressJS for routing. It handles the backend components of an application, and can serve as a proxy for requests
from applications to additional servers, as needed. One such proxy destination is the ZSS, the Zowe Application
Framework backend component for Z Secur e Services, a so called agent for the Zowe Application Server. If you
want to set up aZowe Application Framework installation, contact Rocket to obtain the ZSS binary to usein the
installation process.

ZSS and Zowe Application Server overlap

The Zowe Application Server and ZSS utilize the same deployment and Application/Plugin structure, and share some
configuration parameters. It is possible to run ZSS and the Zowe Application Server from the same system, in which
case you would be running under z/OS USS. This configuration requires that IBM's version of nodeJSisinstalled
beforehand.

Another way to set up Zowe Application Framework is to have the Zowe Application Server running under LUW,
while keeping ZSS under USS. Thisis the configuration scenario presented below. In this scenario, you must clone
these github repositories to two different systems, and they will require compatible configurations. If thisisyour
initial setup, itisfineto haveidentical configuration filesand/ pl ugi ns foldersto get started.

First-time Installation and Use
Getting started with the server requires the following steps:

1. 0. (Optional) Install git for zZ/OS on page 164

2. 1. Acquire the source code on page 164

3. 2. Acquire external components on page 164

3. Set the server configuration on page 164

4. Build application plug-ins on page 164

5. Deploy server configuration files on page 165
6. Run the server on page 165

No oA



| Extending | 164

8. 7. Connect in abrowser on page 166
Follow each step and you will be on your way to your first Zowe Application Server instance.
0. (Optional) Install git for z/OS

Because al of the code is on github, yet ZSS must run on z/OS and the Zowe Application Server can optionally run
on z/OS as well, having git on zZ/OS is the most convenient way to work with the source code. The alternative would
be to utilize FTP or another method to transfer contents to z/OS. If you'd like to go thisroute, you can find git for z/
OS free of charge here: http://www.rocketsoftware.com/product-categories/mainframe/git-for-zos

1. Acquire the source code

To get started, first clone or download the GitHub capstone repository https://github.com/zowe/zlux.

Note: Make sure that you have your SSH key set up and added to GitHub. For how to do this, see Generating SSH
keys.

Because we will be configuring ZSS on z/OS's USS, and the Zowe Application Server on a LUW host, you will need
to place the contents on both systems. If you are using git, use the following commands.

git clone --recursive git@ithub. com zowe/ zl ux. git
cd zl ux

git subnodul e foreach "git checkout naster"

cd zlux-build

At this point, you have the latest code from each repository on your system. Continue from within zI ux- app-
server.
2. Acquire external components

Applications and external servers can require contents that are not in the Zowe github repositories. In the case of the
z|l ux- app- server, thereisaaZSS binary component which cannot be found in the repositories. To obtain the
ZSS hinary component, contact the Zowe project.

After you obtain the ZSS hinary component, you should receive zssServer. This must be placed within zZlux-build/
externals/Rocket, on the z/OS host. For example:

nkdir externals
nkdi r ext ernal s/ Rocket

/1 (on z/ CS only)
mv zssServer external s/ Rocket

3. Set the server configuration

Read the Configuration wiki page for a detailed explanation of the primary items that you will want to configure for
your first server.

In short, ensure that withinthe conf i g/ zI uxser ver . j son file, node.http.port or node.https.port and the other
HTTPS parameters are set to your liking on the LUW host, and that zssPort is set on the zZ/OS host.

Before you continue, if you intend to use the terminal, at this time (temporarily) it must be pre-configured to know
the destination host. Edit ../tn3270-ng2/\_defaultTN3270.json to set host and port to avalid TN3270 server telnet host
and port and then save the file. Edit ../vt-ng2/\_defaultVT.json to set host and port to avalid ssh host and port and then
save thefile.

4. Build application plug-ins
Prerequisites:

* NPM isused when building application plug-ins. The version of NPM needed for the build to succeed should be at
least 5.4. Y ou can update NPM by executingnpm i nstall -g npm

* Youmust haveant and ant - contri b installed.


https://github.com/zowe/zlux
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://github.com/zowe/zlux/wiki/Configuration-for-zLUX-App-Server-&-ZSS

| Extending | 165

Application plug-ins can contain server and web components. The web components must be built, as webpack
isinvolved in optimized packaging. Server components are also likely to need building if they require external
dependencies from NPM, use native code, or are written in typescript.

This example server only needs transpilation and packaging of web components, and therefore we do not need any
special build steps for the host running ZSS.

Instead, on the host that runs the Zowe Application Server, run the script that will automatically build all included
application plug-ins. Simply,

/| W ndows
bui | d. bat

[/ Ot herw se
bui | d. sh

Thiswill take some time to complete.
5. Deploy server configuration files
If you are running the Zowe Application Server separate from ZSS, ensure the ZSS installation configuration is
deployed. Y ou can accomplish this through:

ant depl oy
On the other hand, if you are running ZSS and the Zowe Application Server on the same host, build.sh and build.bat
execute deploy and therefore this task was accomplished in 4. Build application plug-ins on page 164.

However, if you need to change the server configuration files or if you want to add more application plug-ins

to be included at startup, you must update the deploy content to reflect this. Simply running depl oy. bat or

depl oy. sh will accomplish this, but filessuch aszl uxser ver . j son areonly read at startup, so areload of the
Zowe Application Server and ZSS would be required.

6. Run the server
At thispoint, all server files have been configured and the application plug-ins built, so ZSS and the Zowe
Application Server are ready to run. First, from the z/OS system, start ZSS.

cd ../ zl ux-app-server/bin
./ zssServer. sh

If the zssServer server did not start, two common sources of error are:

1. The zssPort chosen is already occupied. To fix this, edit config/zluxserver.json to choose a new one, and re-run
build/deploy.sh to make the change take effect.

2. The zssServer binary does not have the APF bit set. Because this server is meant for secure services, it is required.
Tofix this, executeext attr +a zssSer ver . Notethat you might need to alter the execute permissions
of zssSer ver . sh in the event that the previous command is not satisfactory (for example: chnod  +x
zssServer. sh)

Second, from the system with the Zowe Application Server, start it with afew parametersto hook it to ZSS.

cd ../ zl ux-app-server/bin

/1l W ndows:
nodeServer. bat <paraneters>

/'l Others:
nodeSer ver.sh <par anet er s>

Valid parameters for nodeServer are as follows:

e -h: Specifies the hosthame where ZSS can be found. Useas- h \ <host nane\ >



| Extending | 166

e -P: Specifies the port where ZSS can be found. Useas- P \ <por t \ >. This overrides zssPort from the
configuration file.

e -p: Specifiesthe HTTP port to be used by the Zowe Application Server. Useas- p <port >. Thisoverrides
node.http.port from the configuration file.

« -s: Specifiesthe HTTPS port to be used by the Zowe Application Server. Useas- s <port >. Thisoverrides
node.https.port from the configuration file.

« --noChild: If specified, tells the server to ignore and skip spawning of child processes defined as
node.childProcesses in the configuration file.

In the example where we run ZSS on a host named mai nf r ame. zowe. com running on zssPort = 19997, the Zowe
Application Server running on Windows could be started with the following:

nodeServer. bat -h mainfrane.zowe.com-P 19997 -p 19998
After which we would be able to connect to the Zowe Application Server at port 19998.

NOTE: the parameter parsing is provided by argumentParser.js, which allows for afew variations of input,
depending on preference. For example, the following are al valid ways to specify the ZSS host:

e -h myhost.com

e -h=myhost.com

e --hostServer myhost.com
e --hostServer=myhost.com

When the Zowe Application Server has started, one of the last messages you will see as bootstrapping completesis
that the server is listening on the HTTP/s port. At thistime, you should be able to use the server.

7. Connect in a browser

Now that ZSS and the Zowe Application Server are both started, you can access this instance by pointing your web
browser to the Zowe Application Server. In this example, the address you will want to go to first is the location of the
window management application: the Zowe Desktop. The URL is:

http(s)://<zLUX App Server>: <node. http(s). port>/ZLUX/ pl ugi ns/
org. zowe. zIl ux. boot st rap/ web/ i ndex. ht m

Once here, aLogin window opens with afew example application plug-insin the taskbar at the bottom of the
window. To try the application plug-ins to see how they interact with the framework, can login with your mainframe
credentials.

e tn3270-ng2: This application communicates with the Zowe Application Server to enable a TN3270 connection in
the browser.

» z/OS Subsystems: This application shows various z/OS subsystems installed on the host the ZSSruns on. Thisis
accomplished through discovery of these services by the application's portion running in the ZSS context.

e sample-angular-app: A simple app that show how azL UX application frontend (here, Angular) component can
communicate with an App backend (REST) component.

» sample-react-app: Similar to the Angular application, but using React instead to show how you have the flexibility
to use aframework of your choice.

« sample-iframe-app: Similar in functionality to the Angular and React sample application, but presented by means
of inclusion of aniframe, to show that pre-existing pages can be included.

Deploy example

/1 Al paths relative to zlux-app-server/js or zlux-app-server/bin
/1 In real installations, these values will be configured during the

install.
"rootDir":"../depl oy",
"productDir":"../depl oy/ product",
"siteDir":"../deploy/site",
"instanceDir":"../depl oy/instance",

"groupsDir":"../depl oy/instance/ groups",


https://github.com/zowe/zlux-proxy-server/blob/master/js/argumentParser.js

| Extending | 167

"usersDir":"../depl oy/instance/users"

Application plug-in configuration

This section does not cover dynamic runtime inclusion of application plug-ins, but rather application plug-ins that
are defined in advance. In the configuration file, adirectory can be specified which contains JSON files that tell the
server what application plug-in to include and where to find it on disk. The backend of these application plug-ins use
the Server's Plugin structure, so much of the server-side references to application plug-ins use the term "Plugin”.

To include application plug-ins, be sure to define the location of the Pl ugi ns directory in the configuration file,
through the top-level attribute pluginsDir

NOTE: Inthisrepository, the directory for these JSON filesis/ pl ugi ns. To separate configuration files from
runtime files, the z| ux- app- ser ver repository copies the contents of thisfolder into/ depl oy/ i nst ance/
ZLUX/ pl ugi ns. So, the example configuration file uses the latter directory.

