
Zowe Documentation
Version 1.7.1

 | Contents | iii

Contents

Chapter 1: Getting Started..7
Zowe overview... 8

Zowe overview... 8
Zowe architecture..12

Release notes...13
Version 1.7.1 (December 2019)... 13
Version 1.7.0 (November 2019)...14
Version 1.6.0 (October 2019)...16
Version 1.5.0 (September 2019).. 16
Zowe SMP/E Alpha (August 2019)...18
Version 1.4.0 (August 2019)..18
Version 1.3.0 (June 2019).. 20
Version 1.2.0 (May 2019).. 21
Version 1.1.0 (April 2019)... 23
Version 1.0.1 (March 2019)... 24
Version 1.0.0 (February 2019)... 25

Zowe CLI quick start... 26
Installing..27
Issuing your first commands.. 27
Using profiles..27
Writing scripts...28
Next Steps... 28

Frequently Asked Questions...29
Zowe FAQ.. 29
Zowe CLI FAQ...30

Chapter 2: User Guide...33
Installing Zowe... 34

Planning the installation... 34
System requirements...35
Installing Node.js on z/OS... 36
Configuring z/OSMF.. 37
Configuring z/OSMF Lite (for non-production use)..40
Installing Zowe on z/OS...57
Installing Zowe runtime from a convenience build... 58
Installing Zowe SMP/E Alpha... 61
Configuring the Zowe runtime...79
Verifying Zowe installation on z/OS... 97
Installing Zowe CLI... 98
Updating Zowe CLI..100
Uninstalling Zowe...101

Configuring Zowe...103
Zowe Application Framework configuration... 103
Configuring Zowe CLI... 115

Using Zowe...121
Getting started tutorial..121
Using the Zowe Desktop..140
Using the Editor..144

 | Contents | iv

API Catalog...145
Zowe CLI extensions and plug-ins.. 148

Extending Zowe CLI.. 148
Software requirements for Zowe CLI plug-ins..148
Installing Zowe CLI plug-ins... 148
IBM® CICS® Plug-in for Zowe CLI...152
IBM® Db2® Database Plug-in for Zowe CLI... 152
Zowe Explorer Extension for VSCode.. 155

Chapter 3: Extending... 157
Developing for API Mediation Layer.. 158

Onboarding Overview...158
Java REST APIs with Spring Boot..161
Java REST APIs service without Spring Boot.. 173
Prerequisites.. 174
Java Jersey REST APIs..183
REST APIs without code changes required...196
API Mediation Layer Message Service Component..203

Developing for Zowe CLI..206
Developing for Zowe CLI..206
Setting up your development environment.. 207
Installing the sample plug-in.. 208
Extending a plug-in.. 210
Developing a new plug-in.. 213
Implementing profiles in a plug-in.. 218

Developing for Zowe Application Framework.. 219
Overview... 219
Creating application plug-ins..221
Plug-ins definition and structure.. 222
Dataservices...225
Internationalizing applications..230
Zowe Desktop and window management.. 235
Configuration Dataservice.. 238
URI Broker... 243
Application-to-application communication.. 245
Configuring IFrame communication.. 249
Error reporting UI...250
Logging utility.. 252
Tutorial: Stand up a local version of the Example Zowe Application Server..................................... 256
Tutorial: User Browser Workshop App... 260

Zowe Conformance Program..275
Introduction... 275
How to participate.. 276

Chapter 4: Troubleshooting.. 277
Troubleshooting...278
Troubleshooting API ML... 278

Enable API ML Debug Mode.. 278
Change the Log Level of Individual Code Components... 278
Known Issues..280

Zowe Application Framework..284
Troubleshooting Zowe Application Framework.. 284
Gathering information to troubleshoot Zowe Application Framework..284
Known Zowe Application Framework issues.. 286

 | Contents | v

Raising a Zowe Application Framework issue on GitHub.. 289
Troubleshooting z/OS Services.. 289

z/OS Services are unavailable.. 289
Troubleshooting Zowe CLI.. 291

Troubleshooting Zowe CLI.. 291
Gathering information to troubleshoot Zowe CLI... 291
z/OSMF troubleshooting...294
Known Zowe CLI issues..294
Raising a CLI issue on GitHub..296

Troubleshooting Zowe through Zowe Open Community..296
Contact Zowe Open Community to Troubleshoot Zowe...297

Chapter 5: Contributing.. 299
Code guidelines...300

Code categories...300
General code style guidelines...300
Pull requests guidelines.. 301
Documentation Guidelines..301

UI guidelines...302
Introduction... 302
Colors.. 303
Typography... 307
Grid..309
Iconography...311
Application icon..312

How to contribute... 315
Before you get started.. 315
Contributing to documentation...315
Documentation Style guide ... 316
Word usage... 321

Chapter

1
Getting Started

Topics:

• Zowe overview
• Release notes
• Zowe CLI quick start
• Frequently Asked Questions

 | Getting Started | 8

Zowe overview

Zowe overview

Zowe™ is an open source project created to host technologies that benefit the IBM Z platform for all members of the
Z community, including Integrated Software Vendors (ISVs), System Integrators, and z/OS consumers. Zowe, like
Mac or Windows, comes with a set of APIs and OS capabilities that applications build on and also includes some
applications out of the box. Zowe offers modern interfaces to interact with z/OS and allows you to work with z/OS
in a way that is similar to what you experience on cloud platforms today. You can use these interfaces as delivered or
through plug-ins and extensions that are created by clients or third-party vendors.

Zowe Demo Video

Watch this video to see a quick demo of Zowe.

Component Overview

Zowe consists of the following components:

Zowe Application Framework

A web user interface (UI) that provides a virtual desktop containing a number of apps allowing access to z/OS
function. Base Zowe includes apps for traditional access such as a 3270 terminal and a VT Terminal, as well as an
editor and explorers for working with JES, MVS Data Sets and Unix System Services.

Learn more

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application
Framework, you can create applications to suit your specific needs. The Zowe Application Framework contains a web
UI that has the following features:

• The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a
full screen mode as compared to the command line interface.

• The web UI makes use of leading-edge web presentation technology and is also extensible through web UI plug-
ins to capture and present a wide variety of information.

• The web UI facilitates common z/OS developer or system programmer tasks by providing an editor for common
text-based files like REXX or JCL along with general purpose data set actions for both Unix System Services
(USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

• Zowe Desktop

The desktop, accessed through a browser.
• Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the
Express.js as a webservices framework, and the proxy applications that communicate with the z/OS services and
components.

• ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server.
• Application plug-ins

Several application-type plug-ins are provided. For more information, see Zowe Desktop application plug-ins on
page 140.

z/OS Services

Provides a range of APIs for the management of z/OS JES jobs and MVS data set services.

Learn more

https://www.youtube.com/embed/NX20ZMRoTtk

 | Getting Started | 9

Zowe provides a z/OS® RESTful web service and deployment architecture for z/OS microservices. Zowe contains the
following core z/OS services:

• z/OS Datasets services

Get a list of data sets, retrieve content from a member, create a data set, and more.
• z/OS Jobs services

Get a list of jobs, get content from a job file output, submit a job from a data set, and more.

You can view the full list of capabilities of the RESTful APIs from the API catalog that displays the Open API
Specification for their capabilities.

• These APIs are described by the Open API Specification allowing them to be incorporated to any standard-based
REST API developer tool or API management process.

• These APIs can be exploited by off-platform applications with proper security controls.

As a deployment architecture, the z/OS Services are running as microservices with a Springboot embedded Tomcat
stack.

Zowe CLI

Zowe CLI is a command-line interface that lets application developers interact with the mainframe in a familiar,
off-platform format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing
mainframe applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets application developers use
common tools such as Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools
for mainframe development. It provides a set of utilities and services for application developers that want to become
efficient in supporting and building z/OS applications quickly.

Learn more

Zowe CLI provides the following benefits:

• Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.
• Fosters the development of new and innovative tools from a computer that can interact with z/OS. Some Zowe

extensions are powered by Zowe CLI, for example the Zowe Explorer Extension for VSCode on page 155.
• Ensure that business critical applications running on z/OS can be maintained and supported by existing and

generally available software development resources.
• Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Planning the installation
on page 34.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

• Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets) directly from
Zowe CLI.

• Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output
automatically.

• Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe directly from
Zowe CLI.

• Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local tasks.
• Produce responses as JSON documents: Return data in JSON format on request for consumption in other

programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI on
page 148.

More Information:

 | Getting Started | 10

• System requirements on page 35
• Installing Zowe CLI on page 98

API Mediation Layer

Provides a gateway that acts as a reverse proxy for z/OS services, together with a catalog of REST APIs and a
dynamic discovery capability. Base Zowe provides core services for working with MVS Data Sets, JES, as well as
working with z/OSMF REST APIs. The API Mediation Layer also provides a framework for Single Sign On (SSO).

Learn more

The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer offers
enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and documentation. The API Mediation Layer facilitates secure communication across
loosely coupled microservices through the API Gateway. The API Mediation Layer consists of three components:
the Gateway, the Discovery Service, and the Catalog. The Gateway provides secure communication across loosely
coupled API services. The Discovery Service enables you to determine the location and status of service instances
running inside the API ML ecosystem. The Catalog provides an easy-to-use interface to view all discovered services,
their associated APIs, and Swagger documentation in a user-friendly manner.

Key features

• Consistent Access: API routing and standardization of API service URLs through the Gateway component
provides users with a consistent way to access mainframe APIs at a predefined address.

• Dynamic Discovery: The Discovery Service automatically determines the location and status of API services.
• High-Availability: API Mediation Layer is designed with high-availability of services and scalability in mind.
• Redundancy and Scalability: API service throughput is easily increased by starting multiple API service instances

without the need to change configuration.
• Presentation of Services: The API Catalog component provides easy access to discovered API services and their

associated documentation in a user-friendly manner. Access to the contents of the API Catalog is controlled
through a z/OS security facility.

• Encrypted Communication: API ML facilitates secure and trusted communication across both internal components
and discovered API services.

API Mediation Layer architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions between API
ML components and services:

 | Getting Started | 11

Components

The API Layer consists of the following key components:

API Gateway

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All end users
and API client applications interact through the Gateway. Each service is assigned a unique service ID that is used
in the access URL. Based on the service ID, the Gateway forwards incoming API requests to the appropriate service.
Multiple Gateway instances can be started to achieve high-availability. The Gateway access URL remains unchanged.
The Gateway is built using Netflix Zuul and Spring Boot technologies.

 | Getting Started | 12

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The Discovery Service
continuously collects and aggregates service information and serves as a repository of active services. When a
service is started, it sends its metadata, such as the original URL, assigned serviceId, and status information to the
Discovery Service. Back-end microservices register with this service either directly or by using a Eureka client.
Multiple enablers are available to help with service on-boarding of various application architectures including plain
Java applications and Java applications that use the Spring Boot framework. The Discovery Service is built on Eureka
and Spring Boot technology.

Discovery Service TLS/SSL

HTTPS protocol can be enabled during API ML configuration and is highly recommended. Beyond encrypting
communication, the HTTPS configuration for the Discovery Service enables hightened security for service
registration. Without HTTPS, services provide a username and password to register in the API ML ecosystem. When
using HTTPS, only trusted services that provide HTTPS certificates signed by a trusted certificate authority can be
registered.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The Catalog provides
both the REST APIs and a web user interface (UI) to access them. The web UI follows the industry standard
Swagger UI component to visualize API documentation in OpenAPI JSON format for each service. A service can
be implemented by one or more service instances, which provide exactly the same service for high-availability or
scalability.

Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM RACF, CA
ACF2, or CA Top Secret. Only users who provide proper mainframe credentials can access the Catalog. Client
authentication is implemented through the z/OSMF API.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the following
topics to discover more about adding new APIs to the API Mediation Layer and using the API Catalog:

• Onboarding Overview on page 158
• Java REST APIs with Spring Boot on page 161
• API Catalog on page 145

Zowe Third-Party Software Requirements and Bill of Materials

• Third-Party Software Requirements (TPSR)
• Bill of Materials (BOM)

Zowe architecture

Zowe™ is a collection of components that together form a framework that allows Z based functionality to be
accessible across an organization. This includes exposing Z based components such as z/OSMF as Rest APIs. The
framework provides an environment where other components can be included and exposed to a broader non-Z based
audience.

The following diagram depicts the high level Zowe architecture.

 | Getting Started | 13

Release notes
Learn about what is new, changed, or removed in Zowe™.

Zowe Version 1.7.1 and later releases include the following enhancements, release by release.

• Version 1.7.1 (December 2019)
• Version 1.7.0 (November 2019)
• Version 1.6.0 (October 2019)
• Version 1.5.0 (September 2019)
• Zowe SMP/E Alpha (August 2019)
• Version 1.4.0 (August 2019)
• Version 1.3.0 (June 2019)
• Version 1.2.0 (May 2019)
• Version 1.1.0 (April 2019)
• Version 1.0.1 (March 2019)
• Version 1.0.0 (February 2019)

Version 1.7.1 (December 2019)

New features and enhancements

The following features and enhancements were added.

 | Getting Started | 14

Zowe App Server

• A backup routine for when a non-administrator tries to access the API. Instead of executing privileged commands
and failing, it will execute a command to get their profile, and return only the information in their scope. This is a
feature that most people won't need, since you'd ideally want to be an administrator if you were using this API, but
the functionality is there. (#114)

• The ability to retrieve profiles only by prefix. This can be done by looking for a profile with a "." at the end. This
will act as a wildcard which extracts everything matching that prefix. (#114)

Zowe SMP/E installation

The pre-release of the Zowe SMP/E build is updated to be based on Zowe Version 1.7.1.

Bug fixes

The following bugs were fixed.

Zowe App Server

• Fixed a bug where the end of an acid is cut off when getting the access list of a group, resulting in invalid output
in the response.(#114)

• Fixed a bug where all of the different administrator suffixes weren't defined, so it was incorrectly returning
administrators. (#114)

Version 1.7.0 (November 2019)

New features and enhancements

The following features and enhancements were added.

API Mediation Layer

• Cleanup Gateway dependency logs (#413)
• Cleanup Gateway - our code (#417)
• Cleanup Discovery Service dependency logs (#403)
• Cleanup Discovery Service - our code (#407)
• External option to activate DEBUG mode for APIML (#410)

https://github.com/zowe/zss/pull/114
https://github.com/zowe/zss/pull/114
https://github.com/zowe/zss/pull/114
https://github.com/zowe/zss/pull/114
https://github.com/zowe/api-layer/pull/413
https://github.com/zowe/api-layer/pull/417
https://github.com/zowe/api-layer/pull/403
https://github.com/zowe/api-layer/pull/407
https://github.com/zowe/api-layer/pull/410

 | Getting Started | 15

Zowe App Server

• Introduced the "SJ" feature to the JES Explorer application (#282)

You can now right-click a job label and click "Get JCL" to retrieve the JCL used to submit the job. This JCL can
then be edited and resubmitted.

• File Explorer now offers a right click Delete option for files and folders (#43)
• Prevented creation/deletion of files and folders queued for deletion. (#48)
• Updated back-end API to give more accurate delete responses. (#93)
• IFrame adapter: added support for plugin definition, logger, and launch metadata. (#174)
• IFrame app-to-app communication support (#174)
• Removed unnecessary warning suppression (#23)
• Dispatcher always sends message, even when context doesn't exist (#174)
• Support constructor injectibles via Iframe adapter (#174)
• Browser tab for the desktop now includes opened app name. (#175)
• File Explorer now offers a right click file and folder Properties menu. (#180)
• File Explorer now offers a right click dataset Properties menu. (#49)
• Made it possible to specify config properties via command line arguments for the App server. (#81)
• Allow override of configuration attributes using a -D argument syntax. (#154)
• Allow specifying environment variables that can be interpreted as JSON structures. (#156)

Zowe Explorer (Extension for VSCode)

• The name of the extension was changed from "VSCode Extension for Zowe" to "Zowe Explorer".
• The VSCode Extention for Zowe contains various changes in this this release. For more information, see the

VSCode Change Log.