Plugins directory example

/1l Al paths relative to zl ux-app-server/js or zlux-app-server/bin
/1l Inreal installations, these values will be configured during the
install.
/...
"pluginsDir":"../depl oy/instance/ ZLUX/ pl ugi ns",
ZSS Configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are:rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the Zowe
Application Server, but if the Zowe Application Server and ZSS are not run from the same location, then these
directories can be different.

The zssPort attribute is specific to ZSS. Thisisthe TCP port on which ZSS will listen to be contacted by the Zowe
Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting Zowe Application Server to ZSS

When running the Zowe Application Server, smply specify afew flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

* -h: Declares the host where ZSS can be found. Useas- h \ <host nane\ >

e -P: Declaresthe port at which ZSSislistening. Useas- P \ <port\ >
Zowe tutorials

The following Zowe tutorials are available in Github.

Sample Apps

:::tip Github Sample React App: sample-react-app :::

:::tip Github Sample Angular App: sample-angular-app :::

Internationalization in Angular Templates in Zowe zLUX

:::tip Github Sample Repo: sample-angular-app (Internationalization) :::

App to app communication

:::tip Github Sample Repo : sample-angular-app (App to app communication) :::

Using the Widgets Library
:::tip Github Sample Repo: sample-angular-app (Widgets) :::


https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md

| Extending | 168

Configuring user preferences (configuration dataservice)

:::tip Github Sample Repo: sample-angular-app (configuration dataservice) :::

Starter Samples

This section contains companion apps for tutorials, boilerplate projects, and prerequisite samples.

User Database Browser Starter App
:::tip Github Sample Repo: workshop-starter-app :::
This sample isincluded asthe first part of a tutorial detailing communication between separate Zowe apps.
It should beinstalled on your system before starting the User Browser Tutorial on page 168

The App's scenario isthat it has been opened to submit atask report to a set of users who can handle the task. In this
case, it isabug report. We want to find engineers who can fix this bug, but this App does not contain a directory
listing for engineers in the company, so we need to communicate with some App that does provide this information.
In thistutorial, you must build an App which is called by this App in order to list engineers, is able to be filtered by
the office that they work from, and is able to submit alist of engineers which would be able to handle the task.

After installing this app on your system, follow directions in the User Browser Tutorial on page 168 to enable app-
to-app communication.

User Browser Tutorial

Thistutorial contains code snippets and descriptions that you can combine to build a complete application. It builds
off the project skeleton code found at the github project repo.

By the end of thistutorial, you will:

Know how to create an application that displays on the Zowe Desktop
Know how to create a Dataservice which implements asimple REST API
Be introduced to Typescript programming

Be introduced to simple Angular web devel opment

Have experience in working with the Zowe Application Framework
Become familiar with one of the Zowe Application widgets: the grid widget

o g hrcwdE

:::\warning Before continuing, make sure you have completed the prerequisites for thistutorial :
*  Setup up the Stand up alocal version of the Example Zowe Application Server on page 163. :::
S0, let's get started!
1. Constructing an App Skeleton on page 169
» Defining your first plugin on page 169
e Constructing a Simple Angular Ul on page 169
e Packaging Y our Web App on page 171

e Adding Your App to the Desktop on page 172
2. Building your first Dataservice on page 173

*  Working with ExpressJS on page 174
e Adding your Dataservice to the Plugin Definition on page 175
3. Adding your first Widget on page 176

¢ Adding your Dataservice to the App on page 176
e Introducing ZLUX Grid on page 177
4. Adding Zowe App-to-App Communication on page 179

» Cadling back to the Starter App on page 182


https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md
https://github.com/zowe/workshop-starter-app
https://github.com/zowe/workshop-user-browser-app

| Extending | 169

Constructing an App Skeleton

Download the skeleton code from the project repository. Next, move the project into the zI ux source folder created
in the prerequisite tutorial.

If you look within this repository, you'll seethat afew boilerplate files already exist to help you get your first
application plug-in running quickly. The structure of this repository follows the guidelines for Zowe application plug-
in filesystem layout, which you can read more about on the wiki.

Defining your first plugin

Where do you start when making an application plug-in? In the Zowe Application Framework, an application plug-
inisaplug-in of type "Application”. Every plug-inis bound by their pl ugi nDefi ni ti on. j son file, which
describesits properties. Let's start by creating thisfile.

Create afile, pl ugi nDef i ni ti on.j son, at theroot of thewor kshop- user - br owser - app folder. Thefile
should contain the following:

{
"identifier": "org.openmai nfrane. zowe. wor kshop- user - br owser ",
"api Version": "1.0.0",
"pl ugi nVersion": "0.0.1",
"pl ugi nType": "application",
"webContent": {
"framework": "angul ar 2",
"launchDefinition": {
"pl ugi nShor t NaneKey": "user Browser",
"pl ugi nShor t NaneDefaul t": "User Browser",
"imageSrc": "assets/icon.png"

},
"descriptionKey": "userBrowserDescription",
"descriptionDefault": "Browse Enpl oyees in Systent,
"i sSi ngl eW ndowApp": true,
"def aul t WndowSt yl e": {
"wi dth": 1300,
"hei ght": 500
}
}
}

A description of the values that are placed into this file can be found on the wiki.
Note the following attributes:

e Our application has the unique identifier of or g. opennai nf r ame. zowe. wor kshop- user - br owser,
which can be used to refer to it when running Zowe.

e Theapplication hasawebCont ent attribute, because it will have a Ul component that is visible in a browser.

« ThewebCont ent section states that the application's code will conform to Zowe's Angular application
structure, dueto it stating " f r amewor k" :  "angul ar 2"

» Theapplication plug-in has certain characteristics that the user will see, such as:

e Thedefault window size (def aul t W ndowSt yl e),

* An application plug-in icon that we provided in wor kshop- user - br owser - app/ webC i ent /
src/ assets/icon. png,

» That we should seeit in the browser as an application plug-in named User Br owser , the value of
p! ugi nShort NameDef aul t .

Constructing a Simple Angular Ul

Angular application plug-ins for Zowe are structured such that the source code exists withinwebCl i ent / sr ¢/
app. In here, you can create modules, components, templates and servicesin any hierarchy. For the application plug-
in we are creating however, we will add threefiles:


https://github.com/zowe/workshop-user-browser-app
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux/wiki/Zlux-Plugin-Definition-&-Structure

| Extending | 170

* userbrowser.module.ts
* userbrowser-component.html
* userbrowser-component.ts

At first, let's just build a shell of an application plug-in that can display some simple content. Fill in each file with the
following content.

user browser.modulets

import { NgModule } from' @ngul ar/core'

i mport { CommonMbdul e } from ' @ngul ar/ conmon’

i mport { FornsMbdul e, ReactiveFornsMdule } from' @ngul ar/forns'
inmport { HitpModule } from' @ngul ar/ http'

i mport { UserBrowser Conponent } from'./userbrowser-conponent'

@gModul e( {
i mports: [FornmsMbdul e, ReactiveFor msMbdul e, ComonModul e],

decl arations: [UserBrowser Conponent],

exports: [UserBrowser Conponent],

ent ryConponents: [ User Br owser Conponent ]
1)

export class UserBrowserMdul e {}
user br owser-component.html

<div class="parent col-11" id="userbrowserPl ugi nU ">

{{sinpleText}}
</ di v>

<di v cl ass="user browser -spi nner-position">
<i class="fa fa-spinner fa-spin fa-3x" *nglf="result Not Ready" ></i >
</ di v>

user br owser -component.ts

i mport {
Conponent ,
Vi ewChi | d,
El ement Ref,
Ol nit,
AfterView nit,
I nj ect,
Si npl eChange
} from' @ngul ar/core'
import { Cbservable } from'rxjs/Cbservabl e’
inmport { Http, Response } from' @ngul ar/http'
i mport 'rxjs/add/ operator/catch'
i mport 'rxjs/add/ operator/mp'
i mport 'rxjs/add/ operator/debounceTi ne'

i mport
Angul ar 2l nj ecti onTokens,
Angul ar 2Pl ugi nW ndowAct i ons,
Angul ar 2Pl ugi nW ndowEvent s

} from'pluginlib/inject-resources'

@Conponent ({
sel ector: 'userbrowser',
tenpl ateUrl: 'userbrowser-conponent.htm ',

styleUrls: ['userbrowser-conponent.css']

})



| Extending | 171

export class UserBrowser Conponent inplenents Onlnit, AfterViewmnit {
private sinpleText: string
private resultNot Ready: bool ean = fal se

constructor (

private el ement: El enent Ref,
private http: Http,
@ nj ect (Angul ar 2l nj ecti onTokens. LOGCER) private | og:

ZLUX. Conponent Logger,
@ nj ect (Angul ar 21 nj ecti onTokens. PLUG N_DEFI NI TI ON)
private pluginDefinition: ZLUX ContainerPl ugi nDefinition,
@ nj ect (Angul ar 21 nj ect i onTokens. W NDOW ACTI ONS)
private wi ndowAction: Angul ar 2Pl ugi nW ndowAct i ons,
@ nj ect (Angul ar 2l nj ect i onTokens. W NDOW_EVENTS)
private w ndowEvents: Angul ar 2Pl ugi nW ndowEvent s

)

this.log.info( User Browser constructor called’)

}

ngOnlnit(): void {
this.sinpleText = "Hello World!"
this.log.info( App has initialized)
}

ngAfterViewnit(): void {}
}

Packaging Your Web App

At thistime, we've made the source for a Zowe application plug-in that should open in the Zowe Desktop with
agreeting to the planet. Before we're ready to use it however, we must transpile the typescript and package the
application plug-in. Thiswill require afew build tools first. We'll make an NPM package in order to facilitate this.