Bug fixes

The following bugs were fixed.

API Mediation Layer

Fixed a typo in Gateway startup script. (#427)

https://github.com/zowe/zlux/issues/282
https://github.com/zowe/zlux-file-explorer/pull/43
https://github.com/zowe/zlux-file-explorer/pull/48
https://github.com/zowe/zss/pull/93
https://github.com/zowe/zlux-app-manager/pull/174
https://github.com/zowe/zlux-app-manager/pull/174
https://github.com/zowe/zlux-shared/pull/23
https://github.com/zowe/zlux-app-manager/pull/174
https://github.com/zowe/zlux-app-manager/pull/174
https://github.com/zowe/zlux-app-manager/pull/175
https://github.com/zowe/zlux/issues/180
https://github.com/zowe/zlux-file-explorer/pull/49
https://github.com/zowe/zlux-app-server/pull/81
https://github.com/zowe/zlux-server-framework/pull/154
https://github.com/zowe/zlux-server-framework/pull/156
https://github.com/zowe/vscode-extension-for-zowe/blob/master/CHANGELOG.md#0270
https://github.com/zowe/api-layer/pull/427

 | Getting Started | 16

Zowe App Server

Fixed notification click, time stamp, inconsistent notification manager pop up clicks, empty notification bubbles, and
safari issue. (#171)

Zowe CLI

This version of Zowe CLI contains various bug fixes that address vulnerabilities.

Version 1.6.0 (October 2019)

No changes were made to API ML or Zowe CLI in this release.

What's new in the Zowe App Server

The following features and enhancements are added:

• Added two NodeJS issues to the App Framework Troubleshooting section. #786
• Added a REST API for new core dataservices to administer the servers and plugins. #82
• Added pass through express router ws patcher in case plug-ins need it. #152, #149
• Updated security plugins to manage proxied headers so that unnecessary things are not put into the browser.#152,

#26
• Clear cookie on complete logout.#152

What's new in Zowe CLI

The following enhancement was added:

• The --wait-for-output and the --wait-for-active options were added. You can append these
options to a zowe zos-jobs submit command to either wait for the job to be active, or wait for the job to
complete and enter OUTPUT status. If you do not specify --vasc, you can use these options to check job return
codes without issuing zowe zos-jobs view job-status-by-jobid <jobid>.

What's new in the Visual Studio Code (VSC) Extension for Zowe

The Visual Studio Code (VSC) Extension for Zowe lets you interact with data sets and USS files from a convenient
graphical interface. Review the Change Log to learn about the latest improvements to the extension.

You can download the latest version from the VSC Marketplace.

Version 1.5.0 (September 2019)

What's new in API Mediation Layer

The following features and enhancements are added:

• The Discovery Service UI now enables the user to log in using mainframe credentials or by providing a valid
client certificate.

• API Catalog REST endpoints now accept basic authentication by requiring the user to provide a username and
password.

The following bugs are fixed:

• A defect has been resolved where previously an authentication message was thrown in the service detail page in
the API Catalog when the swagger JSON document link was clicked. The message requires the user to provide
mainframe credentials but did not link to an option to authenticate. Now, a link is included to provide the user
with the option to authenticate.

What's new in the Zowe App Server

The following features and enhancements are added:

• Adds dynamic logging functionality for plugins (#60, #63)
• Top Secret updates to the security lookup API (#71, #72, #74)

https://github.com/zowe/zlux-app-manager/pull/171B
https://github.com/zowe/docs-site/pull/786
https://github.com/zowe/zss/pull/82
https://github.com/zowe/zlux-server-framework/pull/152
https://github.com/zowe/zlux-server-framework/pull/149
https://github.com/zowe/zlux-server-framework/pull/152
https://github.com/zowe/zss-auth/pull/26
https://github.com/zowe/zlux-server-framework/pull/152
https://github.com/zowe/vscode-extension-for-zowe/blob/master/CHANGELOG.md
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/zss/pull/60
https://github.com/zowe/zowe-common-c/pull/63
https://github.com/zowe/zss/pull/71
https://github.com/zowe/zss/pull/72
https://github.com/zowe/zowe-common-c/pull/74

 | Getting Started | 17

• Accept basic auth header as an option for login (#80)
• JSON parsing enhancements for UTF8, and printing to buffer (#67)
• Optimization, memory bugfix and improved tracing for authentication (#72)
• Performance optimization for app thumbnail snapshots: Fixed a bug causing slowdown relative to number of apps

open (#131)
• Translations: Added missing language translations about session lifecycle (#137)
• Logger reorganized for Zowe-wide log format unification. Includes i18n-able message ID support & new info.

See #90 (#17, #119, #116, #142, #35, #19, #132, #146, #126, #139, #67, #133, #21)
• Establish rules & recommendations for conformance (#142)
• Launchbar menu of apps now has same context menu properties as pinned apps (#140)
• Properties App now shows the ID of the chosen plugin (#140)
• Added group permission for plugin access when installing via install script (#125)
• Updated URIBroker include new parameter for searching datasets with included trailing qualifiers (#34, #138)
• App2App communication now allows you to target a specific app instance, as well as to request minimization or

maximization (#38, #148)
• Configuration Dataservice now can load plugin defaults from the plugin's own folder (#129)
• Configuration Dataservice can now support GET like HEAD (#140)
• Configuration Dataservice can now utilize binaries as opposed to JSON. This mode does not process the objects,

just stores & retrieves. (#130)
• Added a notification menu, popup & API where messages can be sent by administrators to individual or all end

users (#36, #144)
• Doc: Configuration Dataservice Swagger document updated for new features (#136)
• Desktop now supports loading a custom wallpaper, and the launchbar & maximized window style has been

changed to improve screen real estate (#151)
• The App Server configuration and log verbosity can now be viewed and updated on-the-fly via a REST API (#66,

#128)
• The App Server environment parameters and log output can now be viewed via a REST API (#66, #128)
• The App Server can now have Application plugins added, removed, and upgraded on-the-fly via a REST API

(#137, #69)
• A dataservice can now import another import dataservice, as long as this chain eventually resolves to a non-import

dataservice (#139)
• You can now open any Zowe App in its own browser tab by right clicking its icon and choosing "Open in new

browser window" (#149, #150)
• Icons improved for datasets that are migrated/archived (#30)
• Support App2App to open a given dataset (#87, #35)
• Navigate the editor menu bar via keyboard (#85)
• Add keyboard shortcuts to open and close tabs (#81)
• Add loading indicator for dataset loading (#34)
• Compress the terminals with gzip for improved initial load time, same as was done with the editor previously

(#22, #23)
• Made the following enhancements to the JES Explorer App

• Add ability to open and view multiple Spool files at once (#99)
• Migrate from V0 to V1 of Material UI (#98)
• Migrate from V15 to V16 of React (#98)

The following bugs are fixed:

• New directories/files from Unix file API would have no permissions (#75)
• Properties App can now be reused when clicking property of a second app (#140)
• Logout did not clear dispatcher App instance tracking (#32)
• Iframe Apps were not gaining mouse focus correctly (#37, #145)
• Remove placeholder swagger from swagger response when plugin-provided swagger is found (#139)

https://github.com/zowe/zowe-common-c/pull/80
https://github.com/zowe/zowe-common-c/pull/67
https://github.com/zowe/zowe-common-c/pull/72
https://github.com/zowe/zlux-app-manager/pull/131
https://github.com/zowe/zlux-app-manager/pull/137
https://github.com/zowe/zlc/issues/90
https://github.com/zowe/zlux-shared/pull/17
https://github.com/zowe/zlux-app-manager/pull/119
https://github.com/zowe/zlux-server-framework/pull/116
https://github.com/zowe/zlux-app-manager/pull/142
https://github.com/zowe/zlux-platform/pull/35
https://github.com/zowe/zlux-shared/pull/19
https://github.com/zowe/zlux-server-framework/pull/132
https://github.com/zowe/zlux-app-manager/pull/146
https://github.com/zowe/zlux-server-framework/pull/126
https://github.com/zowe/zlux-app-manager/pull/139
https://github.com/zowe/zlux-app-server/pull/67
https://github.com/zowe/zlux-server-framework/pull/133
https://github.com/zowe/zlux-shared/pull/21
https://github.com/zowe/zlux/issues/142
https://github.com/zowe/zlux-app-manager/pull/140
https://github.com/zowe/zlux-app-manager/pull/140
https://github.com/zowe/zlux-server-framework/pull/125
https://github.com/zowe/zlux-platform/pull/34
https://github.com/zowe/zlux-app-manager/pull/138
https://github.com/zowe/zlux-platform/pull/38
https://github.com/zowe/zlux-app-manager/pull/148
https://github.com/zowe/zlux-server-framework/pull/129
https://github.com/zowe/zlux-server-framework/pull/140
https://github.com/zowe/zlux-server-framework/pull/130
https://github.com/zowe/zlux-platform/pull/36
https://github.com/zowe/zlux-app-manager/pull/144
https://github.com/zowe/zlux-server-framework/pull/136
https://github.com/zowe/zlux-app-manager/pull/151
https://github.com/zowe/zlux-app-server/pull/66
https://github.com/zowe/zlux-server-framework/pull/128
https://github.com/zowe/zlux-app-server/pull/66
https://github.com/zowe/zlux-server-framework/pull/128
https://github.com/zowe/zlux-server-framework/pull/137
https://github.com/zowe/zlux-app-server/pull/69
https://github.com/zowe/zlux-server-framework/pull/139
https://github.com/zowe/zlux-app-manager/pull/149
https://github.com/zowe/zlux-app-manager/pull/150
https://github.com/zowe/zlux-file-explorer/pull/30
https://github.com/zowe/zlux-editor/pull/87
https://github.com/zowe/zlux-file-explorer/pull/35
https://github.com/zowe/zlux-editor/pull/85
https://github.com/zowe/zlux-editor/pull/81
https://github.com/zowe/zlux-file-explorer/pull/34
https://github.com/zowe/tn3270-ng2/pull/22
https://github.com/zowe/vt-ng2/pull/23
https://github.com/zowe/explorer-jes/pull/99
https://github.com/zowe/explorer-jes/pull/98
https://github.com/zowe/explorer-jes/pull/98
https://github.com/zowe/zowe-common-c/pull/75
https://github.com/zowe/zlux-app-manager/pull/140
https://github.com/zowe/zlux-platform/pull/32
https://github.com/zowe/zlux-platform/pull/37
https://github.com/zowe/zlux-app-manager/pull/145
https://github.com/zowe/zlux-server-framework/pull/139

 | Getting Started | 18

• ZSS Dataservices could fail due to incorrect impersonation environment variable setting (_BPX_SHAREAS)
(#68)

• Restore focus of text on window restore (#84)
• Reposition menu from menu bar on edge/firefox (#82)
• Could not open the SSH terminal in single window mode (#21)

What's new in Zowe CLI and Plug-ins

The following commands and enhancements are added:

• You can append --help-web to launch interactive command help in your Web browser. For more information,
see Interactive Web Help. (#238)

Zowe SMP/E Alpha (August 2019)

A pre-release of the Zowe SMP/E build is now available. This alpha release is based on Zowe Version 1.4.0. Do not
use this alpha release in production environment.

• To obtain the SMP/E build, go to the Zowe Download website.
• For more information, see Installing Zowe SMP/E Alpha on page 61.

Version 1.4.0 (August 2019)

What's new in API Mediation Layer

This release of Zowe API ML contains the following improvements:

• JWT token configuration

• RS256 is used as a token encryption algorithm
• JWT secret string is generated at the time of installation and exported as a .pem file for use by other services
• JWT secret string is stored in a key store in PKCS 11 format under "jwtsecret" name

• SonarQube problems fixed

• Various fixes from SonarQube scan
• API Mediation Layer log format aligned with other Zowe services:

%d{yyyy-MM-dd HH:mm:ss.SSS,UTC} %clr(<${logbackService:-
${logbackServiceName}}:%thread:${PID:- }>){magenta} %X{userid:-}
 %clr(%-5level) %clr(\(%logger{15},%file:%line\)){cyan} %msg%n

• Added an NPM command to register certificates on Windows. The following command installs the certificate to
trusted root certification authorities:

npm run register-certificates-win

• Cookie persistence changed

• Changed the API Mediation Layer cookie from persistent to session. The cookie gets cleared between browser
sessions.

• Fixed high CPU usage occurrence replicated in Broadcom (#282)

• Changed configuration of LatencyUtils to decrease idle CPU consumption by API ML services
• API Mediation layer now builds using OpenJDK with OpenJ9 JVM

What's new in the Zowe App Server

Made the following fixes and enhancements:

• Added the ability for the App Server Framework to defer to managers for dataservices that are not written in
NodeJS or C. The first implementation is a manager of Java servlet type dataservices, where the App Server
manages Tomcat instances when Tomcat is present. (#158)

https://github.com/zowe/zlux-app-server/pull/68
https://github.com/zowe/zlux-editor/pull/84
https://github.com/zowe/zlux-editor/pull/82
https://github.com/zowe/vt-ng2/pull/21
https://github.com/zowe/imperative/issues/238
https://www.zowe.org/#download
https://github.com/zowe/api-layer/issues/282
https://github.com/zowe/zlux/issues/158

 | Getting Started | 19

• Added a tomcat xml configuration file with substitutions for values (ports, keys, certificates) necessary for the
App Server to manage one or more instances of Tomcat for hosting servlet dataservices. Also added a new section
to the zluxserver.json file to describe dataservice providers such as the aforementioned Tomcat Java Servlet one.
(#49)

• Added Swagger API documentation support. Application developers can include a Swagger 2.0 JSON or YAML
file in the app's /doc/swagger directory for each REST data service. Each file must have the same name as the data
service. Developers can then reference the files at runtime using a new app route: /ZLUX/plugins/PLUGINID/
catalogs/swagger. They can reference individual services at: /ZLUX/plugins/PLUGINID/catalogs/swagger/
SERVICENAME. If swagger documents are not present, the server will use contextual knowledge to show some
default values. (#159)

• The following new REST and cross-memory services have been added (#32):

• Extract RACF user profiles
• Define/delete/permit general RACF resource profiles (limited to a single class)
• Add/remove RACF groups
• Connect users to RACF groups (for a limited set of group prefixes)
• Check RACF user access levels (limited to a single class)

• Fixed multiple issues in the File Editor App. (#88)
• Fixed multiple ZSS file and dataset API issues (#49 #42 #40 #44 #45)
• Remove several CSS styles from the Desktop to prevent bleed-in of styles to Apps (#117)
• Fixed incorrect count of open Apps upon logging in more than once per browser session (#123) Add OMVS

information API to uribroker (#116)
• Enhanced auth plugin structure for application framework that lists auth capabilities (#118 #14 #19)
• Improved searching for node libraries for dataservices within an plugin (#114)
• Editor & File Explorer Widget Changes

• Unix directory listing now starts in the user's home directory (#16)
• JCL syntax coloring revision (#73)
• Cursor, scroll position and text selection is now kept while switching tabs in editor (#71)
• Editor now scrolls tab bar to newest tab when opening, and tab scrolling improved when closing tabs (#69)
• Tab name, tooltip, and scroll fixes (#55 #60 #63)
• Change in double and single click behavior of file explorer widget (#21)
• Fix to show language menu on new file (#62)
• Fix to keep language menu within the bounds of app window (#59)
• Fix to the delete file prompt (#61)
• Fix to allow closing of multiple editor instances (#22)
• Fix to query datasets correctly by making queries uppercase (#65)

• Fixed issue where the cascading position of new windows were wrong when that application was maximized.
(#102)

• Fixed issue where the file tabs in File Editor app were vertically scrollable, and where the close button would not
be accessible for long file names. (#170)

• Updated the package lock files in all repositories to fix vulnerable dependencies. (#163)
• Fixed an issue where the Desktop used the roboto-latin-regular font for all text, which would not display well with

non-latin languages. Now the fallback font is sans-serif. (#118)

What's new in Zowe CLI and Plug-ins

You can now explore the Zowe CLI command help in an interactive online format. See Zowe CLI Web Help.

The following new commands and enhancements are added:

• The VSCode Extension for Zowe now supports manipulation of USS files. (#32)
• You can now archive z/OS workflows using a wildcard. (#435)
• The z/OS Workflows functionality is now exported to an API. Developers can leverage the exported APIs to

create applications and scripts without going through the CLI layer. (#482)

https://github.com/zowe/zlux/issues/159
https://github.com/zowe/zss/pull/32
https://github.com/zowe/zlux/issues/88
https://github.com/zowe/zss/pull/49
https://github.com/zowe/zowe-common-c/pull/42
https://github.com/zowe/zowe-common-c/pull/40
https://github.com/zowe/zowe-common-c/pull/44
https://github.com/zowe/zowe-common-c/pull/45
https://github.com/zowe/zlux-app-manager/pull/117
https://github.com/zowe/zlux-app-manager/pull/123
https://github.com/zowe/zlux-app-manager/pull/116
https://github.com/zowe/zlux-server-framework/pull/118
https://github.com/zowe/zosmf-auth/pull/14
https://github.com/zowe/zss-auth/pull/19
https://github.com/zowe/zlux-server-framework/pull/114
https://github.com/zowe/zlux-file-explorer/pull/16
https://github.com/zowe/zlux-editor/pull/73
https://github.com/zowe/zlux-editor/pull/71
https://github.com/zowe/zlux-editor/pull/69
https://github.com/zowe/zlux-editor/pull/55
https://github.com/zowe/zlux-editor/pull/60
https://github.com/zowe/zlux-editor/pull/63
https://github.com/zowe/zlux-file-explorer/pull/21
https://github.com/zowe/zlux-editor/pull/62
https://github.com/zowe/zlux-editor/pull/59
https://github.com/zowe/zlux-editor/pull/61
https://github.com/zowe/zlux-file-explorer/pull/22
https://github.com/zowe/zlux-editor/pull/65
https://github.com/zowe/zlux/issues/102
https://github.com/zowe/zlux/issues/170
https://github.com/zowe/zlux/issues/163
https://github.com/zowe/zlux-app-manager/pull/118
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/vscode-extension-for-zowe/issues/32
https://github.com/zowe/zowe-cli/pull/435
https://github.com/zowe/zowe-cli/pull/482

 | Getting Started | 20

• The CLI now exploits all "z/OS data set and file REST interface" options that are provided in z/OSMF v2.3.
(#491)

The following bugs are fixed:

• Fixed an issue where examples for zowe files list uss-files were slightly incorrect. (#440)
• Improved error message for zowe db2 call procedure command. (#22)

Version 1.3.0 (June 2019)

What's new in API Mediation Layer

This release of Zowe API ML contains the following user experience improvements:

• Added authentication endpoints (/login, /query) to the API Gateway
• Added the Gateway API Swagger document (#305)

• Fixed the bug that causes JSON response to set incorrectly when unauthenticated
• Fixed error messages shown when a home page cannot be modified

• Added a new e2e test for GW, and update the detail service tile (#309)
• Removed a dependency of integration-enabler-java on the gateway-common (#302)
• Removed access to the Discovery service UI with basic authentication (#313)
• Fixed the issue with the connection logic on headers to pass in the websocket (#275)
• Fixed the bug 264: Bypass the API Gateway when the server returns 302 (#276)
• Fixed the issue that causes the API ML Services display as UP, and makes the API doc available in the Catalog

regardless whether the API ML Services stop (#287)
• Fixed the issue that prevents the API Catalog to load under zLux 9 (314)

What's new in the Zowe App Server

Made the following fixes and enhancements:

• Added internationalization to the Angular and React sample applications. (#133)
• Made the following enhancements to the ZSS server:

• Added support for Zowe on z/OS version 2.4. (#15)
• Updated documentation for query parameter to file API. (#48)

• Made the following enhancements to security:

• App Server session cookie is now a browser session cookie rather than having an expiration date. Expiration is
now tracked on the server side. (#132, #97, #81)

• Added a "mode=base64" option to the unixfile API. (#127)
• Added a port to the cookie name to differentiate multiple servers on same domain. (#95)
• Made the following fixes and enhancements to the Code Editor application:

• Added a menu framework to provide options specific to the current file/data set type. (#131)
• Added ISPF-like syntax highlighting for JCL. (#48)
• Fixed an issue by notifying users if the editor cannot open a file or data set. (#148)
• Fixed an issue with event behavior when a tab is closed. (#135)
• Fixed an issue with not showing the content of files in Chrome and Safari. (#100)
• Fixed an issue with files shown without alphabetical sorting. (#85)

• Made the following fixes and enhancements to the TN3270 application (#96):

• Fixed an issue where the application could not be configured to default to a TLS connection.
• Fixed an issue where it could not handle a TN3270 connection, only TN3270E. Improved preference saving.

Administrators can now store default values for terminal mod type, codepage, and screen dimensions.

https://github.com/zowe/zowe-cli/pull/491
https://github.com/zowe/zowe-cli/issues/440
https://github.com/zowe/zowe-cli-db2-plugin/issues/22
https://github.com/zowe/api-layer/pull/305
https://github.com/zowe/api-layer/pull/309
https://github.com/zowe/api-layer/pull/302
https://github.com/zowe/api-layer/pull/313
https://github.com/zowe/api-layer/pull/275
https://github.com/zowe/api-layer/pull/276
https://github.com/zowe/api-layer/pull/287
https://github.com/zowe/api-layer/pull/314
https://github.com/zowe/zlux/issues/133
https://github.com/zowe/zss/issues/15
https://github.com/zowe/zlux-app-server/pull/48
https://github.com/zowe/zlux/issues/132
https://github.com/zowe/zlux-server-framework/pull/97
https://github.com/zowe/zlux-server-framework/issues/81
https://github.com/zowe/zlux/issues/127
https://github.com/zowe/zlux-server-framework/pull/95
https://github.com/zowe/zlux/issues/131
https://github.com/zowe/zlux-editor/pull/48
https://github.com/zowe/zlux/issues/148
https://github.com/zowe/zlux/issues/135
https://github.com/zowe/zlux/issues/100
https://github.com/zowe/zlux/issues/85
https://github.com/zowe/zlux-server-framework/pull/96

 | Getting Started | 21

• Made the following fixes and enhancements for App2App for IFrames (#24, #107):

• Fixed an issue with an exception when handling App2App communication with IFrames.
• Added experimental support for App2App communication with an IFrame application as destination.

• Made the following enhancements to support TopSecret:

• Added a user-profiles endpoint. (#113)
• Added an endpoint extraction for groups. (#129)

• Fixed an issue with app names not being internationalized when translations were present. (#85)
• Fixed Russian language errors in translation files. (#100)
• Fixed several issues with using the Application Server as a proxy. (#93)
• Fixed an issue with the App Server throwing exceptions when authorization plugins were installed but not

requested. (#94)
• Fixed an issue with ZSS consuming excessive CPU during download. (#147)
• Fixed documentation issue by replacing "zLUX" with "Zowe Application Framework" and "MVD" with "Zowe

Desktop." (#214)
• Fixed an issue with an incorrect translation for word "Japanese" in Japanese. (#108)

What's new in Zowe CLI and Plug-ins

The following new commands and enhancements are added:

• Return a list of archived z/OSMF workflows with the zowe zos-workflows list arw command. (#391)
• Return a list of systems that are defined to a z/OSMF instance with the zowe zosmf list systems

command. (#348)
• The zowe uss issue ssh command now returns the exit code of the shell command that you issued. (#359)
• The zowe files upload dtu command now supports the metadata file named .zosattributes. (#366)

The following bugs are fixed:

• Fixed an issue where zowe workflow ls aw commands with the --wn option failed if there was a space in
the workflow name. (#356)

• Fixed an issue where zowe zowe-files delete uss command could fail when resource URL includes a
leading forward-slash. (#343).

Version 1.2.0 (May 2019)

Version 1.2.0 contains the following changes since Version 1.1.0.

What's new in the Zowe installer

• Made the following installer improvements:

• Check whether ICSF is configured before checking Node version to avoid runaway CPU.
• Warn if the host name that is determined by the installer is not a valid IP address.
• Fixed a bug where a numeric value is specified in ZOWE_HOST_NAME causing errors generating the Zowe

certificate.
• Made the following improvements to the zowe-check-prereqs.sh script:

• Improvements for checking and validating the telnet and ssh port required by the Zowe Desktop applications.

What's new in API Mediation Layer

This release of Zowe API ML contains the following user experience improvements:

• Prevented the Swagger UI container on the service detail page from spilling.
• Added a check for the availability of the z/OSMF URL contained in theconfiguration. z/OSMF is used to verify

users logging into the Catalog.
• Made PageNotFound error visible only in the debug log level.
• Added zD&T-compatible ciphers and the TLS protocol restricted to 1.2.

https://github.com/zowe/zlux-platform/pull/24
https://github.com/zowe/zlux-app-manager/pull/107
https://github.com/zowe/zlux/issues/113
https://github.com/zowe/zlux/issues/129
https://github.com/zowe/zlux-server-framework/pull/85
https://github.com/zowe/zlux-app-manager/pull/100
https://github.com/zowe/zlux-server-framework/pull/93
https://github.com/zowe/zlux-server-framework/pull/94
https://github.com/zowe/zlux/issues/147
https://github.com/zowe/docs-site/issues/214
https://github.com/zowe/zlux-app-manager/pull/108
https://github.com/zowe/zowe-cli/pull/391
https://github.com/zowe/zowe-cli/pull/348
https://github.com/zowe/zowe-cli/pull/359
https://github.com/zowe/zowe-cli/pull/366
https://github.com/zowe/zowe-cli/pull/356
https://github.com/zowe/zowe-cli/pull/343

 | Getting Started | 22

• Introduced support for VSCode development.
• Introduced a common cipher configuration property.
• Fixed URL transformation defects.
• Fixed reporting that the Catalog is down when it is started before the Discovery Service.
• Removed the bean overriding error message from the log.
• Fixed the state manipulation mechanism in the Catalog. As a result, no restoring of the application state is

performed.
• Fixed the Catalog routing mechanism for a users who is already loggedin so that the user is not prompted to log in

again.
• A timeout has been set for Catalog login when z/OSMF is not responding.
• A tile change in the Catalog is now propagated to the UI.
• Fixed a problem with an incorrect service homepage link in the Catalog.
• The Catalog Login button has been disabled when the login request is in progress.

What's new in the Zowe App Server

• Improved security by adding support for RBAC (Role Based Access Control) to enable Zowe to determine
whether a user is authorized to access a dataservice.

• Added Zowe Desktop settings feature for specifying the Zowe desktop language.
• Added German language files.
• Fixed a bug by adding missing language files.
• Enabled faster load times by adding support for serving the Zowe Application Framework core components, such

as the Desktop, as compressed files in gzip format.
• Added support for application plug-ins to serve static content, such as HTML, JavaScript, and images, to browsers

in gzip and brotli compressed files.
• Fixed a Code Editor bug by separating browsing of files and data sets.

What's new in Zowe CLI and Plug-ins

The Zowe CLI core component contains the following improvements and fixes:

• The zos-uss command group is added to the core CLI. The commands let you issue Unix System Services shell
commands by establishing an SSH connection to an SSH server. For more information, see #unique_79.

• The zowe zos-workflows command group now contains the following active-workflow-details
options:

• --steps-summary-only | --sso (boolean): An optional parameter that lets you list (only) the
steps summary.

• --skip-workflow-summary | --sws (boolean): An optional parameter that lets you skip the
default workflow summary.

• Zowe CLI was updated to correct an issue where the zowe zos-workflows start command ignored the
-- workflow-name argument.

• Updated and clarified the description the -- overwrite option for the zowe zos-workflows create
workflow-from-data-set command and the Zowe zos-workflows create workflow-from-
uss-file command.

• The CLI Reference Guide is featured on the Zowe Docs home page. The document is a comprehensive guide to
commands and options in Zowe CLI.

• You can now click the links on the Welcome to Zowe help section and open the URL in a browser window. Note
that the shell application must support the capability to display and click hyperlinks.

What's new in Zowe USS API

Made the following enhancements:

• Chtag detection and ascii/ebcdic conversion on GET & PUT requests. For details, see this issue.
• New optional header on GET Unix file content request to force conversion from ebcdic to ascii. For details, see

this issue.

1b5058fcf805c9919ce030238504d5a2dbe8fa15.pdf
https://github.com/zowe/data-sets/issues/82
https://github.com/zowe/data-sets/issues/82

 | Getting Started | 23

• New response header on GET Unix file content requests: E-Tag for overwrite detection and validation. For details,
see this issue.

• Reintroduced PUT (update) Unix file content endpoint. For details, see this issue.
• Reintroduced DELETE Unix file content endpoint. For details, see this issue.
• Reintroduced POST (create) Unix file or directory endpoint. For details, see this issue.
• Fixed a problem with incorrect return error when the user requests to view contents of a USS folder they do not

have permission to. Now it returns a 403 (Forbidden) error. For details, see this issue.

Version 1.1.0 (April 2019)

Version 1.1.0 contains the following changes since the last 1.0.x version.

What's new in Zowe system requirements

z/OSMF Lite is now available for non-production use such as development, proof-of-concept, demo and so on. It
simplifies the setup of z/OSMF with only a minimal amount of z/OS customization, but provides key functions that
are required. For more information, see Configuring z/OSMF Lite (for non-production use) on page 40.

What's new in the Zowe App Server

• Made the following user experience improvements:

• Enabled the Desktop to react to session expiration information from the Zowe Application Server. If a user is
active the Desktop renews their session before it expires. If a user appears inactive they are prompted and can
click to renew the session. If they don't click, they are logged out with a session expired message.

• Added the ability to programmatically dismiss popups created with the "zlux-widgets" popup manager.
• Made the following security improvements:

• Encoded URIs shown in the App Server 404 handler, which prevents some browsers from loading malicious
scripts.

• Documented and support configuring HTTPS on ZSS.
• For ZSS API callers, added HTTP response headers to instruct clients not to cache HTTPS responses from

potentially sensitive APIs.
• Improved the Zowe Editor App by adding app2app communication support that allows the application to open

requested directories, dataset listings, and files.
• Improved the Zowe App API by allowing subscription to close events on viewports instead of windows, which

allows applications to better support Single App Mode.
• Fixed a bug that generated an extraneous RACF audit message when you started ZSS.
• Fixed a bug that would sometimes move application windows when you attempted to resized them.
• Fixed a bug in the "Getting started with the ZOWE WebUi" tutorial documentation.
• Fixed a bug that caused applications that made ZSS service requests to fail with an HTTP 401 error because of

dropped session cookies.

What's new in the Zowe CLI and Plug-ins

This release of Zowe CLI contains the following new and improved capabilities:

• Added APIs to allow the definition of workflows
• Added the option max-concurrent-requests to the zowe zos-files upload dir-to-uss

command
• Added the option overwrite to the zowe zos-workflows create commands
• Added the option workflow-name to the zowe zos-workflows commands

https://github.com/zowe/data-sets/issues/88
https://github.com/zowe/data-sets/issues/83
https://github.com/zowe/data-sets/issues/85
https://github.com/zowe/data-sets/issues/84
https://github.com/zowe/data-sets/issues/77

 | Getting Started | 24

• Added the following commands along with their APIs:

• zowe zos-workflows archive active-workflow

• zowe zos-workflows create workflow-from-data-set

• zowe zos-workflows create workflow-from-uss-file

• zowe zos-workflows delete active-workflow

• zowe zos-files list uss-files

This release of the Plug-in for IBM DB2 Database contains the following new and improved capabilities:

• Implemented command line precedence, which lets users issue commands without the need of a DB2 profile.
• The DB2 plug-in can now be influenced by the ZOWE_OPT_ environment variables.