Let'screateapackage. j son filewithinwor kshop- user - br owser - app/ webd i ent . Whilea
package. j son can be created through other means such asnpm i ni t and packages can be added through

commandssuchasnpm i nstall --save-dev typescript@. 9. 0,well opt to save time by just pasting
these contentsin:
{
"name": "workshop-user-browser",
"version": "0.0.1",
"scripts":
"start": "webpack --progress --colors --watch",
"buil d": "webpack --progress --colors",
"lint": "tslint -c tslint.json \"src/**/* ts\""
}

private": true,
"dependenci es": {},
"devDependenci es": {

"@ngul ar/ ani mations": "~6.0.9",

"@ngul ar/ conmon": "~6.0.9",

"@ngul ar/conpiler": "~6.0.9",

"@ngul ar/ core": "~6.0.9",

"@ngul ar/fornms": "~6.0.9",

"@ngul ar/ http": "~6.0.9",

"@ngul ar/ pl at f orm browser": "~6.0.9",

"@ngul ar/ pl at f orm br owser - dynam c": "~6.0.9",
"@ngul ar/router": "~6.0.9",

"@lux/grid": "git+https://github.com zowe/zl ux-grid.git",

"@| ux/wi dgets": "git+https://github.com zowe/zl ux-w dgets.git",
"angul ar 2-tenpl at e-1 oader”: "~0.6. 2",

"copy-webpack- pl ugi n": "~4.5.2",

"core-js": "~2.5.7",


mailto:typescript@2.9.0

| Extending | 172

"css-loader": "~1.0.0",
"exports-loader": "~0.7.0",
"file-loader": "~1.1.11",
“htm -l oader": "~0.5.5",
"rxjs": "~6.2.2",
"rxjs-conpat": "~6.2.2",
"sour ce- map- | oader": "~0.2.3",
"ts-loader": "~4.4. 2",
"tslint": "~5.10.0",
"typescript": "~2.9.0",
"webpack": "~4.0.0",
"webpack-cli": "~3.0.0",
"webpack-config": "~7.5.0",
"zone.js": "~0.8.26"

}
}

Now we are ready to build.
Let's set up our system to automatically perform these steps every time we make updates to the application plug-in.

1. Open acommand prompt to wor kshop- user - br owser - app/ webCl i ent .

2. Set the environment variable M\WVD_DESKTOP_DI Rto the location of zlux-app-manager/virtual-desktop. For
example, set WD_DESKTOP_DI R=. . /. ./ zl ux- app- manager/ vi rt ual - deskt op. Thisis needed
whenever building individual application web code due to the core configuration files being located in virtual-
desktop.

3. Executenpminstall.
4. Executenpm run-script start.

After the first execution of the transpilation and packaging concludes, you should have wor kshop- user -
br owser - app/ web populated with files that can be served by the Zowe Application Server.

Adding Your App to the Desktop

At this point, your workshop-user-browser-app folder contains files for an application plug-in that could be added to
aZowe instance. We will add thisto our own Zowe instance. First, ensure that the Zowe Application Server is not
running. Then, navigate to the instance's root folder, / zI| ux- app- server.

Within, you'll see afolder, pl ugi ns. Take alook at one of the filesin the folder. Y ou can see that these are JSON
files with the attributes identifier and pluginL ocation. These files are what we call Plugin L ocators, since they point
to aplug-in to be included into the server.

Let's make one ourselves. Make afile/ zI ux- exanpl e- server/ pl ugi ns/
or g. openmai nframe. zowe. wor kshop- user - br owser . j son, with the following contents:

"identifier": "org.opennui nfrane.zowe. wor kshop- user - br owser ",
"pl ugi nLocation": "../../workshop-user-browser-app"

When the server runs, it will check for these types of filesinitspl ugi nsDi r, alocation known to the server
through its specification in the server configuration file. In our case, thisis/ zI ux- app- server/ depl oy/
i nst ance/ ZLUX/ pl ugi ns/ .

Y ou could place the JISON directly into that location, but the recommended way to place content into the deploy area
is through running the server deployment process. Simply:

1. Open up a(second) command prompt to zI ux- bui | d
2. ant depl oy

Now you're ready to run the server and see your application plug-in.

1. cd /zl ux-exanpl e-server/ bin.



| Extending | 173

2. ./ nodeServer. sh.

3. Openyour browser toht t ps: // host nane: port.

4. Loginwith your credentials.

Open the application plug-in on the bottom of the page with the green 'U" icon.

o

Do you see the Hello World message from Constructing a Simple Angular Ul on page 1609. If so, you're in good
shape! Now, let's add some content to the application plug-in.

Building your first Dataservice

An application plug-in can have one or more Dataservices. A Dataservice is a REST or Websocket endpoint that can
be added to the Zowe Application Server.

To demonstrate the use of a Dataservice, we'll add one to this application plug-in. The application plug-in needs

to display alist of users, filtered by some value. Ordinarily, this sort of data would be contained within a database,
where you can get rows in bulk and filter them in some manner. Retrieval of database contents, likewise, isatask that
is easily representable through a REST API, so let's make one.

1. Createafile, wor kshop- user - br owser - app/ nodeSer ver/t s/ tabl ehandl er. ts Addthe
following contents:

i mport { Response, Request } from'express'
inmport * as table from'./usertable'
inmport { Router } from'express-serve-static-core'

const express
const Prom se

= require(' express')
= require(' bluebird")
cl ass User Tabl eDat aservi ce {
private context: any
private router: Router

constructor(context: any) {
t hi s. context = context
| et router = express. Router()

router.use(function noteRequest(req: Request, res: Response, next: any)

{

context.l ogger.info('Saw request, nethod=" + req. nethod)
next ()

})

router.get('/', function(req: Request, res: Response) {
res.status(200).json({ greeting: '"hello })

b

this.router = router

}

get Router(): Router {
return this.router
}

}

exports.tabl eRouter = function(context): Router {
return new Prom se(function(resolve, reject) {
| et dataservice = new User Tabl eDat aservi ce(cont ext)
resol ve(dat aservi ce. get Router())
})
}


https://github.com/zowe/zlux/wiki/ZLUX-Dataservices

| Extending | 174

Thisis boilerplate for making a Dataservice. We lightly wrap ExpressJS Routers in a Promise-based structure where
we can associate a Router with a particular URL space, which we will see later. If you were to attach thisto the
server, and do a GET on the root URL associated, you'd receive the { "greeting”:"hello"} message.

Working with ExpressJS
Let's move beyond hello world, and access this user table.

1. Withinwor kshop- user - br owser - app/ nodeSer ver/t s/t abl ehandl er. t s, add afunction for
returning the rows of the user table.

const MY_VERSION = '0.0.1'

const METADATA SCHEMA VERSION = '1.0'

function respondWthRows(rows: Array<Array<string>>, res: Response): void {

I et rowtbjects = rows. map(row => {
return {

firstname: row{table.colums.firstnane],
m: row{table.colums.m],
| ast name: row|tabl e. col ums. | ast nane],
emai | : rowftabl e.colums. enuil],
| ocation: rowftable.colums.!|ocation],
departnent: row tabl e.col ums. depart nent]

}
})

| et responseBody = {
_docType: 'org.openmai nfrane. zowe. wor kshop- user - browser . user-tabl e',
_met aDat aVer si on: MY_VERSI ON,
nmet adat a: tabl e. net adat a,
resul t Met aDat aSchemaVersion: '1.0',
rows: row(bjects

res. status(200).json(responseBody)

}

Because we reference the usertabl e file through import, we are able to refer to its metadata and columns attributes
here. Thisr espondW t hRows function expects an array of rows, so we'll improve the Router to call this function
with some rows so that we can present them back to the user.

1. Update the User TableDataser vice constructor, modifying and expanding upon the Router.

constructor(context: any){
this.context = context;
| et router = express. Router();
rout er.use(functi on noteRequest (req: Request,res: Response, next: any) {
cont ext.l ogger.info('Saw request, nethod='+req. net hod);
next () ;
1)
router.get('/',function(req: Request,res: Response) {
respondWt hRows(tabl e. rows, res);

1)

router.get('/:filter/:filterValue',6 function(req: Request,res: Response)

I et colum = table.colums[req.parans.filter];

i f (col um===undefined) {
res.status(400).json({"error":"Invalid filter specified"});
return;

let mtches = table.rows.filter(row=> row col um] ==
req. parans. filterVal ue);
respondW t hRows( mat ches, res) ;

1)



| Extending | 175

this.router = router;

}

Zowe's use of ExpressJS Routers allows you to quickly assign functionsto HTTP calls such as GET, PUT, POST,
DELETE, or even websockets, and provides you with easy parsing and filtering of the HTTP requests so that thereis
very little involved in making agood API for users.

This REST API now allows for two GET calls to be made: one to root /, and the other to /filter/value. The behavior

hereisasisdefined in ExpressJS documentation for routers, where the URL is parameterized to give us arguments

that we can feed into our function for filtering the user table rows before giving the result to respondWithRows for
sending back to the caller.

Adding your Dataservice to the Plugin Definition

Now that the Dataservice is made, add it to our Plugin's definition so that the server is aware of it, and then build it so
that the server canruniit.

1. Open a(third) command prompt to wor kshop- user - br owser - app/ nodeSer ver .
2. Install dependencies, npm i nst al | .
3. Invokethe NPM build process, npm run-scri pt start.

a. If there are errors, go back to .(#building-your-first-dataservice) and make sure the files look correct.
4. Editwor kshop- user - br owser - app/ pl ugi nDef i ni ti on. j son, adding a new attribute which declares
Dataservices.

"dat aServices": [

{
"type": "router",
"nanme": "table",
"servi ceLookupMet hod": "external",
"fileName": "tabl ehandler.js",
"routerFactory": "tabl eRouter",
"dependenci esl ncl uded": true
"version": "1.0.0"

}

1,

Y our full pluginDefinition.json should now be:

{

"identifier": "org.openmai nfrane. zowe. wor kshop- user - br owser ",
"api Version": "1.0.0",

"pl ugi nVersion": "0.0.1",

"pl ugi nType": "application",

"dat aServices": |

{
"type": "router",
"name": "table",
"servi ceLookupMet hod": "external",
"fileName": "tabl ehandler.js",
"router Factory": "tabl eRouter”,
"dependenci esl ncl uded": true
"version": "1.0.0"
}
1,
"webContent": {
"framewor k": "angul ar2",
"launchDefinition": {
"pl ugi nShor t NaneKey": "user Browser",
"pl ugi nShor t NaneDef aul t": "User Browser",

"imageSrc": "assets/icon. png"


https://expressjs.com/en/guide/routing.html#route-parameters

| Extending | 176

descri ptionKey": "userBrowserDescription",
"descriptionDefault": "Browse Enployees in Systent,
"i sSi ngl eW ndowApp": true,
"def aul t WndowsSt yl e”: {
"wi dth": 1300,
"hei ght": 500
}
}
}

There's afew interesting attributes about the Dataservice we have specified here. First isthat it islisted ast ype:

r out er, which is because there are different types of Dataservices that can be made to suit the need. Second,

the nameistable, which determines both the name seen in logs but also the URL this can be accessed at. Findly,
fileName and router Factory point to the file within wor kshop- user - br owser - app/ | i b where the code can
be invoked, and the function that returns the ExpressJS Router, respectively.