What's new in API Mediation Layer

• Made the following user experience improvements:

• Documented the procedure for changing the log level of individual code components in Troubleshooting API
ML.

• Documented a known issue when the API ML stops accepting connections after z/OS TCP/IP is recycled in
the Troubleshooting API ML.

Version 1.0.1 (March 2019)

Version 1.0.1 contains the following changes since the last version.

What's new in Zowe installation on z/OS

During product operation of the Zowe Cross Memory Server which was introduced in V1.0.0, the z/OSMF user ID
IZUSVR or its equivalent must have UPDATE access to the BPX.SERVER and BPX.DAEMON FACILITY classes.
The install script will do this automatically if the installing user has enough authority, or provide the commands to be
issued manually if not. For more information, see Installing the Zowe Cross Memory Server on z/OS

What's new in the Zowe App Server

• Made the following improvements to security:

• Removed the insecure SHA1 cipher from the Zowe App Server's supported ciphers list.
• Added instructions to REST APIs to not cache potentially sensitive response contents.
• Set secure attributes to desktop and z/OSMF session cookies.

• Fixed a bug that caused the configuration data service to mishandle PUT operations with bodies that were not
JSON.

• Fixed a bug that prevented IFrame applications from being selected by clicking on their contents.
• Fixed various bugs in the File Explorer and updated it to use newer API changes.
• Fixed a bug in which App2App Communication Actions could be duplicated upon logging in a second time on the

same desktop.

What's new in Zowe CLI

• Create and Manage z/OSMF Workflows using the new zos-workflows command group. For more
information, see Zowe CLI command groups.

• Use the @lts-incremental tag when you install and update Zowe CLI core or plug-ins. The tag ensures that
you don't consume breaking changes that affect your existing scripts. Installation procedures are updated to reflect
this change.

• A Zowe CLI quick start on page 26 is now available for users who are familiar with command-line tools and
want to get up and running quickly.

• IBM CICS Plug-in for Zowe CLI was updated to support communication over HTTPS. Users can enable https by
specifying --protocol https when creating a profile or issuing a command. For backwards compatibility,
HTTP remains the default protocol.

 | Getting Started | 25

What's new in the Zowe REST APIs

Introduced new Unix files APIs that reside in the renamed API catalog tile z/OS Datasets and Unix files
service (previously named z/OS Datasets service). You can use these APIs to:

• List the children of a Unix directory
• Get the contents of a Unix file

What's changed

• Zowe explorer apps

• JES Explorer: Enhanced Info/Error messages to better help users diagnose problems.
• MVS Explorer: Fixed an issue where Info/Error messages were not displayed when loading a Dataset/

Members contents.

Version 1.0.0 (February 2019)

Version 1.0.0 contains the following changes since the Open Beta release.

What's new in API Mediation Layer

• HTTPs is now supported on all Java enablers for onboarding API microservices with the API ML.
• SSO authentication using z/OSMF has been implemented for the API Catalog login. Mainframe credentials are

required for access.

What's new in Zowe CLI

• Breaking change to Zowe CLI: The --pass command option is changed to --password for all core Zowe
CLI commands for clarity and to be consistent with plug-ins. If you have zosmf profiles that you created prior to
January 11, 2019, you must recreate them to use the --password option. The aliases --pw and --pass still
function when you issue commands as they did prior to this breaking change. You do not need to modify scripts
that use --pass.

• The @next npm tag used to install Zowe CLI is deprecated. Use the @latest npm tag to install the product
with the online registry method.

What's new in the Zowe Desktop

• You can now obtain information about an application by right-clicking on an application icon and then clicking
Properties.

• To view version information for the desktop, click the avatar in the lower right corner of the desktop.
• Additional information was added for the Workflow application.
• The titlebar of the active window is now colored to give an at-a-glance indication of which window is in the

foreground.
• Window titlebar maximize button now changes style to indicate whether a window is maximized.
• Windows now have a slight border around them to help see boundaries and determine which window is active.
• Multiple instances of the same application can be opened and tracked from the launchbar. To open multiple

instances, right-click and choose Open New. Once multiple instances are open, you can click the application icon
to select which application to bring to the foreground. The number of orbs below the application icon relates to the
number of instances of the application that is open.

• Desktop framework logging trimmed and formalized to the Zowe App Logger. For more information, see https://
github.com/zowe/zlux/wiki/Logging.

• The UriBroker was updated to support dataservice versioning and UNIX file API updates.
• Removed error messages about missing components.js by making this optional component explicitly

declared within an application. By using the property "webContent.hasComponents = true/false".
• Set the maximum username and password length for login to 100 characters each.
• Applications can now list webContent.framework = "angular" as an alias for "angular2".
• Fixed a bug where the desktop might not load on high latency networks.

https://github.com/zowe/zlux/wiki/Logging
https://github.com/zowe/zlux/wiki/Logging

 | Getting Started | 26

What's new in the Zowe App Server

• HTTP support was disabled in favor of HTTPS-only hosting.
• The server can be configured to bind to specific IPs or to hostnames. Previously, the server would listen on all

interfaces. For more information, see https://github.com/zowe/zlux-app-server/pull/30.
• The core logger prefixes for the Zowe App Server were changed from "_unp" to "_zsf".
• Dataservices are now versioned, and dataservices can depend on specific versions of other dataservices. A

plug-in can include more than one version of a dataservice for compatibility. For more information, see https://
github.com/zowe/zlux/wiki/ZLUX-Dataservices.

• Support to communicate with the API Mediation Layer with the use of keys and certificates was added.
• Trimmed and corrected error messages regarding unconfigured proxies for clarity and understanding. For more

information, see https://github.com/zowe/zlux-server-framework/pull/33.
• Fixed the nodeCluster.sh script to have its logging and environment variable behavior consistent with

nodeServer.sh.
• Removed the "swaggerui" plug-in in favor of the API Catalog.
• Bugfix for /plugins API to not show the installation location of the plug-in.
• Bugfix to print a warning if the server finds two plug-ins with the same name.
• Added the ability to conditionally add HTTP headers for secure services to instruct the browser not to cache the

responses. For more information, see https://github.com/zowe/zlux-server-framework/issues/36.
• Added a startup check to confirm that ZSS is running as a prerequisite of the Zowe App Server.
• Bugfix for sending HTTP 404 response when content is missing, instead of a request hanging.
• Added tracing of login, logout, and HTTP routing so that administrators can track access.

What's changed

• Previously, APIs for z/OS Jobs services and z/OS Data Set services are provided unsing an IBM WebSphere
Liberty web application server. In this release, they are provided using a Tomcat web application server. You can
view the associated API documentation corresponding to the z/OS services through the API Catalog.

• References to zlux-example-server were changed to zlux-app-server and references to zlux-
proxy-server were changed to zlux-server-framework.

Known issues

Paste operations from the Zowe Desktop TN3270 and VT Terminal applications

TN3270 App - If you are using Firefox, the option to use Ctrl+V to paste is not available. Instead, press Shift + right-
click to access the paste option through the context menu.

Pressing Ctrl+V will perform paste for the TN3270 App on other browsers.

VT Terminal App - In the VT Terminal App, Ctrl+V will not perform a paste operation for any browser.

Note: In both terminals, press Shift + right-click to access copy and paste options through the context menu.

z/OS Subsystems App - The z/OS Subsystems application is being removed temporarily for the 1.0 release. The
reason is that as the ZSS has transitioned from closed to open source some APIs needed to be re-worked and are not
complete yet. Look for the return of the application in a future update.

Zowe CLI quick start
Get started with Zowe™ CLI quickly and easily.

Note: This section assumes some prerequisite knowledge of command-line tools and writing scripts. If you prefer
more detailed instructions, see Installing Zowe CLI on page 98

• Installing on page 27

• Installing Zowe CLI core on page 27
• Installing CLI plug-ins on page 27

https://github.com/zowe/zlux-app-server/pull/30
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices
https://github.com/zowe/zlux-server-framework/pull/33
https://github.com/zowe/zlux-server-framework/issues/36

 | Getting Started | 27

• Issuing your first commands on page 27

• Listing all data sets under a high-level qualifier (HLQ) on page 27
• Downloading a partitioned data-set (PDS) member to local file on page 27

• Using profiles on page 27

• Profile types on page 28
• Creating a zosmf profile on page 28
• Using a zosmf profile on page 28

• Writing scripts on page 28

• Example: on page 28
• Next Steps on page 28

Installing

Before you install Zowe CLI, download and install Node.js and npm.

Installing Zowe CLI core

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

npm install @brightside/core@lts-incremental -g

Installing CLI plug-ins

zowe plugins install @brightside/cics@lts-incremental @brightside/db2@lts-
incremental

The command installs the IBM CICS plug-in, but the IBM Db2 plug-in requires Installing on page 153.

For more information, see Installing Zowe CLI plug-ins on page 148.

Issuing your first commands

Issue zowe --help to display full command help. Append --help (alias -h) to any command to see available
command actions and options.

To interact with the mainframe, type zowe followed by a command group, action, and object. Use options to specify
your connection details such as password and system name.

Listing all data sets under a high-level qualifier (HLQ)

zowe zos-files list data-set "MY.DATASET.*" --host my.company.com --port 123
 --user myusername123 --pass mypassword123

Downloading a partitioned data-set (PDS) member to local file

zowe zos-files download data-set "MY.DATA.SET(member)" -f "mylocalfile.txt"
 --host my.company.com --port 123 --user myusername123 --pass mypassword123

See Command Groups for a list of available functionality.

Using profiles

Zowe profiles let you store configuration details such as username, password, host, and port for a mainframe
system. Switch between profiles to quickly target different subsystems and avoid typing connection details on every
command.

https://nodejs.org/en/download/

 | Getting Started | 28

Profile types

Most command groups require a zosmf-profile, but some plug-ins add their own profile types. For example,
the CICS plug-in has a cics-profile. The profile type that a command requires is defined in the PROFILE
OPTIONS section of the help response.

Tip: The first zosmf profile that you create becomes your default profile. If you don't specify any options on a
command, the default profile is used. Issue zowe profiles -h to learn about listing profiles and setting defaults.

Creating a zosmf profile

zowe profiles create zosmf-profile myprofile123 --host my.company.com --port
 123 --user myusername123 --password mypassword123

Note: The port defaults to 443 if you omit the --port option. Specify a different port if your host system does not
use port 443.

Using a zosmf profile

zowe zos-files download data-set "MY.DATA.SET(member)" -f "mylocalfile.txt"
 --zosmf-profile myprofile123

For detailed information about issuing commands, using profiles, and storing variables as environment variables, see
Defining Zowe CLI connection details on page 115

Writing scripts

You can write Zowe CLI scripts to streamline your daily development processes or conduct mainframe actions from
an off-platform automation tool such as Jenkins or TravisCI.

Example:

You want to delete a list of temporary datasets. Use Zowe CLI to download the list, loop through the list, and delete
each data set using the zowe zos-files delete command.

#!/bin/bash

set -e

Obtain the list of temporary project data sets
dslist=$(zowe zos-files list dataset "my.project.ds*")

Delete each data set in the list
IFS=$'\n'
for ds in $dslist
do
 echo "Deleting Temporary Project Dataset: $ds"
 zowe files delete ds "$ds" -f
done

For more information, see Writing scripts to automate mainframe actions.

Next Steps

You successfully installed Zowe CLI, issued your first commands, and wrote a simple script! Next, you might want
to:

• Review Command Groups to learn what functionality is available, and explore the in-product help.
• Learn about Defining Environment Variables on page 117 to store configuration options.
• Integrate your scripts with an automation server like Jenkins.
• See what Extending Zowe CLI on page 148 for the CLI.

 | Getting Started | 29

• Learn about Developing a new plug-in on page 213 (contributing to core and developing plug-ins).

Frequently Asked Questions
Check out the following FAQs to learn more about the purpose and function of Zowe™.

• Zowe FAQ on page 29
• Zowe CLI FAQ on page 30

Zowe FAQ

What is Zowe?
Click to show answer

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation. The Zowe
project provides modern software interfaces on IBM z/OS to address the needs of a variety of modern users. These
interfaces include a new web graphical user interface, a script-able command-line interface, extensions to existing
REST APIs, and new REST APIs on z/OS.

Who is the target audience for using Zowe?
Click to show answer

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target audience is primarily
application developers and system programmers, but the Zowe Application Framework is the basis for developing
web browser interactions with z/OS that can be used by anyone.

What language is Zowe written in?
Click to show answer

Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI is written in
TypeScript.

What is the licensing for Zowe?
Click to show answer

Zowe source code is licensed under EPL2.0. For license text click here and for additional information click here.

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source code and you
distribute that code or binaries built from that code outside your company, you must make the source code available
under the EPL-2.0."

Why is Zowe licensed using EPL2.0?
Click to show answer

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community share new
source code across the Zowe ecosystem. The open source code can be used by anyone, provided that they adhere to
the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products and
applications?
Click to show answer

The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical dashboards
that monitor data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or for writing
complex scripts for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to interact with z/
OS services.

https://www.openmainframeproject.org/
https://www.linuxfoundation.org
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

 | Getting Started | 30

What is the best way to get started with Zowe?
Click to show answer

Zowe provides a convenience build that includes the components released-to-date, as well as IP being considered for
contribution, in an easy to install package on Zowe.org. The convenience build can be easily installed and the Zowe
capabilities seen in action.

To install the complete Zowe solution, see Planning the installation on page 34.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start on page 26.

What are the prerequisites for Zowe?
Click to show answer

The primary prerequisites is Java on z/OS and the z/OS Management Facility enabled and configured. For a complete
list of software requirements listed by component, see System requirements on page 35.

How is access security managed on z/OS?
Click to show answer

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?
Click to show answer

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has read access.
"Committers" on the project have authority to alter the source code to make fixes or enhancements. A list of
Committers is documented in Committers to the Zowe project.

How do I get involved in the open source development?
Click to show answer

The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin learning about the
current capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the Zowe
Community GitHub repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Onboarding Overview on
page 158 on Zowe Docs.

When will Zowe be completed?
Click to show answer

Zowe will continue to evolve in the coming years based on new ideas and new contributions from a growing
community.

Can I try Zowe without a z/OS instance?
Click to show answer

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about adding new
applications to the Zowe Desktop and and how to enable communication with other Zowe components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build and sandbox
environment.

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see Configuring z/
OSMF Lite (for non-production use) on page 40 on Zowe Docs.

Zowe CLI FAQ

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?
Click to show answer

https://zowe.org
https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://github.com/zowe/community/blob/master/README.md
https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/

 | Getting Started | 31

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF interface. Zowe
CLI lets developers be productive from day-one by using familiar tools. Zowe CLI also lets developers write scripts
that automate a sequence of mainframe actions. The scripts can then be executed from off-platform automation tools
such as Jenkins automation server, or manually during development.

With what tools is Zowe CLI compatible?
Click to show answer

Zowe CLI is very flexible; developers can integrate with modern tools that work best for them. It can work in
conjunction with popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe CLI runs on a variety
of operating systems, including Windows, macOS, and Linux. Zowe CLI scripts can be abstracted into automation
tools such as Jenkins and TravisCI.

Where can I use the CLI?
Click to show answer

Usage Scenario Example

Interactive use, in a command prompt or bash terminal. Perform one-off tasks such as submitting a batch job.

Interactive use, in an IDE terminal Download a data set, make local changes in your editor,
then upload the changed dataset back to the mainframe.

Scripting, to simplify repetitive tasks Write a shell script that submits a job, waits for the job to
complete, then returns the output.

Scripting, for use in automated pipelines Add a script to your Jenkins (or other automation
tool) pipeline to move artifacts from a mainframe
development system to a test system.

Which method should I use to install Zowe CLI?
Click to show answer

You can install Zowe CLI using the following methods:

• Local package installation: The local package method lets you install Zowe CLI from a zipped file that contains
the core application and all plug-ins. When you use the local package method, you can install Zowe CLI in an
offline environment. We recommend that you download the package and distribute it internally if your site does
not have internet access.

• Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the files that
are necessary to install Zowe CLI using the command line. When you use the online registry method, you need an
internet connection to install Zowe CLI

How can I get help with using Zowe CLI?
Click to show answer

• You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --help'.
• For information about the available commands in Zowe CLI, see Command Groups.
• If you have questions, the Zowe Slack space is the place to ask our community!

How can I use Zowe CLI to automate mainframe actions?
Click to show answer

• You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run your scripts in
an automation server such as Jenkins. For example, you might write a script that moves your Cobol code to a
mainframe test system before another script runs the automated tests.

• Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with mainframe
systems and source control management, all of which can help you develop robust continuous integration/
delivery.

https://openmainframeproject.slack.com/

How can I contribute to Zowe CLI?
Click to show answer

As a developer, you can extend Zowe CLI in the following ways:

• Build a plug-in for Zowe CLI
• Contribute code to the core Zowe CLI
• Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise your ideas with

the community in Slack.

Note: For more information, see How can I contribute? on page 206.

Chapter

2
User Guide

Topics:

• Installing Zowe
• Configuring Zowe
• Using Zowe
• Zowe CLI extensions and plug-

ins

 | User Guide | 34

Installing Zowe

Planning the installation

The installation of Zowe™ consists of two independent processes: installing Zowe runtime on z/OS and installing
Zowe CLI on your computer.

When you install Zowe runtime on z/OS, there are two parts:

• The first part is to install the Zowe Application Framework, the API Mediation Layer, and a number of micro
services that provide capability to both.

• The second part is to install the Zowe Cross Memory Server. This is an authorized server application that provides
privileged services to Zowe in a secure manner.

The Zowe CLI is not installed on z/OS and runs on a personal computer. The following diagram shows the
installation location of Zowe components.

Installation roadmap

Installing Zowe involves several steps that you must complete in the order listed. Review the following table that
presents the task-flow for preparing your environment and installing and configuring Zowe before you begin the
installation process.

1. Review the pre-installation planning information and prepare your environment to meet the installation
prerequisites. | See Planning the installation of Zowe z/OS components and System requirements on page 35.

2. Allocate enough space for the installation. | The installation process requires approximately 1 GB of available
space. After you install Zowe on z/OS, API Mediation Layer requires approximately 150MB of space, and the
Zowe Application Framework requires approximately 50 MB of space before configuration. Zowe CLI requires
approximately 200 MB of space on your computer.

3. Install components of Zowe. | To install Zowe on z/OS, see Installing Zowe on z/OS on page 57. To install
Zowe CLI on a computer, see Installing Zowe CLI on page 98.

4. (Optional) Troubleshoot problems that occur during installation. | See Troubleshooting on page 278.

To uninstall Zowe, see Uninstalling Zowe on page 101.

Planning the installation of Zowe z/OS components

The following information is required during the installation process of API Mediation Layer and Zowe Application
Framework. Make the decisions before the installation.

• The HFS directory where you install Zowe.
• The HFS directory that contains a 64-bit Java™ 8 JRE.
• The z/OSMF installation directory, for example, /usr/lpp/zosmf/lib.
• The API Mediation Layer HTTP and HTTPS port numbers. You will be asked for 3 unique port numbers.

 | User Guide | 35

• The user ID that runs the Zowe started task.

Tip: Use the same user ID that runs the z/OSMF IZUSVR1 task, or a user ID with equivalent authorizations.
• The mainframe account under which the ZSS server runs must have UPDATE permission on the BPX.DAEMON

and BPX.SERVER facility class profiles.

System requirements

Before installing Zowe™, ensure that your environment meets the prerequisites.

• Common system requirements on page 35
• Zowe Application Framework requirements on page 35
• Zowe CLI requirements on page 35

Common system requirements

• z/OS Version 2.2 or later.
• IBM z/OS Management Facility (z/OSMF) Version 2.2 or Version 2.3

z/OSMF is a prerequisite for the Zowe microservices, Zowe Desktop applications, and Zowe CLI. z/OSMF must
be installed and running before you use Zowe.

::: tip

• For non-production use of Zowe (such as development, proof-of-concept, demo), you can customize the
configuration of z/OSMF to create what is known as "z/OS MF Lite" that simplifies the setup of z/OSMF. As
z/OS MF Lite only supports selected REST services (JES, DataSet/File, TSO and Workflow), you will observe
considerable improvements in start up time as well as a reduction in the efforts involved in setting up z/OSMF.
For information about how to set up z/OSMF Lite, see Configuring z/OSMF Lite (for non-production use) on
page 40

• For production use of Zowe, see Configuring z/OSMF on page 37. :::

Zowe Application Framework requirements

• Node.js version 6.14.4.1 or later on the z/OS host where you install the Zowe Application Server. To install
Node.js on z/OS, follow the instructions in Installing Node.js on z/OS on page 36.

• IBM SDK for Java Technology Edition V8 or later
• 833 MB of HFS file space
• Supported browsers:

• Google Chrome V66 or later
• Mozilla Firefox V60 or later
• Safari V12.0 or later
• Microsoft Edge 17 (Windows 10)

Zowe CLI requirements

Zowe CLI is supported on platforms where Node.js 8.0 or 10 is available, including Windows, Linux, and Mac
operating systems.

• Node.js V8.0 or later on your computer

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed. As a best practice, we recommend that you update Node.js regularly
to the latest Long Term Support (LTS) version.

• Node Package Manager V5.0 or later on your computer.

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

https://nodejs.org/en/download/

 | User Guide | 36

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space consumed might
vary depending on the operating system where you install Zowe CLI.

Installing Node.js on z/OS

Before you install Zowe™, you must install IBM SDK for Node.js on the same z/OS server that hosts the Zowe
Application Server. To install Node.js for Zowe, you can follow the steps in this topic or in the IBM SDK for Node.js
- z/OS documentation.

Note: If you follow the steps in the Node.js documentation to install Node.js, you do NOT need to install Python,
Make, Perl, or C/C++ runtime or compiler, which might be listed as prerequisites there. These software packages are
NOT required by Zowe. If you can execute node --version successfully, you have installed the prerequisites
required by Zowe.

How to obtain IBM SDK for Node.js - z/OS

You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

• Order the SMP/E version through your IBM representative for production use
• Use the pax evaluation for non-production deployments

For details, see the blog "How to obtain IBM SDK for Node.js - z/OS, at no charge".

Known issue: There is a known issue with node v8.16.1 and Zowe desktop encoding. See https://github.com/
ibmruntimes/node/issues/142 for details.

Workaround: Use node v8.16.0 which is available at https://www.ibm.com/ca-en/marketplace/sdk-nodejs-compiler-
zos. Download the ibm-trial-node-v8.16.0-os390-s390x.pax.Z file.

Hardware and software requirements

To install Node.js for Zowe, the following requirements muts be met.

Hardware:

IBM zEnterprise® 196 (z196) or newer

Software:

• Node.js version 6 (see IBM Knowledge Center for all prerequisites):

• z/OS V2R2 with PTF UI46658 or z/OS V2R3
• Node.js v8 (see IBM Knowledge Center for all prerequisites):

• z/OS 2.2: PTFs UI62788, UI46658, UI62416 (APARs PH10606, PI79959, PH10740)
• z/OS 2.3: PTFs UI61308, UI61376 and UI61747 (APARs PH07107, PH08353 and PH09543)

• z/OS UNIX System Services enabled
• Integrated Cryptographic Service Facility (ICSF) configured and started.

Installing the PAX evaluation version of Node.js -z/OS

Follow these steps to installing the PAX evaluation version of Node.js - z/OS to run Zowe.

1. Download the pax.Z file from the Download section to a z/OS machine.
2. Extract the pax.Z file inside an installation directory of your choice. For example:

pax -rf <path_to_pax.Z_file> -x pax

3. Add the full path of your installation directory to your PATH environment variable:

export PATH=<installation_directory>/bin/:$PATH

https://developer.ibm.com/mainframe/2019/04/17/ibm-sdk-for-node-js-z-os-at-no-charge/
https://github.com/ibmruntimes/node/issues/142
https://github.com/ibmruntimes/node/issues/142
https://www.ibm.com/ca-en/marketplace/sdk-nodejs-compiler-zos
https://www.ibm.com/ca-en/marketplace/sdk-nodejs-compiler-zos
https://www.ibm.com/support/knowledgecenter/SSTRRS_6.0.0/com.ibm.nodejs.zos.v6.doc/plan.htm
https://www.ibm.com/support/knowledgecenter/SSTRRS_8.0.0/com.ibm.nodejs.zos.v8.doc/smpe.htm
https://developer.ibm.com/node/sdk/ztp/#downloads-ztp

 | User Guide | 37

4. Run the following command from the command line to verify the installation.

node --version

If Node.js is installed correctly, the version of Node.js is displayed.
5. After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is installed.

For example, NODE_HOME=/proj/mvd/node/installs/node-v6.14.4-os390-s390x.

To troubleshoot or install the SMP/E version of Node.js, see the documentation for IBM SDK for Node.js - z/
OS. Remember that the software packages Perl, Ptyhon, Make, or C/C++ runtime or compiler that the Node.js
documentation might mention are NOT needed by Zowe.

Configuring z/OSMF

The following information contains procedures and tips for meeting z/OSMF requirements. For complete information,
go to IBM Knowledge Center and read the following documents.

• IBM z/OS Management Facility Configuration Guide
• IBM z/OS Management Facility Help

z/OS requirements

Ensure that the z/OS system meets the following requirements:

Requirements Description Resources in IBM Knowledge
Center

Integrated Cryptographic Service
Facility (ICSF)

On z/OS, Node requires ICSF to be
installed, configured and started.

N/A

AXR (System REXX) z/OS uses AXR (System REXX)
component to perform Incident
Log tasks. The component enables
REXX executable files to run outside
of conventional TSO and batch
environments.

System REXX

Common Event Adapter (CEA)
server

The CEA server, which is a co-
requisite of the Common Information
Model (CIM) server, enables the
ability for z/OSMF to deliver z/OS
events to C-language clients.

Customizing for CEA

Common Information Model (CIM)
server

z/OSMF uses the CIM server to
perform capacity-provisioning and
workload-management tasks. Start
the CIM server before you start z/
OSMF (the IZU* started tasks).

Reviewing your CIM server setup

CONSOLE and CONSPROF
commands

The CONSOLE and CONSPROF
commands must exist in the
authorized command table.

Customizing the CONSOLE and
CONSPROF commands

Java level IBM® 64-bit SDK for z/OS®, Java
Technology Edition V8 or later is
required.

Software prerequisites for z/OSMF

https://www.ibm.com/support/knowledgecenter/SSTRRS_8.0.0/com.ibm.nodejs.zos.v8.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/SSTRRS_8.0.0/com.ibm.nodejs.zos.v8.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

 | User Guide | 38

Requirements Description Resources in IBM Knowledge
Center

TSO region size To prevent exceeds maximum
region size errors, verify that the
TSO maximum region size is a
minimum of 65536 KB for the z/OS
system.

N/A

User IDs User IDs require a TSO segment
(access) and an OMVS segment.
During workflow processing and
REST API requests, z/OSMF might
start one or more TSO address spaces
under the following job names:
userid; substr(userid, 1, 6) CN
(Console).

N/A

Configuring z/OSMF

Follow these steps:

1. From the console, issue the following command to verify the version of z/OS:

/D IPLINFO

Part of the output contains the release, for example,

RELEASE z/OS 02.02.00.

2. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured and
running on every z/OS V2.2 and V2.3 system.

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS, and then start
the z/OSMF server. The z/OSMF configuration process occurs in three stages, and in the following order:

• Stage 1 - Security setup
• Stage 2 - Configuration
• Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure z/
OSMF, see Configuring z/OSMF if you use z/OS V2.2 or Setting up z/OSMF for the first time if V2.3.

Note: In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL). Therefore, z/
OSMF is available for use as soon as you set up the system. If you prefer not to start z/OSMF automatically, disable
the autostart function by checking for START commands for the z/OSMF started procedures in the COMMNDxx
parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator console
such as Zowe™ CLI's RestConsoles API require Version 2.3.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

 | User Guide | 39

1. Verify that the z/OSMF server and angel processes are running. From the command line, issue the following
command:

/D A,IZU*

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

/S IZUANG1

After you see the message ""CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL"", issue the
following command to start the server:

/S IZUSVR1

The server might take a few minutes to initialize. The z/OSMF server is available when the message
""CWWKF0011I: The server zosmfServer is ready to run a smarter planet."" is displayed.

2. Issue the following command to find the startup messages in the SDSF log of the z/OSMF server:

f IZUG349I

You could see a message similar to the following message, which indicates the port number:

IZUG349I: The z/OSMF STANDALONE Server home page can be accessed at
 https://mvs.hursley.ibm.com:443/zosmf after the z/OSMF server is started
 on your system.

In this example, the port number is 443. You will need this port number later.

Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its Welcome
Page where you can log in.

Note: If your implementation uses an external security manager other than RACF (for example, CA Top Secret for z/
OS or CA ACF2 for z/OS), you provide equivalent commands for your environment. For more information, see the
following product documentation:

• Configure z/OS Management Facility for CA Top Secret
• Configure z/OS Management Facility for CA ACF2

z/OSMF REST services for the Zowe CLI

The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and extract
system data. Ensure that the following REST services are configured and available.

z/OSMF REST services Requirements Resources in IBM knowledge
Center

Cloud provisioning services Cloud provisioning services
are required for the Zowe CLI
CICS and Db2 command groups.
Endpoints begin with /zosmf/
provisioning/

Cloud provisioning services

TSO/E address space services TSO/E address space services are
required to issue TSO commands in
the Zowe CLI. Endpoints begin with
/zosmf/tsoApp

TSO/E address space services

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing-and-implementing/configure-z-os-management-facility-for-ca-acf2.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm

 | User Guide | 40

z/OSMF REST services Requirements Resources in IBM knowledge
Center

z/OS console services z/OS console services are required to
issue console commands in the Zowe
CLI. Endpoints begin with /zosmf/
restconsoles/

z/OS console

z/OS data set and file REST interface z/OS data set and file REST interface
is required to work with mainframe
data sets and UNIX System Services
files in the Zowe CLI. Endpoints
begin with /zosmf/restfiles/

z/OS data set and file interface

z/OS jobs REST interface z/OS jobs REST interface is required
to use the zos-jobs command group
in the Zowe CLI. Endpoints begin
with /zosmf/restjobs/

z/OS jobs interface

z/OSMF workflow services z/OSMF workflow services is
required to create and manage z/
OSMF workflows on a z/OS system.
Endpoints begin with /zosmf/
workflow/

z/OSMF workflow services

Zowe uses symbolic links to the z/OSMF bootstrap.properties,
jvm.security.override.properties, and ltpa.keys files. Zowe reuses SAF, SSL, and LTPA
configurations; therefore, they must be valid and complete.

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint into
your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Notes:

• Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user
credentials.

• The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw JSON format.

Configuring z/OSMF Lite (for non-production use)

This section provides information about requirements for z/OSMF Lite configuration.

Disclaimer: z/OSMF Lite can be used in a non-production environment such as development, proof-of-concept,
demo and so on. It is not for use in a production environment. To use z/OSMF in a production environment, see
Configuring z/OSMF on page 37.