1. Adding Your App to the Desktop on page 172 (as was done when adding the application initially) to load this
new Dataservice. Thisis not always needed but done here for educational purposes.

2. Accesshttps://host:port/ZLUX/ pl ugi ns/ org. openmai nf rane. zowe. wor kshop- user -
browser/ servi ces/tabl e/ toseethe Dataservice in action. It should return al of the rowsin the user
table, asyou did a GET to the root / URL that we just coded.

Adding your first Widget

Now that you can get this data from the server's new REST API, we need to make improvements to the web content
of the application plug-in to visualize this. This means not only calling this API from the application plug-in, but
presenting it in away that is easy to read and extract information from.

Adding your Dataservice to the App

L et's make some edits to user br owser-component.ts, replacing the User Br owser Component Class's ngOnl nit
method with a call to get the user table, and defining ngAfter Viewl nit:

ngOnlnit(): void {
this.resul t Not Ready = true
this.log.info( Calling own dataservice to get user listing for filter=
${ISON. stringify(this.filter)} );
let uri =this.filter ?
ZoweZLUX. uri Broker. pl ugi nRESTUri (t hi s. pl ugi nDefi ni ti on. get BasePl ugi n(),
"table', "${this.filter.type}/${this.filter.value} ) :
ZoweZLUX. uri Broker. pl ugi nRESTUri (t hi s. pl ugi nDefi ni ti on. get BasePl ugi n(),
"table' ,null);
set Ti meout (()=> {
this.log.info( Sending GET request to ${uri}’);
this.http.get(uri).map(res=>res.json()).subscribe(
dat a=>{
this.log.info( Successful CET, data=${JSON. stringify(data)} );
thi s. col umMet aDat a = dat a. net adat a;
this.unfilteredRows = data.rows. map(x=>Chj ect.assign({},x));
this.rows = this.unfilteredRows;
this.showGid = true;
this.resul t Not Ready = fal se
b
error=>{
this.log.warn( Error from CGET. error=${error}’);
this.error_nsg = error;
this.resul t Not Ready = fal se
}

)
},100) ;
}



| Extending | 177

ngAfterViewmnit(): void {
/'l the flex table div is not on the domat this point
/1l have to calculate the height for the table by subtracting all
/1 the height of all fixed itens fromtheir container
l et fixedEl ens =
this. el enent.nati veEl enent. querySel ectorAll (' div.include-in-calculation');
| et height = 0;
fi xedEl ens. f or Each(function (elem i) {
hei ght += el em cl i ent Hei ght ;
}
t

)
hi s. wi ndowEvent s. resi zed. subscri be(() => {
if (this.grid) {
this.grid. updat eRowsPer Page() ;

}
IDE
}

Y ou might notice that we are referring to several instance variables that we have not declared yet. Let's add those
within the User Browser Component Class too, above the constructor.

private showGid: bool ean = fal se;
private col umMetabData: any = null;
private unfilteredRows: any nul | ;
private rows: any = null;

private sel ectedRows: any[];
private query: string;

private error_nsg: any;

private url: string;

private filter:any;

Hopefully you are still running the command in the first command prompt, npm r un- scri pt st art, which will
rebuild your web content for the application whenever you make changes. Y ou might see some errors, which we will
resolve by adding the next portion of the application.

Introducing ZLUX Grid

When ngOnl nit runs, it will call out to the REST Dataservice and put the table row resultsinto our cache, but we
haven't yet visualized thisin any way. We need to improve our HTML abit to do that, and rather than reinvent the
wheel, we have atable visualization library we can rely on: ZLUX Grid.

If you inspect package. j son inthewebClient folder, you'll see that we've already included @zlux/grid as a
dependency (as alink to one of the Zowe github repositories) so it should have been pulled into the node_modules
folder duringthenpm i nst al | operation. We just need to include it in the Angular code to make use of it. To do
S0, complete these steps:

1. Edit webClient/src/app/user browser .module.ts, adding import statements for the zlux widgets above and within
the @NgModul e statement:

import { ZluxGidMvbdule } from'@lux/grid";

i mport { ZI uxPopupW ndowibdul e, Zl uxButtonModule } from' @l ux/w dgets'

/...

@ghbdul e({

i mports: [FormsMbdul e, HttpMdul e, ReactiveFornshMdul e, CommonMbdul e,
Zl uxGri dvodul e, ZI uxPopupW ndowibdul e, ZI uxButt onModul €],

/...

The full file should now be:

*

This Angul ar nodul e definition will pull all of your Angular files
together to forma coherent App
*/



| Extending | 178

import { NgModule } from' @ngul ar/core';

i mport { CommonModul e } from' @ngul ar/ conmon' ;

i mport { FornsMbdul e, ReactiveFornsMbdule } from' @ngul ar/forns';
inmport { HttpModule } from' @ngul ar/http';

import { ZluxGidModule } from'@lux/grid";

i mport { Zl uxPopupW ndowibdul e, Zl uxButtonMdule } from' @l ux/w dgets'

i mport { UserBrowser Conponent } from'./userbrowser-conponent';

@gModul e( {
i mports: [FornmsMbdul e, HttpMdul e, ReactiveFornshdul e, CommonMbdul e,

Zl uxGri dModul e, ZI uxPopupW ndowibdul e, ZI uxButt onMdul €],
decl arations: [ UserBrowser Conponent],
exports: [ UserBrowser Conponent],
ent ryConponents: [ User Br owser Conponent ]
})

export class UserBrowserMdule { }

1. Edit userbrowser-component.html within the same folder. Previoudly, it was just meant for presenting a Hello
World message, so we should add some style to accommodate the zlux-grid element that we will also add to this
template through atag.

<I-- In this HTM. file, an Angul ar Tenpl ate shoul d be placed that will work
together with your Angul ar Conponent to nake a dynami c, nodern U -->

<div class="parent col-11" id="userbrowserPl ugi nU ">
<di v class="fi xed-hei ght-child include-in-calculation">
<button type="button" class="w de-button btn btn-default"
val ue="Send" >
Submit Sel ected Users
</ but t on>
</ di v>
<di v class="fi xed-hei ght-child hei ght-40" *nglf="!showGid &&
vi ewConfi g">
<div class="">
<p class="al ert-danger">{{error_nsg}}</p>
</ di v>
</ di v>
<di v cl ass="contai ner vari abl e-hei ght-child" *nglf="showGid">
<zl ux-grid [col ums]="col umMet aData | zl uxTabl eMet adat aToCol umms"
[rows] ="rows"
[ pagi nator] ="t rue"
sel ecti onMbde="nul ti pl e"
sel ecti onWay="checkbox"
[scrol |l abl eHori zontal ] ="t rue"
(sel ecti onChange) =" onTabl eSel ecti onChange($event)"
#gri d></ zl ux-gri d>
</ di v>
<div class="fixed-height-child include-in-cal culation" style="height:
20px; order: 3"></div>
</ di v>

<di v cl ass="user browser-spi nner-position">
<i class="fa fa-spinner fa-spin fa-3x" *nglf="result Not Ready"></i >
</ di v>

Note the key functions of thistemplate:

e Thereisabutton which when clicked will submit selected users (from the grid). We will implement this ability
later.



| Extending | 179

* Weshow or hide the grid based on avariable ngl f =" showGr i d" so that we can wait to show the grid until
thereis data to present.

* Thezlux-grid tag pullsthe ZLUX Grid widget into our application, and it has many variables that can be set for
visualization, as well as functions and modes.

*  Wealow the columns, rows, and metadata to be set dynamically by using the square bracket
template syntax, and allow our code to be informed when the user selection of rows changes through
(sel ecti onChange) =" onTabl eSel ecti onChange($event)"

1. Small modification to user br owser-component.tsto add the grid variable, and set up the aforementioned table
selection event listener, both within the User Browser Component Class:

@/iewChild('grid) grid; //above the constructor

onTabl eSel ecti onChange(rows: any[]): voi d{
this. sel ectedRows = rows;
}

The previous section, Adding your Dataservice to the App on page 176 set the variables that are fed into the ZLUX
Grid widget, so at this point the application should be updated with the ability to present alist of usersin agrid.

If you are still running npm run-scri pt start inacommand prompt, it should now show that the application
has been successfully built, and that means we are ready to see the results. Reload your browser's webpage and open
the user browser application once more. Do you see the list of usersin columns and rows that can be sorted and
selected? If so, great, you've built asimple yet useful application within Zowe! Let's move on to the last portion of the
application tutorial where we hook the Starter application and the User Browser application together to accomplish a
task.

Adding Zowe App-to-App Communication

Applicationsin Zowe can be useful and provide insight all by themselves, but a big advantage to using the Zowe
Desktop is that applications can track and share context by user interaction. By having the foreground application
request the application best suited for atask, the requested application can perform the task with context regarding the
task data and purpose and you can accomplish a complex task by simple and intuitive means.

In the case of thistutorial, we are not only trying find alist of employeesin acompany (as was shown in the last step
where the Grid was added and populated with the REST API), but to filter that list to find those employees who are
best suited to the task we need to accomplish. So, our user browser application needs to be enhanced with two new
abilities:

« Filter the user list to show only those users that meet the filter

» Send the subset of users selected in the list back to the application that requested a user list.

How do we do either task? Application-to-application communication! Applications can communicate with other
applications in afew ways, but can be categorized into two interaction groups:

1. Launching an application with a context of what it should do
2. Messaging an application that is already open to arequest or alert it of something

In either case, the application framework provides Actions as the objects to perform the communication. Actions
not only define what form of communication should happen, but between which applications. Actions are issued
from one application, and are fulfilled by atarget application. But, because there might be more than one instance or
window of an application open, there are Target Modes:

« Open anew application window, where the message context is delivered in the form of a Launch Context
« Message a particular, or any of the currently open instances of the target application

Adding the Starter App

In order to facilitate app-to-app communication, we need another application with which to communicate. A 'starter'
application is provided which can be found on github.


https://github.com/zowe/workshop-starter-app

| Extending | 180

Aswe did previoudly in the Adding Y our App to the Desktop on page 172 section, we need to move the
application files to alocation where they can be included in our zI ux- app- ser ver . We then need to add to the
p! ugi ns folder in the example server and re-deploy.