1. Introduction on page 41
2. Assumptions on page 41
3. Software Requirements on page 42

a. Minimum Java level on page 42
b. WebSphere® Liberty profile (z/OSMF V2R3 and later)
c. System settings on page 42
d. Web browser on page 42

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm

 | User Guide | 41

4. Creating a z/OSMF nucleus on your system

a. Running job IZUNUSEC to create security on page 43
b. Running job IZUMKFS to create the z/OSMF user file system
c. Copying the IBM procedures into JES PROCLIB on page 46
d. Starting the z/OSMF server
e. Accessing the z/OSMF Welcome page
f. Mounting the z/OSMF user file system at IPL time

5. Adding the required REST services on page 50

a. Enabling the z/OSMF JOB REST services
b. Enabling the TSO REST services on page 51
c. Enabling the z/OSMF data set and file REST services
d. Enabling the z/OSMF Workflow REST services and Workflows task UI

6. Troubleshooting problems on page 54

a. Common problems and scenarios on page 54
b. Tools and techniques for troubleshooting on page 54

• Appendix A. Creating an IZUPRMxx parmlib member on page 54
• Appendix B. Modifying IZUSVR1 settings on page 56
• Appendix C. Adding more users to z/OSMF

Introduction

IBM® z/OS® Management Facility (z/OSMF) provides extensive system management functions in a task-oriented,
web browser-based user interface with integrated user assistance, so that you can more easily manage the day-to-day
operations and administration of your mainframe z/OS systems.

By following the steps in this guide, you can quickly enable z/OSMF on your z/OS system. This simplified approach
to set-up, known as "z/OSMF Lite", requires only a minimal amount of z/OS customization, but provides the key
functions that are required by many exploiters, such as the open mainframe project (Zowe™).

A z/OSMF Lite configuration is applicable to any future expansions you make to z/OSMF, such as adding more
optional services and plug-ins.

It takes 2-3 hours to set up z/OSMF Lite. Some steps might require the assistance of your security administrator.

For detailed information about various aspects of z/OSMF configuration such as enabling the optional plug-ins and
services, see the IBM publication z/OSMF Configuration Guide.

Assumptions

This document is intended for a first time z/OSMF setup. If z/OSMF is already configured on your system, you do not
need to create a z/OSMF Lite configuration.

This document is designed for use with a single z/OS system, not a z/OS sysplex. If you plan to run z/OSMF in a
sysplex, see z/OSMF Configuration Guide for multi-system considerations.

It is assumed that a basic level of security for z/OSMF is sufficient on the z/OS system. IBM provides a program,
IZUNUSEC, to help you set up basic security for a z/OSMF Lite configuration.

System defaults are used for the z/OSMF environmental settings. Wherever possible, it is recommended that you
use the default values. If necessary, however, you can override the defaults by supplying an IZUPRMxx member, as
described in Appendix A. Creating an IZUPRMxx parmlib member on page 54.

It is recommended that you use the following procedures as provided by IBM:

• Started procedures IZUSVR1 and IZUANG1
• Logon procedure IZUFPROC

Information about installing these procedures is provided in Copying the IBM procedures into JES PROCLIB on page
46.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

 | User Guide | 42

Software Requirements

Setting up z/OSMF Lite requires that you have access to a z/OS V2R2 system or later. Also, your z/OS system must
meet the following minimum software requirements:

• Minimum Java level on page 42
• WebSphere® Liberty profile (z/OSMF V2R3 and later)
• System settings on page 42
• Web browser on page 42

Minimum Java level

Java™ must be installed and operational on your z/OS system, at the required minimum level. See the table that
follows for the minimum level and default location. If you installed Java in another location, you must specify the
JAVA_HOME statement in your IZUPRMxx parmlib member, as described in Appendix A. Creating an IZUPRMxx
parmlib member on page 54.

z/OS Version Minimum level of Java™ Recommended level of
Java

Default location

z/OS V2R2 IBM® 64-bit SDK for z/
OS®, Java Technology
Edition V7.1 (SR3),
with the PTFs for APAR
PI71018 and APAR
PI71019 applied OR IBM®

64-bit SDK for z/OS®, Java
Technology Edition V8,
with the PTF for APAR
PI72601 applied.

IBM® 64-bit SDK for z/
OS®, Java™ Technology
Edition, V8 SR6 (5655-
DGH)

/usr/lpp/java/
J7.1_64

z/OS V2R3 IBM® 64-bit SDK for z/
OS®, Java™ Technology
Edition, V8 SR4 FP10
(5655-DGH)

IBM® 64-bit SDK for z/
OS®, Java™ Technology
Edition, V8 SR6 (5655-
DGH)

/usr/lpp/java/
J8.0_64

WebSphere® Liberty profile (z/OSMF V2R3 and later)

z/OSMF V2R3 uses the Liberty Profile that is supplied with z/OS, rather than its own copy of Liberty. The
WebSphere Liberty profile must be mounted on your z/OS system. The default mount point is: /usr/lpp/
liberty_zos. To determine whether WebSphere® Liberty profile is mounted, check for the existence of the mount
point directory on your z/OS system.

If WebSphere® Liberty profile is mounted at a non-default location, you need to specify the location in the IZUSVR1
started procedure on the keyword WLPDIR=. For details, see Appendix B. Modifying IZUSVR1 settings on page
56.

Note: Whenever you apply PTFs for z/OSMF, you might be prompted to install outstanding WebSphere Liberty
service. It is recommended that you do so to maintain z/OSMF functionality.

System settings

Ensure that the z/OS host system meets the following requirements:

• Port 443 (default port) is available for use.
• The system host name is unique and maps to the system on which z/OSMF Lite will be configured.

Otherwise, you might encounter errors later in the process. If you encounter errors, see Troubleshooting problems on
page 54 for the corrective actions to take.

Web browser

For the best results with z/OSMF, use one of the following web browsers on your workstation:

 | User Guide | 43

• Microsoft Internet Explorer Version 11 or later
• Microsoft Edge (Windows 10)
• Mozilla Firefox ESR Version 52 or later.

To check your web browser's level, click About in the web browser.

Creating a z/OSMF nucleus on your system

The following system changes are described in this chapter:

• Running job IZUNUSEC to create security on page 43
• Running job IZUMKFS to create the z/OSMF user file system
• Copying the IBM procedures into JES PROCLIB on page 46
• Starting the z/OSMF server
• Accessing the z/OSMF Welcome page
• Mounting the z/OSMF user file system at IPL time

The following sample jobs that you might use are included in the package and available for download:

• IZUAUTH
• IZUICSEC
• IZUNUSEC_V2R2
• IZUNUSEC_V2R3
• IZUPRM00
• IZURFSEC
• IZUTSSEC
• IZUWFSEC

Download sample jobs

Check out the video for a demo of the process:

Running job IZUNUSEC to create security

The security job IZUNUSEC contains a minimal set of RACF® commands for creating security profiles for the
z/OSMF nucleus. The profiles are used to protect the resources that are used by the z/OSMF server, and to grant
users access to the z/OSMF core functions. IZUNUSEC is a simplified version of the sample job IZUSEC, which is
intended for a more complete installation of z/OSMF.

Note: If your implementation uses an external security manager other than RACF (for example, CA Top Secret
or CA ACF2), provide equivalent commands for your environment. For more information, see the following CA
Technologies product documentation:

• Configure z/OS Management Facility for CA Top Secret
• Configure z/OS Management Facility for CA ACF2

Before you begin

In most cases, you can run the IZUNUSEC security job without modification. To verify that the job is okay to run
as is, ask your security administrator to review the job and modify it as necessary for your security environment. If
security is not a concern for the host system, you can run the job without modification.

Procedure

1. If you run z/OS V2R2 or V2R3, download job IZUNUSEC in the sample jobs package and upload this job to z/
OS. If you run z/OS V2R4, locate job IZUNUSEC at SYS1.SAMPLIB.

2. Review and edit the job, if necessary.
3. Submit IZUNUSEC as a batch job on your z/OS system.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://docops.ca.com/ca-acf2-for-z-os/16-0/en/installing-and-implementing/configure-z-os-management-facility-for-ca-acf2
d2968b60be585e9b694a81b6b7bb1477ea1369d4.zip

 | User Guide | 44

4. Connect your user ID to IZUADMIN group.

a. Download job IZUAUTH in the sample jobs package and customize it.
b. Replace the 'userid' with your z/OSMF user ID.
c. Submit the job on your z/OS system.

Results

Ensure the IZUNUSEC job completes with return code 0000.

To verify, check the results of the job execution in the job log. For example, you can use SDSF to examine the job
log:

1. In the SDSF primary option menu, select Option ST.
2. On the SDSF Status Display, enter S next to the job that you submitted.
3. Check the return code of the job. The job succeeds if '0000' is returned.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

Message IKJ56702I: INVALID data
is issued

The job is submitted more than once. You can ignore this message.

Job fails with an authorization error. Your user ID lacks superuser
authority.

Contact your security admin to
run IZUNUSEC. If you are using
RACF®, select a user ID with
SPECIAL attribute which can issue
all RACF® commands.

Job fails with an authorization error. Your installation uses the RACF
PROTECT-ALL option.

See Troubleshooting problems on
page 54.

ADDGROUP and ADDUSER
commands are not executed.

The automatic GID and UID
assignment is required.

Define SHARED.IDS and
BPX.NEXT.USER profiles to
enable the use of AUTOUID and
AUTOGID.

Running job IZUMKFS to create the z/OSMF user file system

The job IZUMKFS initializes the z/OSMF user file system, which contains configuration settings and persistence
information for z/OSMF.

The job mounts the file system. On a z/OS V2R3 system with the PTF for APAR PI92211 installed, the job uses
mount point /global/zosmf. Otherwise, for an earlier system, the job mounts the file system at mount point /
var/zosmf.

Before you begin

To perform this step, you need a user ID with "superuser" authority on the z/OS host system. For more information
about how to define a user with superuser authority, see the publication z/OS UNIX System Services.

Procedure

1. In the system library SYS1.SAMPLIB, locate job IZUMKFS.
2. Copy the job.
3. Review and edit the job:

• Modify the job information so that the job can run on your system.
• You must specify a volume serial (VOLSER) to be used for allocating a data set for the z/OSMF data

directory.
4. Submit IZUMKFS as a batch job on your z/OS system.

d2968b60be585e9b694a81b6b7bb1477ea1369d4.zip
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

 | User Guide | 45

Results

The z/OSMF file system is allocated, formatted, and mounted, and the necessary directories are created.

To verify if the file system is allocated, formatted, locate the following messages in IZUMKFS job output.

IDC0002I IDCAMS PROCESSING COMPLETE. MAX CONDITION CODE WAS 0.

IOEZ00077I HFS-compatibility aggregate izu.sizuusrd has been successfully
 created.

Sample output:

 | User Guide | 46

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Job fails with FSM error. Your user ID lacks superuser
authority.

For more information about how
to define a user with superuser
authority, see the publication z/OS
UNIX System Services.

Job fails with an authorization error. Job statement errors. See Troubleshooting problems on
page 54.

Copying the IBM procedures into JES PROCLIB

Copy the z/OSMF started procedures and logon procedure from SYS1.PROCLIB into your JES concatenation. Use
$D PROCLIB command to display your JES2 PROCLIB definitions.

Before you begin

Locate the IBM procedures. IBM supplies procedures for z/OSMF in your z/OS order:

• ServerPac and CustomPac orders: IBM supplies the z/OSMF procedures in the SMP/E managed proclib data set.
In ServerPac and SystemPac, the default name for the data set is SYS1.IBM.PROCLIB.

• CBPDO orders: For a CBPDO order, the SMP/E-managed proclib data set is named as SYS1.PROCLIB.
• Application Development CD.

Procedure

Use ISPF option 3.3 or 3.4 to copy the procedures from SYS1.PROCLIB into your JES concatenation.

• IZUSVR1
• IZUANG1
• IZUFPROC

Results

The procedures now reside in your JES PROCLIB.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

 | User Guide | 47

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Not authorized to copy into
PROCLIB.

Your user ID doesn't have the
permission to modify PROCLIB.

Contact your security administrator.

Abend code B37 or E37. The data set runs out of space. Use IEBCOPY utility to compress
PROCLIB dataset before you copy it.

Starting the z/OSMF server

z/OSMF processing is managed through the z/OSMF server, which runs as the started tasks IZUANG1 and
IZUSVR1. z/OSMF is started with the START command.

Before you begin

Ensure that you have access to the operations console and can enter the START command.

Procedure

In the operations console, enter the START commands sequentially:

S IZUANG1

S IZUSVR1

Note: The z/OSMF angel (IZUANG1) must be started before the z/OSMF server (IZUSVR1).

You must enter these commands manually at subsequent IPLs. If necessary, you can stop z/OSMF processing by
entering the STOP command for each of the started tasks IZUANG1 and IZUSVR1.

Note: z/OSMF offers an autostart function, which you can configure to have the z/OSMF server started automatically.
For more information about the autostart capability, see z/OSMF Configuration Guide.

Results

When the z/OSMF server is initialized, you can see the following messages displayed in the operations console:

CWWKB0069I: INITIALIZATION IS COMPLETE FOR THE IZUANG1 ANGEL PROCESS.

IZUG400I: The z/OSMF Web application services are initialized.

CWWKF0011I: The server zosmfServer is ready to run a smarter planet.

Accessing the z/OSMF Welcome page

At the end of the z/OSMF configuration process, you can verify the results of your work by opening a web browser to
the Welcome page.

Before you begin

To find the URL of the Welcome page, look for message IZUG349I in the z/OSMF server job log.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

 | User Guide | 48

Procedure

1. Open a web browser to the z/OSMF Welcome page. The URL for the Welcome page has the following format:
https://hostname:port/zosmf/

Where:

• hostname is the host name or IP address of the system in which z/OSMF is installed.
• port is the secure port for the z/OSMF configuration. If you specified a secure port for SSL encrypted traffic

during the configuration process through parmlib statement HTTP_SSL_PORT, port is required to log in.
Otherwise, it is assumed that you use the default port 443.

2. In the z/OS USER ID field on the Welcome page, enter the z/OS user ID that you use to configure z/OSMF.
3. In the z/OS PASSWORD field, enter the password or pass phrase that is associated with the z/OS user ID.
4. Select the style of UI for z/OSMF. To use the desktop interface, select this option. Otherwise, leave this option

unselected to use the tree view UI.
5. Click Log In.

Results

If the user ID and password or pass phrase are valid, you are authenticated to z/OSMF. The Welcome page of IBM
z/OS Management Facility tab opens in the main area. At the top right of the screen, Welcome <your_user_ID> is
displayed. In the UI, only the options you are allowed to use are displayed.

 | User Guide | 49

You have successfully configured the z/OSMF nucleus.

Common errors

The following errors might occur during this step:

Symptom Cause Resolution

z/OSMF welcome page does not load
in your web browser.

The SSL handshake was not
successful. This problem can be
related to the browser certificate.

See Certificate error in the Mozilla
Firefox browser.

To log into z/OSMF, enter a valid
z/OS user ID and password. Your
account might be locked after too
many incorrect log-in attempts.

The user ID is not connected to the
IZUADMIN group.

Connect your user ID to the
IZUADMIN group.

To log into z/OSMF, enter a valid
z/OS user ID and password. Your
account might be locked after too
many incorrect log-in attempts.

The password is expired. Log on to TSO using your z/OS
User ID and password, you will be
asked to change your password if it's
expired.

Mounting the z/OSMF user file system at IPL time

Previously, in Running job IZUMKFS to create the z/OSMF user file system, you ran job IZUMKFS to create
and mount the z/OSMF user file system. Now you should ensure that the z/OSMF user file system is mounted
automatically for subsequent IPLs. To do so, update the BPXPRMxx parmlib member on your z/OS system.

Before you begin

By default, the z/OSMF file system uses the name IZU.SIZUUSRD, and is mounted in read/write mode. It is
recommended that this file system is mounted automatically at IPL time.

If you do not know which BPXPRMxx member is active, follow these steps to find out:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm

 | User Guide | 50

1. In the operations console, enter the following command to see which parmlib members are included in the parmlib
concatenation on your system:

D PARMLIB

2. Make a note of the BPXPRMxx member suffixes that you see.
3. To determine which BPXPRMxx member takes precedence, enter the following command:

D OMVS

The output of this command should be similar to the following:

BPXO042I 04.01.03 DISPLAY OMVS 391

OMVS 000F ACTIVE OMVS=(ST,3T)

In this example, the member BPXPRMST takes precedence. If BPXPRMST is not present in the concatenation,
member BPXPRM3T is used.