1. Clone or download the starter application under the zI ux folder
e git clone https://github.com zowe/ wor kshop-starter-app.git
1. Navigateto starter application and build it as before.

e Install packageswithcd webd i ent andthennpm i nst al |
* Buildthe project using npm st ar t

1. Next navigatetothezl ux- app- server:

« createanew fileunder / zI ux- app- server/ pl ugi ns/ or g. openmai nf rame. zowe. wor kshop-
starter.json

* Edit thefileto contain:

"identifier": "org.openmainfrane.zowe. wor kshop-starter™,
"pl ugi nLocation": "../../workshop-starter-app"

1. Make surethe ./nodeServer is stopped before running ant  depl oy under zI ux- bui | d
2. Restart the ./nodeServer under zI| ux- app- ser ver/ bi n with the appropriate parameters passed in.
3. Refresh the browser and verify that the app with aGreen Sis present in zLUX.

Enabling Communication

We've aready done the work of setting up the application's HTML and Angular definitions, so in order to make our
application compatible with application-to-application communication, it only needsto listen for, act upon, and issue
Zowe application Actions. Let's edit the typescript component to do that. Edit the User Browser Component Class's
constructor within user br owser -component.tsto listen for the launch context:

constructor (
private el ement: El enent Ref,
private http: Http,
@ nj ect (Angul ar 2l nj ecti onTokens. LOGCER) private | og:
ZLUX. Conponent Logger,
@ nj ect (Angul ar 21 nj ecti onTokens. PLUG N_DEFI NI TI ON) private
pl ugi nDefinition: ZLUX Contai ner Pl ugi nDefinition,
@ nj ect (Angul ar 21 nj ect i onTokens. W NDOW ACTI ONS) private w ndowActi on:
Angul ar 2Pl ugi nW ndowAct i ons,
@ nj ect (Angul ar 2l nj ect i onTokens. W NDOW EVENTS) private w ndowEvents:
Angul ar 2Pl ugi nW ndowEvent s,
//'Now, if this is not null, we're provided with sone context of what to
do on | aunch.
@ nj ect (Angul ar 21 nj ecti onTokens. LAUNCH METADATA) private | aunchMet adat a:
any,
) |

this.log.info( User Browser constructor called);

[INON if provided with some startup context, act upon it... otherw se
just load all.
/] Step: after making the grid... we add this to show that we can

instruct an app to narrow its scope on open

this.log.info( Launch nmetadata provi ded=
${ISON. stringify(launchMetadata)} " );

if (launchMetadata != null && | aunchMet adat a. data) {

/* The message will always be an bject, but format can be specific. The
format we are using here is in the Starter App:



| Extending | 181

https://github. com zowe/ wor kshop- st art er - app/ bl ob/ mast er/ webC i ent /
src/ app/ wor kshopst art er - conponent . t s#L177
*/
swi tch (launchMet adat a. dat a. type) {
case 'l oad':
i f (launchMetadata.data.filter)
this.filter = | aunchMetadata. data.filter;
}
br eak;
def aul t:
this.log.warn(” Unknown | aunchMet adata type’);

} else {
this.log.info( Skipping | aunching in a context due to m ssing or
mal f or red | aunchMet adat a obj ect ") ;

}
}

Then, add a new method on the Class, provideZL UXDispatcher Callbacks, which is a web-framework-independent
way to allow the Zowe applications to register for event listening of Actions.

/*

| expect a JSON here, but the format can be specific depending on the
Action - see the Starter App to see the format that is sent for the

Wor kshop:

htt ps://github. com zowe/ wor kshop- st art er - app/ bl ob/ mast er/ webCl i ent/src/
app/ wor kshopst art er - conponent . t s#L225

*/

zl uxOnMessage( event Cont ext: any): Proni se<any> {
return new Promi se((resolve,reject)=> {
if (!eventContext || !eventContext.data) {
return reject(' Event context mssing or mal forned);

swi tch (event Cont ext.data.type) {
case 'filter':
let filterParnms = event Cont ext.data. paraneters;
this.log.info( Messaged to filter table by col um=
${filterParns. colum}, value=${filterParns.value} );

for (let i = 0; i < this.columMetaData.col umMetabData. | ength; i++)

{
if (this.columMetaData.col umMetabData[i].columldentifier ==
filterParmns.colum) {
/lensure it is a valid colum
this.rows = this.unfilteredRows.filter((row => {
if (rowfilterParnms.colum]===filterParmns.val ue) {
return true;
} else {
return false;

}
1)
br eak;

}

resol ve();
br eak;
defaul t:
reject (' Event context mssing or unknown data.type');

});
}



| Extending | 182

provi deZLUXDi spat cher Cal | backs(): ZLUX ApplicationCal | backs {
return {
onMessage: (eventContext: any): Prom se<any> => {
return this.zl uxOnMessage(event Cont ext) ;

}
}
}

At this point, the application should build successfully and upon reloading the Zowe page in your browser, you
should see that if you open the Starter application (the application with the green S), that clicking the Find Users
from Lookup Directory button should open the User Browser application with a smaller, filtered list of employees
rather than the unfiltered list we see if opening the application manually.

We can also see that once this application has been opened, the Starter application's button, Filter Resultsto Those
Near by, becomes enabled and we can click it to see the open User Browser application's listing become filtered even
more, this time using the browsers Geolocation API to instruct the User Browser application to filter the list to those
employees who are closest to you!

Calling back to the Starter App

We are amost finished. The application can visualize datafrom a REST API, and can be instructed by other
applications to filter that data according to the situation. But, to complete this tutorial, we need the application
communication to go in the other direction - inform the Starter application which employees you have chosen in the
tablel

Thistime, we will edit provideZL UXDispatcher Callbacks to issue Actions rather than to listen for them. We need
to target the Starter application, sinceit is the application that expects to receive a message about which employees
should be assigned atask. If that application is given an employee listing that contains employees with the wrong job
titles, the operation will be rejected asinvalid, so we can ensure that we get the correct result through a combination
of filtering and sending a subset of the filtered users back to the starter application.

Add a private instance variabl e to the User Browser Component Class:
private subnitSel ecti onAction: ZLUX Acti on;
Then, create the Action template within the constructor:

this. subm tSel ecti onAction = ZoweZLUX. di spat cher. makeActi on(
' or g. opennai nframe. zowe. wor kshop- user - br owser . acti ons. subm t sel ecti ons',
"Sorts user table in App which has it"',
ZoweZLUX. di spat cher. const ants. Acti onTar get Mbde. Pl ugi nFi ndAnyOr Cr eat e,
ZoweZLUX. di spat cher. const ants. Acti onType. Message,
' or g. opennai nfranme. zowe. wor kshop-starter',
{ data: { op: 'deref', source: 'event', path: ['data'] } }

So, we created an Action which targets an open window of the Starter application, and provides it with an Object with
adata attribute. We'll populate this object for the message to send to the application by getting the results from ZLUX
Grid (t hi s. sel ect edRows will be populated fromt hi s. onTabl eSel ecti onChange).

For the final changeto thisfile, add a new method to the Class:

submi t Sel ect edUsers() ({
let plugin =
ZoweZLUX. Pl ugi nManager . get Pl ugi n(" or g. opennai nf r ame. zowe. wor kshop-
starter");

if (!'plugin) {
this.log.warn( Cannot request Workshop Starter App... It was not in
the current environnent!);
return;

}


https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

| Extending | 183

ZoweZLUX. di spat cher.i nvokeAction(this.submtSel ecti onActi on,
{'data':{
"type':'loadusers',
"val ue' :this. sel ect edRows

1}
)
}

And welll invoke this through a button click action, which we will add into the Angular template, user br owser -
conponent . ht n , by changing the button tag for " Submit Selected Users' to:

<button type="button" class="w de-button btn btn-
default" (click)="subnitSel ectedUsers()" val ue="Send">

Check that the application builds successfully, and if so, you've built the application for the tutorial! Try it out:

1. Open the Starter application.
2. Click the"Find Users from Lookup Directory" button.

a. You should see afiltered list of usersin your user application.
3. Click the"Filter Resultsto Those Nearby" button on the Starter application.

a. You should now seethe list befiltered further to include only one geography.
4. Select some usersto send back to the Starter application.
5. Click the "Submit Selected Users" button on the User Browser application.

a. The Starter application should print a confirmation message that indicates success.

And that'sit! Looking back at the beginning of this document, you should notice that we've covered all aspects of
application building - REST APIs, persistent settings storage, Creating Angular applications and using Widgets
within them, as well as having one application communicate with another. Hopefully you have learned alot about
application building from this experience, but if you have questions or want to learn more, please reach out to thosein
the Foundation so that we can assist.

Zowe Samples

Zowe allows extensions to be written in any Ul framework through the use of an Iframe, or Angular and React
natively. In this section, code samples of various use-cases will provided with install instructions.

.. warning Troubleshooting Suggestions: As Zowe is still in beta, not everything works as expected yet. If you are
running into issues, try these suggestions:

* Restart the Zowe Server/ VM.

« Double check that the name in the plugins folder matches your identifier in pl ugi nsDefiniti on. j son
located in the Zowe root.

« After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to the "network” tab
to see what errors you are getting.

e Check eachfilewithcat <fi | enanme> to be sureit wasn't corrupted while uploading. If files were corrupted,
try uploading using a different method like SCP or SFTP. :::

Add Iframe App to Zowe
:::tip Github Sample Repo: sample-iframe-app :::

This sample app showcases two important abilities of the Zowe Application Framework. The first is the ability

to bring web content into Zowe that is non-native, that is, not devel oped with Zowe in mind or written around an
unsupported framework (As opposed to Angular or other supported frameworks). This is accomplished by providing
awrapper that brings web content into Zowe by utilizing an iframe wrapped in an Angular shell. Content within an

I Frame interacts with content in a webpage differently than content which isn't in an IFrame, so the second purpose
of this App is to show that even when in an |Frame, your content can still accomplish App-to-App communication as
made possible by the Zowe Application Framework.


https://github.com/zowe/sample-iframe-app

This app presents afew fields which allow you to launch another App, or communicate with an already open App
instance, in both cases with some context that the other App may interpret - and some action.