Procedure

Add a MOUNT command for the z/OSMF user file system to your currently active BPXPRMxx parmlib member. For
example:

On a z/OS V2R3 system with the PTF for APAR PI92211 installed:

MOUNT FILESYSTEM('IZU.SIZUUSRD') TYPE(ZFS) MODE(RDWR)

MOUNTPOINT('/global/zosmf') PARM('AGGRGROW') UNMOUNT

On a z/OS V2R2 or V2R3 system without PTF for APAR PI92211 installed:

MOUNT FILESYSTEM('IZU.SIZUUSRD') TYPE(ZFS) MODE(RDWR)

MOUNTPOINT('/var/zosmf') PARM('AGGRGROW') UNMOUNT

Results

The BPXPRMxx member is updated. At the next system IPL, the following message is issued to indicate that the z/
OSMF file system is mounted automatically.

BPXF013I FILE SYSTEM IZU.SIZUUSRD WAS SUCCESSFULLY MOUNTED.

Adding the required REST services

You must enable a set of z/OSMF REST services for the Zowe framework.

The following system changes are described in this topic:

• Enabling the z/OSMF JOB REST services
• Enabling the TSO REST services on page 51
• Enabling the z/OSMF data set and file REST services
• Enabling the z/OSMF Workflow REST services and Workflows task UI

Enabling the z/OSMF JOB REST services

The Zowe framework requires that you enable the z/OSMF JOB REST services, as described in this topic.

Procedure

None

 | User Guide | 51

Results

To verify if the z/OSMF JOB REST services are enabled, open a web browser to our z/OS system (host name and
port) and add the following REST call to the URL:

GET /zosmf/restjobs/jobs

The result is a list of the jobs that are owned by your user ID. For more information about the z/OSMF JOB REST
services, see z/OSMF Programming Guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom 1

401 Unauthorized

Cause

The user ID is not connected to IZUADMIN or IZUUSER.

Resolution

Connect your user ID to IZUADMIN or IZUUSER.

Symptom 2

HTTP/1.1 500 Internal Server Error {"rc":16,"reason":-1,"stack":"JesException: CATEGORY_CIM rc=16 reason=-1
cause=com.ibm.zoszmf.util.eis.EisConnectionException: IZUG911I: Connection to \"http://null:5988\" cannot
be established, or was lost and cannot be re-established using protocol \"CIM\"......Caused by: WBEMException:
CIM_ERR_FAILED (JNI Exception type CannotConnectException:\nCannot connect to local CIM server.
Connection failed.)

Cause

For JES2, you may have performed one of the following "Modify" operations: Hold a job, Release a job, Change the
job class, Cancel a job, Delete a job (Cancel a job and purge its output), or you are running JES3 without configuring
CIM Server.

Resolution

If you are running JES2, you can use synchronous support for job modify operations which does not required CIM. If
you are running JES3, follow the CIM setup instructions to configure CIM on your system.

Enabling the TSO REST services

The Zowe framework requires that you enable the TSO REST services, as described in this topic.

Before you begin

Ensure that the common event adapter component (CEA) of z/OS is running in full function mode.

1. To check if the CEA address space is active, enter the following command:

D A,CEA

1. If not, start CEA in full function mode. For detailed instructions, see System prerequisites for the CEA TSO/E
address space services.

2. To verify that CEA is running in full function mode, enter the following command:

F CEA,D

The output should look like the following:

CEA0004I COMMON EVENT ADAPTER 399
STATUS: ACTIVE-FULL CLIENTS: 0 INTERNAL: 0
EVENTS BY TYPE: \#WTO: 0 \#ENF: 0 \#PGM: 0
TSOASMGR: ALLOWED: 50 IN USE: 0 HIGHCNT: 0

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm#izuhpinfo_api_restjobs__RequestingSynchronousProcessing
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm

 | User Guide | 52

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUTSSEC in the sample jobs package and upload this Job to z/
OS. If you run z/OS V2R4, locate job IZUTSSEC at SYS1.SAMPLIB.

2. Review and edit job IZUTSSEC before you submit. You can review the IZUTSSEC section below for more
details.

3. Submit IZUTSSEC as a batch job on your z/OS system.

IZUTSSEC

IBM provides a set of jobs in SYS1.SAMPLIB with sample RACF commands to help with your z/OSMF
configuration and its prerequisites. The IZUTSSEC job represents the authorizations that are needed for the z/OSMF
TSO/E address space service. Your security administrator can edit and run the job. Generally, your z/OSMF user ID
requires the same authorizations for using the TSO/E address space services as when you perform these operations
through a TSO/E session on the z/OS system. For example, to start an application in a TSO/E address space requires
that your user ID be authorized to operate that application. In addition, to use TSO/E address space services, you must
have:

• READ access to the account resource in class ACCTNUM, where account is the value specified in the
COMMON_TSO ACCT option in parmlib.

• READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH.
• READ access to the proc resource in class TSOPROC, where proc is the value specified with the

COMMON_TSO PROC option in parmlib.
• READ access to the <SAF_PREFIX>.*.izuUsers profile in the EJBROLE class. Or, at a minimum, READ access

to the <SAF_PREFIX>.IzuManagementFacilityTsoServices.izuUsers resource name in the EJBROLE class. You
must also ensure that the z/OSMF started task user ID, which is IZUSVR by default, has READ access to the
CEA.CEATSO.TSOREQUEST resource in class SERVAUTH. To create a TSO/E address space on a remote
system, you require the following authorizations:

• You must be authorized to the SAF resource profile that controls the ability to send data to the remote system
(systemname), as indicated: CEA.CEATSO.FLOW.systemname

• To flow data between different systems in the sysplex, you must be authorized to do so by your external security
manager, such as a RACF database with sysplex-wide scope. For example, to flow data between System A and
System B, you must be permitted to the following resource profiles:

• CEA.CEATSO.FLOW.SYSTEMA
• CEA.CEATSO.FLOW.SYSTEMB

Results

The IZUTSSEC job should complete with return code 0000.

Enabling the z/OSMF data set and file REST services

The Zowe framework requires that you enable the z/OSMF data set and file REST services.

Before you begin

1. Ensure that the message queue size is set to a large enough value. It is recommended that you specify an
IPCMSGQBYTES value of at least 20971520 (20M) in BPXPRMxx.

Issue command D OMVS,O to see the current value of IPCMSGQBYTES, if it is not large enough, use the
SETOMVS command to set a large value. To set this value dynamically, you can enter the following operator
command:

SETOMVS IPCMSGQBYTES=20971520

2. Ensure that the TSO REST services are enabled.
3. Ensure that IZUFPROC is in your JES concatenation.
4. Ensure that your user ID has a TSO segment defined. To do so, enter the following command from TSO/E

command prompt:

LU userid TSO

d2968b60be585e9b694a81b6b7bb1477ea1369d4.zip

 | User Guide | 53

Where userid is your z/OS user ID.

The output from this command must include the section called TSO information, as shown in the following
example:

TSO LU ZOSMFAD TSO NORACF

4:57:17 AM: USER=ZOSMFAD

TSO INFORMATION

ACCTNUM= 123412345

PROC= OMVSPROC

SIZE= 02096128

MAXSIZE= 00000000

USERDATA= 0000

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZURFSEC in the sample jobs package and upload it to z/OS. If
you run z/OS V2R4, locate job IZURFSEC at SYS1.SAMPLIB.

2. Copy the job.
3. Examine the contents of the job.
4. Modify the contents as needed so that the job will run on your system.
5. From the TSO/E command line, run the IZURFSEC job.

Results

Ensure that the IZURFSEC job completes with return code 0000.

To verify if this setup is complete, try issuing a REST service. See the example in List data sets in the z/OSMF
programming guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

REST API doesn't return expected
data with rc=12, rsn=3, message:
message queue size "SIZE" is less
than minimum: 20M

The message queue size for CEA is
too small.

Ensure that the message queue size
is set to a large enough value. It is
recommended that you specify an
IPCMSGQBYTES value of at least
20971520 (20M) in BPXPRMx.

Enabling the z/OSMF Workflow REST services and Workflows task UI

The Zowe framework requires that you enable the z/OSMF Workflow REST services and Workflows task UI.

Before you begin

1. Ensure that the JOB REST services are enabled.
2. Ensure that the TSO REST services are enabled.
3. Ensure that the dataset and file REST services are enabled.

d2968b60be585e9b694a81b6b7bb1477ea1369d4.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_GetListDataSets.htm

 | User Guide | 54

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUWFSEC in the sample jobs package and upload this job to z/
OS. If you run z/OS V2R4, locate job IZUWFSEC at SYS1.SAMPLIB.

2. Copy the job.
3. Examine the contents of the job.
4. Modify the contents as needed so that the job will run on your system.
5. From the TSO/E command line, run the IZUWFSEC job.

Results

Ensure the IZUWFSEC job completes with return code 0000.

To verify, log on to z/OSMF (or refresh it) and verify that the Workflows task appears in the z/OSMF UI.

At this point, you have completed the setup of z/OSMF Lite.

Optionally, you can add more users to z/OSMF, as described in Appendix C. Adding more users to z/OSMF.

Troubleshooting problems

This section provides tips and techniques for troubleshooting problems you might encounter when creating a z/OSMF
Lite configuration. For other types of problems that might occur, see z/OSMF Configuration Guide.

Common problems and scenarios

This section discusses troubleshooting topics, procedures, and tools for recovering from a set of known issues.

System setup requirements not met

This document assumes that the following is true of the z/OS host system:

• Port 443 is available for use. To check this, issue either TSO command NETSTAT SOCKET or TSO command
NETSTAT BYTE to determine if the port is being used.

• The system host name is unique and maps to the system on which z/OSMF Lite is being installed. To retrieve
this value, enter either "hostname" z/OS UNIX command or TSO command "HOMETEST". If your system uses
another method of assigning the system name, such as a multi-home stack, dynamic VIPA, or System Director,
see z/OSMF Configuration Guide.

• The global mount point exists. On a z/OS 2.3 system, the system includes this directory by default. On a z/OS 2.2
system, you must create the global directory at the following location: /global/zosmf/.

If you find that a different value is used on your z/OS system, you can edit the IZUPRMxx parmlib member to
specify the correct setting. For details, see Appendix A. Creating an IZUPRMxx parmlib member on page 54.

Tools and techniques for troubleshooting

For information about working with z/OSMF log files, see z/OSMF Configuration Guide.

Common messages

ICH420I PROGRAM CELQLIB FROM LIBRARY CEE.SCEERUN2 CAUSED THE ENVIRONMENT
 TO BECOME UNCONTROLLED.

BPXP014I ENVIRONMENT MUST BE CONTROLLED FOR DAEMON (BPX.DAEMON)
PROCESSING.

If you see above error messages, check if your IZUANG0 procedure is up to date.

For descriptions of all the z/OSMF messages, see z/OSMF messages in IBM Knowledge Center.

Appendix A. Creating an IZUPRMxx parmlib member

If z/OSMF requires customization, you can modify the applicable settings by using the IZUPRMxx parmlib member.
To see a sample member, locate the IZUPRM00 member in the SYS1.SAMPLIB data set. IZUPRM00 contains
settings that match the z/OSMF defaults.

d2968b60be585e9b694a81b6b7bb1477ea1369d4.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zosmfmessages.help.doc/izuG00hpMessages.html

 | User Guide | 55

Using IZUPRM00 as a model, you can create a customized IZUPRMxx parmlib member for your environment and
copy it to SYS1.PARMLIB to override the defaults.

The following IZUPRMxx settings are required for the z/OSMF nucleus:

• HOSTNAME
• HTTP_SSL_PORT
• JAVA_HOME.

The following setting is needed for the TSO/E REST services:

• COMMON_TSO ACCT(IZUACCT) REGION(50000) PROC(IZUFPROC)

Descriptions of these settings are provided in the table below. For complete details about the IZUPRMxx settings and
the proper syntax for updating the member, see z/OSMF Configuration Guide.

If you change values in the IZUPRMxx member, you might need to customize the started procedure IZUSVR1,
accordingly. For details, see Appendix B. Modifying IZUSVR1 settings on page 56.

To create an IZUPRMxx parmlib member, follow these steps:

1. Copy the sample parmlib member into the desired parmlib data set with the desired suffix.
2. Update the parmlib member as needed.
3. Specify the IZUPRMxx parmlib member or members that you want the system to use on the IZU parameter

of IEASYSxx. Or, code a value for IZUPRM= in the IZUSVR1 started procedure. If you specify both IZU=
in IEASYSxx and IZUPARM= in IZUSVR1, the system uses the IZUPRM= value you specify in the started
procedure.

Setting Purpose Rules Default

HOSTNAME(hostname) Specifies the host name,
as defined by DNS, where
the z/OSMF server is
located. To use the local
host name, enter asterisk
(*), which is equivalent
to \@HOSTNAME from
previous releases. If you
plan to use z/OSMF in
a multisystem sysplex,
IBM recommends using a
dynamic virtual IP address
(DVIPA) that resolves to
the correct IP address if the
z/OSMF server is moved to
a different system.

Must be a valid TCP/IP
HOSTNAME or an asterisk
(*).

Default: *

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

 | User Guide | 56

Setting Purpose Rules Default

HTTP_SSL_PORT(nnn) Identifies the port number
that is associated with
the z/OSMF server. This
port is used for SSL
encrypted traffic from your
z/OSMF configuration.
The default value, 443,
follows the Internet
Engineering Task Force
(IETF) standard. Note: By
default, the z/OSMF server
uses the SSL protocol
SSL_TLSv2 for secure
TCP/IP communications.
As a result, the server
can accept incoming
connections that use SSL
V3.0 and the TLS 1.0, 1.1
and 1.2 protocols.

Must be a valid TCP/IP
port number. Value range:
1 - 65535 (up to 5 digits)

Default: 443

COMMON_TSO
ACCT(account-number)
REGION(region-size)
PROC(proc-name)

Specifies values for the
TSO/E logon procedure
that is used internally for
various z/OSMF activities
and by the Workflows task.

The valid ranges for each
value are described in
z/OSMF Configuration
Guide.

Default: 443
ACCT(IZUACCT)
REGION(50000)
PROC(IZUFPROC)

USER_DIR=filepath z/OSMF data directory
path. By default, the z/
OSMF data directory is
located in /global/
zosmf. If you want to
use a different path for the
z/OSMF data directory,
specify that value here, for
example: USER_DIR=/
the/new/config/dir.

Must be a valid z/OS UNIX
path name.

Default: /global/
zosmf/

Appendix B. Modifying IZUSVR1 settings

You might need to customize the started procedure IZUSVR1 for z/OSMF Lite.

To modify the IZUSVR1 settings, follow these steps:

1. Make a copy
2. Apply your changes
3. Store your copy in PROCLIB.

Setting Purpose Rules Default

WLPDIR='directory-path' WebSphere Liberty server
code path.

The directory path must:
Be a valid z/OS UNIX path
name Be a full or absolute
path name Be enclosed in
quotation marks Begin with
a forward slash ('/').

Default: /usr/lpp/
zosmf/liberty

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

 | User Guide | 57

Setting Purpose Rules Default

USER_DIR=filepath z/OSMF data directory
path. By default, the z/
OSMF data directory is
located in /global/zosmf. If
you want to use a different
path for the z/OSMF data
directory, specify that
value here, for example:
USER_DIR=/the/new/
config/dir.

Must be a valid z/OS UNIX
path name.

Default: /global/
zosmf/

Appendix C. Adding more users to z/OSMF

Your security administrator can authorize more users to z/OSMF. Simply connect the required user IDs to the z/
OSMF administrator group (IZUADMIN). This group is permitted to a default set of z/OSMF resources (tasks and
services). For the specific group permissions, see Appendix A in z/OSMF Configuration Guide.