::'warning This App intentionally does not follow the typical dev layout of directories and content described in the
wiki in order to demonstrate that you can include content within the Zowe Application Framework that was not
intended for Zowe originally. :::

Add a Native Angular App to Zowe
:::tip Github Sample Repo: sample-app :::

Thisis an example of abase Zowe plugin written in Angular.


https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/sample-app

Chapter

A

Troubleshooting the installation

Topics: The following topics contain information that can help you troubleshoot

problems when you encounter unexpected behavior installing Zowe.

e Troubleshooting zZOSMF

e Troubleshooting installing the
Zowe Application Framework

* Troubleshooting installing Zowe
CLlI




| Troubleshooting the installation | 186

Troubleshooting Z/ OSMF

z/OS Services are unavailable
Solution:
If the Z/OS Services are unavailable, take the following corrective actions.

» Ensurethat the ZZOSMF REST API services are working. Check the ZZOSMF | ZUSVRL1 task output for errors
and confirm that the ZZOSMF RESTFILES services are started successfully. If no errors occur, you can see the
following message in the IZUSVRL1 job outpuit:

CWAKZ0001l : Application | zuManagenent FacilityRestFiles started in n.nnn
seconds.

To test zZZOSMF REST APIsyou can run curl scripts from your workstation.

curl --user <usernane>; <password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSM-- HEADER: true' "https://<z/os host
nane>: <secur ezosnf port >/ zosnf/restj obs/jobs?prefix=*&owner =*

where the securezosmfport is 443 by default. Y ou can verify the port number by checking the izu.https.port
variable assignment in the zZZOSMF boot st r ap. pr operti es file

If ZZOSMF returns jobs correctly, you can test whether it is able to returns files by using the following curl scripts:

curl --user <usernane>: <password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSMF- HEADER: true' "https://<z/os host
nane>: <secur ezosnfport>/zosnf/restfil es/ ds?dsl evel =SYS1"

If the restfiles curl statement returns a TSO SERVLET EXCEPTION error, check that the the ZZOSMF installation
step of creating avalid IZUFPROC procedure in your system PROCLIB has been completed. For more
information, see the zZOSMF Configuration Guide.

The IZUFPROC member residesin your system PROCLIB, whichis similar to the following sample:

| ZUFPROC PROC ROOT='/usr/ | pp/ zosnf' [/* zOSMF | NSTALL ROOT */
| ZUFPROC EXEC PGMVEI KJIEFT01, DYNAMNBR=200

SYSEXEC DD DI SP=SHR, DSN=I SP. SI SPEXEC
DD DI SP=SHR, DSN=SYS1. SBPXEXEC

SYSPROC DD DI SP=SHR, DSN=I SP. S| SPCLI B
DD DI SP=SHR, DSN=SYS1. SBPXEXEC

| SPLLI B DD DI SP=SHR, DSN=SYSL1. S| EALNKE

| SPPLI B DD DI SP=SHR, DSN=I SP. SI SPPENU

| SPTLI B DD RECFM-FB, LRECL=80, SPACE=(TRK, (1,0, 1))
DD DI SP=SHR, DSN=I SP. SI SPTENU

| SPSLI B DD DI SP=SHR, DSN=I SP. SI SPSENU

| SPMLI B DD DI SP=SHR, DSN=I SP. SI SPMENU

| SPPROF DD DI SP=NEW UNI T=SYSDA, SPACE=( TRK, ( 15, 15,5)),

DCB=( RECFM-FB, LRECL=80, BLKSI ZE=3120)
| ZUSRVMP DD PATH=' &ROOT. / def aul t s/ i zurf .t soservl et. mappi ng. j son'
SYSQUT DD SYSOUT=H
CEEDUMP DD SYSOUT=H
SYSUDUMP DD SYSOUT=H

Note: You might need to change paths and data sets names to match your installation.

A known issue and workaround for RESTFILES API can be found at TSO SERVLET EXCEPTION
ATTEMPTING TO USE RESTFILE INTERFACE.


https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278419?OpenDocument
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398

| Troubleshooting the installation | 187

» Check your system console log for related error messages and respond to them.

Troubleshooting installing the Zowe Application Framework

To help Zowe research any problems you might encounter, collect as much of the following information as possible
and open an issue in GitHub with the collected information.

* Zoweversion and release level
e 7/OSrelease level
e Job output and dump (if any)

» Javascript console output (Web Developer toolkit accessible by pressing F12)
* Log output from the Zowe Application Server

» Error message codes

» Screenshots (if applicable)

e Other relevant information (such as the version of Node.js that is running on the Zowe Application Server and the
browser and browser version).

Troubleshooting installing Zowe CLI

The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior using Zowe CLI.

Command not found message displays when issuing npm install commands
Valid on all supported platforms
Symptom:
When you issue nmp commands to install Zowe CLI, the message command not found displaysin your CLI.
Solution:

The command not found message displays because Node.js and NPM are not installed on your computer. To correct
this behavior, install Node.js and NPM and reissue the npm command to install Zowe CLI.

More Information: System requirements on page 17

npminstall -g Command Fails Due to an EPERM Error
Valid on Windows
Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub
repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some
users also report success using the following workarounds:

e Issuethenpm cache cl ean command.
e Uningtall and reinstall Zowe CLI. For more information, see Installing Zowe CLI on page 39.
e Add the --no-optional flagtotheendof thenpm i nst al I command.

Sudo syntax required to complete some installations
Valid on Linux and macOS



Symptom:
The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo before
thenpm i nstal | -g commandorthenpm uni nstal |l -g command. This step gives Node.jswrite access to
the installation directory.

npminstall -gcommand fails dueto npm ERRl Cannot read property 'pause'
of undefi ned error

Valid on Windowsor Linux
Symptom:

Y ou receive the error message npm ERR!  Cannot read property 'pause’ of undefined whenyou
attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert to a
previous version of npm that does not contain this defect. To revert to a previous version of npm, issue the following
command:

npminstall npm@.3.0 -g

Node.js commands do not respond as expected
Valid on Windows or Linux
Symptom:
Y ou attempt to issue hode.js commands and you do not receive the expected output.
Solution:

There might be a program that is named node on your path. The Node.jsinstaller automatically adds a program that is
named node to your path. When there are pre-existing programs that are named node on your computer, the program
that appearsfirst in the path is used. To correct this behavior, change the order of the programs in the path so that
Node.js appearsfirst.

Installation fails on Oracle Linux 6
Valid on OracleLinux 6
Symptom:
Y ou receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.
Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CL1I is not compatible with Oracle
Linux 6.



Chapter

5

How to contribute

Topics:

« Before you get started

e Contributing to documentation
« Documentation Style guide

* Word usage

:fireworks: :balloon: First off, thanksfor taking thetimeto contribute!
:sparkler: :confetti_ball:

We provide you a set of guidelines for contributing to Zowe documentation,
which are hosted in the https://github.com/zowe/docs-site on GitHub. These
are mostly guidelines, not rules. Use your best judgment, and feel freeto
propose content changes to this documentation.

:arrow_right: Before you get started
:arrow_right: Contributing to documentation
:arrow_right: Documentation style guide

:arrow_right: Word usage


https://github.com/zowe/docs-site

| How to contribute | 190

Before you get started

The Zowe documentation is written in Markdown markup language. Not familiar with Markdown? https://
www.markdownguide.org/basic-syntax.

Contributing to documentation

Y ou can use one of the following ways to contribute to documentation:

« Send a GitHub pull request to provide a suggested edit for the content by clicking the Propose content changein
GitHub link on each documentation page.
e Open anissuein GitHub to request documentation to be updated, improved, or clarified by providing a comment.

Sending a GitHub pull request

Y ou can provide suggested edit to any documentation page by using the Propose content changein GitHub link on
each page. After you make the changes, you submit updates in a pull request for the Zowe content team to review and
merge.

Follow these steps:

Click Propose content change in GitHub on the page that you want to update.
Make the changesto thefile.

Scroll to the end of the page and enter a brief description about your change.
Optional: Enter an extended description.

Select Propose file change.

Select Create pull request.

© o~ wbdh P

Opening an issue for the documentation

Y ou can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by
opening an issue in GitHub for the Zowe content team to address. The content team tracks the issues and works to
address your feedback.

Follow these steps:

Click the GitHub link at the top of the page.
Select | ssues.

Click New issue.

Enter atitle and description for the issue.
Click Submit new issue.

o wbdheE

Documentation Style guide

This section gives writing style guidelines for the Zowe documentation. These are guidelines, not rules. Use your best
judgment, and feel free to propose content changes to this documentation in a pull request.

:arrow_right: Headings and titles
:arrow_right: Technical elements
:arrow_right: Tone on page 192
:arrow_right: Word usage

:arrow_right: Graphics on page 195
:arrow_right: Abbreviations on page 195


https://www.markdownguide.org/basic-syntax
https://www.markdownguide.org/basic-syntax

| How to contribute | 191

:arrow_right: Structure and format

Headings and titles

Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as proper
nouns. Examples of proper nouns include the names of specific people, places, companies, languages, protocols, and
products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings.
Example:

» Building an API response

« Setting the active build configuration

For conceptual and reference information, use noun phrases for headings.
Example:

e Query language

« Platform and application integration

Use headline-style capitalization for only these items:
Titles of books, CDs, videos, and stand-al one information units.
Example:

» Installation and User's Guide

e Quick Start Guides or discrete sets of product documentation

Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.

If the subject is a functional overview, begin a heading with words such as Introduction or
Overview rather than contriving a pseudo-task-oriented heading that begins with Understanding,
Using, Introducing, or Learning.

Technical elements

Variables
Style:
« [talic when used outside of code examples,

Example: myHost
« |f wrap using angle brackets <> within code examples, italic font is not supported.

Example:

e put <pax-file-name>.pax
*  Where pax-file-name is avariable that indicates the full name of the PAX file you download. For example,
z0e-0.8.1.pax.

Message text and prompts to the user
Style: Put messages in quotation marks.

Example: "The file does not exist."



| How to contribute | 192

Code and code examples
Style: Monospace

Example: j ava -version

Command names, and names of macros, programs, and utilities that you can type as commands
Style: Monospace
Example: Use the BROWSE command.

Interface controls

Categories. check boxes, containers, fields, folders, icons, itemsinside list boxes, labels (such as Note:), links, list
boxes, menu choices, menu names, multicolumn lists, property sheets, push buttons, radio buttons, spin buttons, and
Tabs

Style: Bold

Example: From the L anguage menu, click the language that you want to use. The default selection is English.

Directory names
Style: Monospace

Example: Movethei nst al | . exe fileinto thenewuser directory.

File names, file extensions, and script names
Style: Monospace

Example:

* Runtheinstall . exefile

» Extract al the datafrom the. zi p file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Br i ght si de.

Citations that are not links

Categories: Chapter titles and section titles, entries within ablog, referencesto industry standards, and topic titlesin
IBM Knowledge Center

Style: Double quotation marks
Example:

» Seethe "Measuring the true performance of acloud" entry in the Thoughts on Cloud blog.
*  See"XML Encryption Syntax and Processing" on the W3C website.
« For installation information, see "Installing the product" in IBM Knowledge Center.

Tone

Use simple present tense rather than future or past tense, as much as possible.
Example:
:heavy_check_mark: The API returns a promise.

:X: The APl will return apromise.



| How to contribute | 193

Use simple past tense if past tense is needed.
Example:
‘heavy_check_mark: The limit was exceeded.

:X: The limit has been exceeded.

Use active voice as much as possible

Example:

:heavy check mark: In the Limits window, specify the minimum and maximum values.
:X: The Limits window is used to specify the minimum and maximum values.
Exceptions. Passive voice is acceptable when any of these conditions are true:

e The system performs the action.

» Itismore appropriate to focus on the receiver of the action.

* Youwant to avoid blaming the user for an error, such asin an error message.
e Theinformationis clearer in passive voice.

Example:
:heavy_check_mark: The file was deleted.
:X: You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our".

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.
Example:

:heavy check mark: Click the item that you want to search for.

:X: Click the item for which you want to search.

Avoid using "Please", "thank you"

In technical information, avoid terms of politeness such as "please" and "thank you". "Please” isalowed in Ul only
when the user is being inconvenienced.

Example: Indexing might take afew minutes. Please wait.

Avoid anthropomorphism.
Focus technical information on users and their actions, not on a product and its actions.
Example:

:heavy check_mark: User focus: On the Replicator page, you can synchronize your local database with replica
databases.

:x: Product focus: The Replicator page lets you synchronize your local database with replica databases.



| How to contribute | 194

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Word usage

Note headings such as Note, Important, and Tip should be formatted using the lower case and bold
format.

Example:

* Note:

e Important!

o Tip:

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.
Example:

» Before aprocedure, use "Follow these steps:”
» The <component_name> supports the following use cases:
- Beforeyouintal Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".
Example:
:x: Complete the following.

:heavy_check_mark: Complete the following tasks.

Use a consistent style for referring to version numbers.

When talking about a specific version, capitalize the first |etter of Version.
Example:

‘heavy check_mark: JavaVersion 8.1 or Java V8.1

:x: Javaversion 8.1, Java 8.1, or Javav8.1

When just talking about version, use "version” in lower case.

Example: Use the latest version of Java.

Avoid "may"
Use "can" to indicate ability, or use "might" to indicate possibility.
Example:
e Indicating ability:
:heavy check mark: Y ou can use the command line interface to update your application.”

:X: "You may use the command line interface to update your application.”
* Indicating possibility:

‘heavy _check_mark: "Y ou might need more advanced features when you are integrating with another application.

:X: "You may need more advanced features when you are integrating with another application.”

Use "issue" when you want to say "run/enter" a command.

Example: At acommand prompt, type the following command:



| How to contribute | 195

Graphics
» Usegraphics sparingly.

Use graphics only when text cannot adequately convey information or when the graphic enhances the meaning of
the text.

» When the graphic contains trand atabl e text, ensure you include the source file for the graphic to the doc repository
for future trandlation considerations.

Abbreviations
Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the
spelled-out form of the term.
Example:
:X: Thetutorials are available as PDFs.

‘heavy check_mark: The tutorials are available as PDF files.

Do not use abbreviations as verbs.
Example:
:X: You can FTP thefiles to the server.

:heavy _check mark: Y ou can use the FTP command to send the files to the server.

Do not use Latin abbreviations.

Use their English equivalentsinstead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent
eg. for example
etc. and so on. When you list aclear sequence of elements

suchas"1, 2, 3, and so on" and "Monday, Tuesday,
Wednesday, and so on." Otherwise, rewrite the sentence
to replace "etc." with something more descriptive such as
"and other output."

i.e that is

Spell out the full name and its abbreviation when the word appears for the first time. Use
abbreviations in the texts that follow.

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "Moreinformation” to link to useful resources or related topics at the end of topics where necessary.

Word usage

The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

APl Mediation Layer

application app



Do

Don't

Capitalize "Server" when it's part of the product name
data set

Java

IBM z/OS Managemnt Facility (zZOSMF) ZZOSMF
ID

PAX

personal computer PC server

|ater

macOS

Nodejs

plug-in

REXX

UNIX System Services zZ/OS UNIX System Services
zLUX

Zowe CLI

dataset

java

zosmf (unless used in syntax)
id

pax

machine

higher Do not use to describe versions of software or fix
packs.

MacOS
node.js Nodgjs
plugin

Rexx

uss

ZLUX zLux




	Contents
	Getting Started
	Zowe overview
	Zowe overview
	Zowe Application Framework
	z/OS Services
	Zowe CLI
	Zowe CLI capabilities

	API Mediation Layer
	Key features
	API Mediation Layer architecture
	Components
	API Gateway
	Discovery Service
	API Catalog


	Zowe Third-Party Software Requirements and Bill of Materials

	Zowe architecture

	Release notes
	Version 1.0.0 (February 2019)
	What's new in API Mediation Layer
	What's new in Zowe CLI
	What's new in the Zowe Desktop
	What's new in the Zowe App Server
	What's changed
	Known issues



	User Guide
	Installing Zowe
	Installing Zowe
	Installation roadmap

	System requirements
	Overview
	z/OSMF configuration
	z/OS requirements
	Configuring z/OSMF
	z/OSMF REST services for the Zowe CLI


	Planning for installation of API Mediation Layer, Zowe Application Framework, and Zowe APF Angel
	System requirements for Zowe CLI
	Prerequisite software
	Supported platforms
	Free disk space


	Installing Zowe on z/OS
	Obtaining and preparing the installation file
	Prerequisites
	Installing the Zowe runtime on z/OS
	How the install script zowe-install.sh works

	Starting and stopping the Zowe runtime on z/OS
	Starting the ZOWESVR PROC
	Stopping the ZOWESVR PROC

	Installing the Zowe Cross Memory Server on z/OS
	Manually installing the Zowe Cross Memory Server
	Scripted install of the Zowe Cross Memory Server

	Starting and stopping the Zowe Cross Memory Server on z/OS
	Verifying installation
	Verifying Zowe Application Framework installation
	Verifying z/OS Services installation
	Verifying API Mediation installation

	Looking for troubleshooting help?

	Installing Zowe CLI
	Methods to install Zowe CLI
	Installing Zowe CLI from a local package
	Installing Zowe CLI from an online registry

	Testing Zowe CLI connection to z/OSMF

	Uninstalling Zowe
	Uninstalling Zowe from z/OS
	Uninstalling Zowe CLI from the desktop


	Configuring Zowe
	Zowe Application Framework configuration
	Setting up terminal application plug-ins
	Setting up the TN3270 mainframe terminal application plug-in
	Setting up the VT Terminal application plug-in

	Configuring the Zowe Application Server and ZSS
	Configuration file
	Network configuration
	HTTP
	HTTPS
	Network example

	Deploy configuration
	Deploy example

	Application plug-in configuration
	Plug-ins directory example

	Logging configuration
	ZSS configuration
	Connecting the Zowe Application Server to ZSS

	Enabling tracing
	Zowe Application Server tracing
	Log levels
	Enabling tracing for ZSS


	Zowe Application Framework logging
	Controlling the logging location
	ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables
	ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

	Retaining logs


	Configuring Zowe CLI
	Setting environment variables for Zowe CLI
	Setting log levels
	Setting the .zowe directory



	Using Zowe
	Using the Zowe Desktop
	Navigating the Zowe Desktop
	Accessing the Zowe Desktop
	Logging in and out of the Zowe Desktop
	Pinning applications to the task bar

	Using Explorers within the Zowe Desktop
	Zowe Desktop application plug-ins
	Hello World Sample
	IFrame Sample
	z/OS Subsystems
	TN3270
	VT Terminal
	API Catalog
	Editor
	Workflows

	Using the Editor
	Specifying a language server
	Specifying a language
	Opening a directory
	Creating a new file
	Saving a file

	Using the Workflows application plug-in
	Logging on to the system
	Updating the data display
	Configuration
	Adding a z/OSMF server
	Testing a server connection
	Setting a server as the default z/OSMF server
	Removing a server
	Reload a server configuration
	Save a server configuration
	Workflows
	Searching workflows
	Defining a workflow
	Viewing tasks
	Task work area
	Performing a task
	Checking a task
	Managing tasks
	Viewing warnings


	API Catalog
	View Service Information and API Documentation in the API Catalog

	Using Zowe CLI
	Displaying Zowe CLI help
	Displaying top-level help
	Displaying command group, action, and object help

	Zowe CLI command groups
	plugins
	profiles
	provisioning
	zos-console
	zos-files
	zos-jobs
	zos-tso
	zosmf

	Defining Zowe CLI connection details
	Understanding command option order of precedence
	Creating Zowe CLI profiles
	Creating a profile to access an API Mediation Layer

	Defining Environment Variables
	Transforming arguments/options to environment variable format
	Setting environment variables in an automation server
	Using secure credential storage

	Integrating with API Mediation Layer

	Writing scripts to automate mainframe actions
	Writing a Script
	Example: Clean up Temporary Data Sets
	Example: Submit Jobs and Save Spool Output



	Zowe CLI extensions and plug-ins
	Extending Zowe CLI
	Installing plug-ins
	Setting the registry
	Meeting the prerequisites
	Installing plug-ins
	Validating plug-ins
	Updating plug-ins
	Uninstalling plug-ins

	Zowe CLI Plug-in for IBM CICS
	Use cases
	Prerequisites
	Installing
	Installing from an online registry
	Installing from a local package

	Creating a user profile
	Commands
	Defining resources to CICS
	Deleting CICS resources
	Discarding CICS resources
	Getting CICS resources
	Installing resources to CICS
	Refreshing CICS programs


	Zowe CLI plug-in for IBM Db2 Database
	Use cases
	Prerequisites
	Installing
	Installing from online registry
	Installing from local package
	Downloading the ODBC driver
	Installing the Plug-in


	Addressing the license requirement
	Creating a user profile
	Commands
	Calling a stored procedure
	Executing an SQL statement
	Exporting a table in SQL format


	VSCode Extension for Zowe
	Prerequisites
	Installing
	Use-Cases



	Extending
	Developing for API Mediation Layer
	Onboarding Overview
	Overview of APIs
	Sample REST API Service
	API Service Types

	Zowe API Mediation Layer Security
	How API ML transport security works
	Transport layer security
	Authentication
	Zowe API ML services
	Zowe API ML TLS requirements
	Authentication for API ML services
	Authorization
	API ML truststore and keystore
	Authentication to the Discovery Service

	Certificate management in Zowe API Mediation Layer
	Running on localhost
	How to start API ML on localhost with full HTTPS
	Certificate management script
	Generate certificates for localhost
	Generate a certificate for a new service on localhost
	Add a service with an existing certificate to API ML on localhost
	Log in to Discovery Service on localhost

	Zowe runtime on z/OS
	Certificates for z/OS installation from the Zowe PAX file
	Import the local CA certificate to your browser
	Generate a keystore and truststore for a new service on z/OS
	Add a service with an existing certificate to API ML on z/OS
	Procedure if the service is not trusted

	Trust a z/OSMF certificate
	Disable certificate validation



	Java REST APIs with Spring Boot
	Prepare an existing Spring Boot REST API for onboarding
	Add Zowe API enablers to your service
	Add API ML onboarding configuration
	Setup keystore with the service certificate
	Externalize API ML configuration parameters
	Test your service
	Validate that your API instance is still working
	Validate that your API instance is discoverable

	Review the configuration examples of the discoverable client

	Java REST APIs service without Spring Boot
	Prerequisites
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	(Optional) Add Swagger API documentation to your project
	Add endpoints to your API for API Mediation Layer integration
	Add configuration for Discovery client
	Add a context listener
	Add a context listener class
	Register a context listener

	Setup key store with the service certificate
	Run your service
	(Optional) Validate discovery of the API service by the Discovery Service

	Java Jersey REST APIs
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	Externalize parameters
	Download Apache Tomcat and enable SSL
	Run your service

	REST APIs without code changes required
	Identify the API that you want to expose
	Route your API

	Define your service and API in YAML format
	Configuration parameters
	Add and validate the definition in the API Mediation Layer running on your machine
	Add a definition in the API Mediation Layer in the Zowe runtime
	(Optional) Check the log of the API Mediation Layer
	(Optional) Reload the services definition after the update when the API Mediation Layer is already started


	Developing for Zowe CLI
	Developing for Zowe CLI
	How can I contribute?
	Getting started
	Tutorials
	Plug-in Development Overview

	Developer Documentation and Guidelines
	Imperative CLI Framework Documentation
	Contribution Guidelines


	Setting up your development environment
	Prequisites
	Initial setup
	Clone zowe-cli-sample-plugin and build from source
	(Optional) Run the automated tests

	Next steps

	Installing the sample plug-in
	Overview
	Installing the sample plug-in to Zowe CLI
	Viewing the installed plug-in
	Using the installed plug-in
	Testing the installed plug-in
	Next steps

	Extending a plug-in
	Overview
	Creating a Typescript interface for the Typicode response data
	Creating a programmatic API
	Exporting interface and programmatic API for other Node.js applications
	Checkpoint
	Defining command syntax
	Defining command handler
	Defining command to list group
	Checkpoint

	Using the installed plug-in
	Summary
	Next steps

	Developing a new plug-in
	Overview
	Cloning the sample plug-in source
	Changing package.json
	Adjusting Imperative CLI Framework configuration
	Adding third-party packages
	Creating a Node.js programmatic API
	Exporting your API

	Checkpoint
	Defining commands

	Trying your command
	Bringing together new tools!
	Next steps

	Implementing profiles in a plug-in
	Next steps


	Developing for Zowe Application Framework
	Extending the Zowe Application Framework (zLUX)
	Creating application plug-ins
	Setting the environment variables for plug-in development
	Using the sample application plug-in

	Plug-ins definition and structure
	Application plug-in filesystem structure
	Root files and directories
	pluginDefinition.json

	Dev and source content
	nodeServer
	webClient

	Runtime content
	lib
	web


	Location of plug-in files
	pluginsDir directory

	Plug-in definition file
	Plug-in attributes
	General attributes
	Application attributes
	Application web content attributes
	IFrame application web content


	Dataservices
	Defining a dataservice
	Dataservices defined in pluginDefinition

	Dataservice API
	Router-based dataservices
	HTTP/REST router dataservices
	Websocket router dataservices
	Router dataservice context



	Zowe Desktop and window management
	Loading and presenting application plug-ins
	Plug-in management
	Application management
	Windows and Viewports
	Viewport Manager
	Injection Manager
	Plug-in definition
	Logger
	Launch Metadata
	Viewport Events
	Window Events
	Window Actions


	Configuration Dataservice
	Resource Scope
	REST API
	REST query parameters
	REST HTTP methods
	GET
	PUT
	DELETE

	Administrative access and group

	Application API
	Internal and bootstrapping
	Plug-in definition
	Aggregation policies

	URI Broker
	Accessing the URI Broker
	Functions
	Accessing an application plug-in's dataservices
	HTTP Dataservice URI
	Websocket Dataservice URI

	Accessing application plug-in's configuration resources
	Standard configuration access
	Scoped configuration access

	Accessing static content
	Accessing the application plug-in's root
	Server queries
	Accessing a list of plug-ins



	Application-to-application communication
	Why use application-to-application communication?
	Actions
	Action target modes
	Action types
	Loading actions
	Dynamically
	Saved on system

	Recognizers
	Recognition clauses
	Loading Recognizers at runtime
	Dynamically
	Saved on system

	Recognizer example

	Dispatcher
	Registry
	Pulling it all together in an example

	Error reporting UI
	ZluxPopupManagerService
	ZluxErrorSeverity
	ErrorReportStruct
	Implementation
	Declaration
	Usage
	HTML


	Logging utility
	Logging objects
	Logger IDs
	Accessing logger objects
	Logger
	App Server
	Web

	Component logger
	App Server
	Web


	Logger API
	Component Logger API
	Log Levels
	Logging verbosity
	Configuring logging verbosity
	Server startup logging configuration



	Stand up a local version of the Example Zowe Application Server
	Server layout
	ZSS and Zowe Application Server overlap

	First-time Installation and Use
	0. (Optional) Install git for z/OS
	1. Acquire the source code
	2. Acquire external components
	3. Set the server configuration
	4. Build application plug-ins
	5. Deploy server configuration files
	6. Run the server
	7. Connect in a browser
	Deploy example

	Application plug-in configuration
	Plugins directory example

	ZSS Configuration
	Connecting Zowe Application Server to ZSS



	Zowe tutorials
	Sample Apps
	Internationalization in Angular Templates in Zowe zLUX
	App to app communication
	Using the Widgets Library
	Configuring user preferences (configuration dataservice)

	Starter Samples
	User Database Browser Starter App
	User Browser Tutorial
	Constructing an App Skeleton
	Defining your first plugin
	Constructing a Simple Angular UI
	Packaging Your Web App
	Adding Your App to the Desktop

	Building your first Dataservice
	Working with ExpressJS
	Adding your Dataservice to the Plugin Definition

	Adding your first Widget
	Adding your Dataservice to the App
	Introducing ZLUX Grid

	Adding Zowe App-to-App Communication
	Adding the Starter App
	Enabling Communication
	Calling back to the Starter App


	Zowe Samples
	Add Iframe App to Zowe
	Add a Native Angular App to Zowe


	Troubleshooting the installation
	Troubleshooting z/OSMF
	z/OS Services are unavailable

	Troubleshooting installing the Zowe Application Framework
	Troubleshooting installing Zowe CLI
	Command not found message displays when issuing npm install commands
	npm install -g Command Fails Due to an EPERM Error
	Sudo syntax required to complete some installations
	npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
	Node.js commands do not respond as expected
	Installation fails on Oracle Linux 6


	How to contribute
	Before you get started
	Contributing to documentation
	Sending a GitHub pull request
	Opening an issue for the documentation

	Documentation Style guide
	Headings and titles
	Use sentence-style capitalization for headings
	For tasks and procedures, use gerunds for headings.
	For conceptual and reference information, use noun phrases for headings.
	Use headline-style capitalization for only these items:
	Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.
	If the subject is a functional overview, begin a heading with words such as Introduction or Overview rather than contriving a pseudo-task-oriented heading that begins with Understanding, Using, Introducing, or Learning.

	Technical elements
	Variables
	Message text and prompts to the user
	Code and code examples
	Command names, and names of macros, programs, and utilities that you can type as commands
	Interface controls
	Directory names
	File names, file extensions, and script names
	Search or query terms
	Citations that are not links

	Tone
	Use simple present tense rather than future or past tense, as much as possible.
	Use simple past tense if past tense is needed.
	Use active voice as much as possible
	Using second person such as "you" instead of first person such as "we" and "our".
	End sentences with prepositions selectively
	Avoid using "Please", "thank you"
	Avoid anthropomorphism.
	Avoid complex sentences that overuse punctuation such as commas and semicolons.

	Word usage
	Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format.
	Use of "following"
	Use a consistent style for referring to version numbers.
	Avoid "may"
	Use "issue" when you want to say "run/enter" a command.

	Graphics
	Abbreviations
	Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the term.
	Do not use abbreviations as verbs.
	Do not use Latin abbreviations.
	Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that follow.

	Structure and format

	Word usage