You can create more user groups as needed, for example, one group per z/OSMF task.

Before you Begin

Collect the z/OS user IDs that you want to add.

Procedure

1. On an RACF system, enter the CONNECT command for the user IDs to be granted authorization to z/OSMF
resources:

CONNECT userid GROUP(IZUADMIN)

Results

The user IDs can now access z/OSMF.

Installing Zowe on z/OS

To install Zowe™ on z/OS, there are two parts. The first part is the Zowe runtime that consists of three components:
Zowe Application Framework, z/OS Explorer Services, and Zowe API Mediation Layer. The second part is the Zowe
Cross Memory Server. This is an authorized server application that provides privileged services to Zowe in a secure
manner.

• Before you begin on page 57
• Methods of installing Zowe on z/OS on page 57
• High-level installation process on page 58
• Looking for troubleshooting help? on page 58

Before you begin

Ensure that you meet the following software requirements before you install Zowe on z/OS. The necessary
prerequisites that are described in System requirements on page 35.

Methods of installing Zowe on z/OS

The Zowe z/OS binaries are distributed in the following formats. They contain the same contents but you install them
by using different methods. You can choose which method to use depending on your needs.

• Convenience build

The Zowe z/OS binaries are packaged as a PAX file. You install this build by running shell script within a Unix
System Services (USS) shell.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

 | User Guide | 58

• SMP/E build

The Zowe z/OS binaries are packaged as the following files that you can download. You install this build through
SMP/E.

• A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.
• A readme file, which contains a sample job to decompress the pax.Z file, transform it into a format that SMP/E

can process, and invoke SMP/E to RECEIVE the file.

Note: The SMP/E build is currently in alpha, which means that it is available for early testing. You can provide
any feedback about your experience with Zowe SMP/E as issues in the zowe-install-packaging GitHub repo.

While the procedure to obtain and install the convenience build or SMP/E build are different, the procedure to
configure a Zowe runtime are the same irrespective of how the build is obtained and installed.

High-level installation process

The high-level process of installing Zowe on z/OS is as follows:

1. Obtain and install the Zowe build.

• For how to obtain the convenience build and install it, see Installing Zowe runtime from a convenience build
on page 58.

• For how to obtain the SMP/E build and install it, see Installing Zowe SMP/E Alpha on page 61.
2. Configure the Zowe runtime. See Configuring the Zowe runtime on page 79.
3. Verify that Zowe is installed correctly on z/OS. See Verifying Zowe installation on z/OS on page 97.

Looking for troubleshooting help?

If you encounter unexpected behavior when installing or verifying the Zowe runtime on z/OS, see the
Troubleshooting on page 278 section for tips.

Installing Zowe runtime from a convenience build

You install the Zowe™ convenience build by running shell script within a Unix System Services (USS) shell.

1. Obtaining and preparing the convenience build on page 58
2. Installing the Zowe runtime on page 60

• Step 1: Locate the install directory on page 60
• Step 2: Review the zowe-install.yaml file on page 60
• Step 3: Execute the zowe-install.sh script

Obtaining and preparing the convenience build

The Zowe installation file for Zowe z/OS components are distributed as a PAX file that contains the runtimes and
the scripts to install and launch the z/OS runtime. For each release, there is a PAX file named zowe-v.r.m.pax,
where

• v indicates the version
• r indicates the release number
• m indicates the modification number

The numbers are incremented each time a release is created so the higher the numbers, the later the release.

To download the PAX file, open your web browser and click the Zowe z/OS Components button on the Zowe
Download website to save it to a folder on your desktop. After you download the PAX file, follow the instructions to
verify the PAX file and prepare it to install the Zowe runtime.

Follow these steps:

https://github.com/zowe/zowe-install-packaging/issues/new
https://zowe.org/#download
https://zowe.org/#download

 | User Guide | 59

1. Verify the integrity of the PAX file to ensure that the file you download is officially distributed by the Zowe
project.

Follow the instructions in the Verify Hash and Signature of Zowe Binary section on the post-download
page https://d1xozlojgf8voe.cloudfront.net/post_download.html?version=v.r.m
after you download the official build. For example, the post-download page for Version 1.4.0 is https://
d1xozlojgf8voe.cloudfront.net/post_download.html?version=1.4.0.

2. Transfer the PAX file to z/OS.

Follow these steps:

a. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory where
you downloaded the Zowe PAX file.

b. Connect to z/OS using SFTP. Issue the following command:

sftp <userID@ip.of.zos.box>

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

ftp <userID@ip.of.zos.box>

Note: When you use FTP, switch to binary file transfer mode by issuing the following command:

bin

c. Navigate to the target directory that you wish to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter into the Unix file system. The following
commands are useful:

• To see what directory you are in, type pwd.
• To switch directory, type cd.
• To list the contents of a directory, type ls.
• To create a directory, type mkdir.

d. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

put <zowe-v.r.m>.pax

Where zowe-v.r.m is a variable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with l to have
them issued against your desktop. To list the contents of a directory on your desktop, type lls where ls lists
contents of a directory on z/OS.

3. When the PAX file is transferred, expand the PAX file by issuing the following command in an SSH session:

pax -ppx -rf <zowe-v.r.m>.pax

Where zowe-v.r.m is a variable that indicates the name of the PAX file you downloaded.

This will expand to a file structure.

 /files
 /install
 /scripts
 ...

Note: The PAX file will expand into the current directory. A good practice is to keep the installation directory
apart from the directory that contains the PAX file. To do this, you can create a directory such as /zowe/paxes
that contains the PAX files, and another such as /zowe/builds. Use SFTP to transfer the Zowe PAX file into

https://d1xozlojgf8voe.cloudfront.net/post_download.html?version=1.4.0
https://d1xozlojgf8voe.cloudfront.net/post_download.html?version=1.4.0

 | User Guide | 60

the /zowe/paxes directory, use the cd command to switch into /zowe/builds and issue the command pax
-ppx -rf ../paxes/<zowe-v.r.m>.pax. The /install folder will be created inside the zowe/
builds directory from where the installation can be launched.

Installing the Zowe runtime

To install Zowe API Mediation Layer, Zowe Application Framework, and z/OS Services, you install the Zowe
runtime on z/OS.

Follow these steps:

• Step 1: Locate the install directory
• Step 2: Review the zowe-install.yaml file
• Step 3: Execute the zowe-install.sh script

Step 1: Locate the install directory

Navigate to the directory where the installation archive is extracted. Locate the /install directory.

 /install
 /zowe-install.sh
 /zowe-install.yaml

Step 2: Review the zowe-install.yaml file

Review the zowe-install.yaml file which contains the install:rootDir and
install:datasetPrefix properties that are used by the installation.

install:rootDir is the directory that Zowe installs to create a Zowe runtime. The default directory is ~/zowe/
v.r.m where v is the Zowe version number, r is the release number and m is the modification number, for example,
1.0.0 or 1.2.11. The user's home directory is the default value. This ensures that the user who performs the installation
has permission to create the directories that are required for the installation. If the Zowe runtime will be maintained
by multiple users, it is recommended to use another directory based on your site's conventions. The directory will be
created during the install so it should be empty before the install script zowe-install.sh is executed.

install:datasetPrefix is a PDS prefix used to create two data sets: SZWESAMP which is a fixed
block 80 samplib used to store JCL, and SZWEAUTH which is a load library. The default value in zowe-
install.yaml is datasetPrefix={userid}.ZWE where {userid} is subsituted by the install script
with the current TSO user ID. For example, if user JANEDOE runs the install script from their TSO OMVS or
SSH session, the partitioned data sets JANEDOE.ZWE.SZWEAUTH and JANEDOE.ZWE.SZWESAMP will
be created. The value of datasetPrefix can be changed to match your site's conventions. For example,
datasetPrefix=OPENSRC.ZOWE will create the partitioned data sets OPENSRC.ZOWE.SZWESAMP and
OPENSRC.ZOWE.SZWEAUTH.

You can run the installation process multiple times with different values in the zowe-install.yaml file to create
separate installations of the Zowe runtime.

Step 3: Install and configure the Zowe runtime

You install and configure the Zowe runtime by executing the zowe-install.sh script. The zowe-
install.sh mode performs three steps.

1. Install Zowe runtime directories and files into the root_dir directory.
2. Install MVS artifacts into a PDS load library SZWEAUTH and a PDS sample library SZWESAMP as specified in the

datasetPrefix value.
3. Configure the runtime directory so that an instance of the ZOWESVR STC can be launched which will start the

Zowe address spaces.

It's recommended that you install the Zowe runtime first by running the zowe-install.sh -I option that just
performs the first installation step to create the runtime directory. Then, configure the runtime directory separately
following instructions in Configuring the Zowe runtime directory on page 80. Alternatively, you can both install
and configure the Zowe runtime by running a single command zowe-install.sh without the -I parameter.

 | User Guide | 61

In this case, ensure that you review Configuring the Zowe runtime directory on page 80 before you run the
command zowe-install.sh.

In this documentation, the steps of creating the runtime directory and configuring the runtime directory are described
separately. The configuration step is the same for a Zowe runtime whether it is installed from a convenience build or
from an SMP/E distribution.

Follow these steps to install Zowe artifacts

1. Create the USS runtime directory, and the PDS SAMPLIB and LOADLIB.

With the current directory being the /install directory, execute the script zowe-install.sh by issuing the
following command:

zowe-install.sh -I

Note: If you leave off the -I parameter, the zowe-install.sh script will create and also configure the
Zowe runtime directory using the rootDir: value. If you choose to do this, make sure that you have reviewed
Configuring the Zowe runtime directory on page 80. If you run zowe-install.sh without the -I
parameter the file zowe-install.yaml containing parameter values used to drive the configuration will be in
the same /install directory as location of zowe-install.sh. If you use the -I option and configure post
install which is the recommended approach the zowe-install.yaml file will be in the scripts/config
directory of the rootDir:.

During execution of zowe-install.sh, you might receive the following error that the file cannot be executed:

zowe-install.sh: cannot execute

The error occurs when the install script does not have execute permission. To add execute permission, issue the
following command:

chmod u+x zowe-install.sh

Each time the install script runs, it creates a log file that contains more information. This file is stored in the /log
directory and is created with a date and time stamp name, for example /log/2019-02-05-18-08-35.log.
This file is copied across into the runtime folder into which Zowe is installed, and contains useful information to
help diagnose problems that may occur during an install.

2. (Optional) Check prerequisites.

Before you continue with the configuration of the Zowe runtime, you can check the install condition of the
required prerequisites for Zowe. To do this, issue the following command with the current directory being the /
install directory.

zowe-check-prereqs.sh

The script writes messages to your terminal window. The results are marked OK, Info, Warning or Error.
Correct any reported errors and rerun the command to ensure that no errors exist before you run the zowe-
install.sh script to install the Zowe runtime. The zowe-check-prereqs.sh script does not change any
settings. You can run it as often as required before you configure the Zowe runtime directory.

3. Configure the Zowe runtime directory.

For the convenience build, the location of the Zowe runtime directory will be the value of the
install:rootDir parameter from the zowe-install.yaml. Follow the instructions in Configuring the
Zowe runtime on page 79 to complete this step.

Installing Zowe SMP/E Alpha

Contents

 | User Guide | 62

• Introduction on page 63

• Zowe description on page 63
• Zowe FMIDs on page 63

• Program materials on page 63

• Basic machine-readable material on page 63
• Program publications on page 63
• Program source materials on page 63
• Publications useful during installation on page 63

• Program support on page 64

• Statement of support procedures on page 64
• Program and service level information on page 64

• Program level information on page 64
• Service level information on page 64

• Installation requirements and considerations on page 64

• Driving system requirements on page 64

• Driving system machine requirements on page 64
• Driving system programming requirements on page 64

• Target system requirements on page 65

• Target system machine requirements on page 65
• Target system programming requirements on page 65
• DASD storage requirements on page 66

• FMIDs deleted on page 68
• Installation instructions on page 68

• SMP/E considerations for installing Zowe
• SMP/E options subentry values
• Overview of the installation steps on page 69
• Download the Zowe SMP/E package
• Allocate file system to hold the download package on page 70
• Upload the download package to the host on page 71
• Extract and expand the compressed SMPMCS and RELFILEs on page 71

• GIMUNZIP on page 73
• Sample installation jobs on page 73
• Create SMP/E environment (optional)
• Perform SMP/E RECEIVE
• Allocate SMP/E Target and Distributions Libraries
• Allocate, create and mount ZSF files (Optional) on page 76
• Allocate z/OS UNIX Paths
• Create DDDEF entries on page 77
• Perform SMP/E APPLY
• Perform SMP/E ACCEPT
• Run REPORT CROSSZONE on page 78
• Cleaning up obsolete data sets, paths, and DDDEFs on page 79

• Activating Zowe on page 79

• File system execution on page 79
• Zowe customization on page 79

 | User Guide | 63

Introduction

This program directory is intended for system programmers who are responsible for program installation and
maintenance. It contains information about the material and procedures associated with the installation of Zowe Open
Source Project (Base). This publication refers to Zowe Open Source Project (Base) as Zowe.

The Program Directory contains the following sections:

• Program materials on page 63 identifies the basic program materials and documentation for Zowe.
• Program support on page 64 describes the support available for Zowe.
• Program and service level information on page 64 lists the APARs (program level) and PTFs (service

level) that have been incorporated into Zowe.
• Installation requirements and considerations on page 64 identifies the resources and considerations that

are required for installing and using Zowe.
• Installation instructions on page 68 provides detailed installation instructions for Zowe. It also describes the

procedures for activating the functions of Zowe, or refers to appropriate publications.

Zowe description

Zowe™ is an open source project created to host technologies that benefit the Z platform. It is a sub-project of Open
Mainframe Project which is part of the Linux Foundation. More information about Zowe is available at https://
zowe.org.

Zowe FMIDs

Zowe consists of the following FMIDs:

• AZWE001

Program materials

Basic Machine-Readable Materials are materials that are supplied under the base license and are required for the use
of the product.

Basic machine-readable material

The distribution medium for this program is via downloadable files. This program is in SMP/E RELFILE format and
is installed using SMP/E. See Installation instructions on page 68 for more information about how to install the
program.

Program publications

You can obtain the Zowe documentation from the Zowe doc site at https://docs.zowe.org/. No optional publications
are provided for Zowe.

Program source materials

No program source materials or viewable program listings are provided for Zowe in the SMP/E installation package.
However, program source materials can be downloaded from the Zowe GitHub repositories at https://github.com/
zowe/.

Publications useful during installation

Publications listed below are helpful during the installation of Zowe.

Publication Title Form Number

IBM SMP/E for z/OS User's Guide SA23-2277

IBM SMP/E for z/OS Commands SA23-2275

IBM SMP/E for z/OS Reference SA23-2276

IBM SMP/E for z/OS Messages, Codes, and Diagnosis GA32-0883

These and other publications can be obtained from https://www.ibm.com/shop/publications/order.

https://www.openmainframeproject.org/projects
https://www.openmainframeproject.org/projects
https://zowe.org
https://zowe.org
https://docs.zowe.org/
https://github.com/zowe/
https://github.com/zowe/
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232277/$file/gim3000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232275/$file/gim1000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232276/$file/gim2000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3ga320883/$file/gim0000_v2r3.pdf
https://www.ibm.com/shop/publications/order

 | User Guide | 64

Program support

This section describes the support available for Zowe.

Because this is an alpha release of the Zowe FMID package for early testing and adoption, no formal support is
offered. Support is available through the Zowe community. See Community Engagement for details. Slack is the
preferred interaction channel.

Additional support may be available through other entities outside of the Open Mainframe Project and Linux
Foundation which offers no warranty and provides the package under the terms of the EPL v2.0 license.

Statement of support procedures

Report any problems which you feel might be an error in the product materials to the Zowe community via the Zowe
GitHub community repo at https://github.com/zowe/community/issues/new/choose. You may be asked to gather and
submit additional diagnostics to assist the Zowe Community for analysis and resolution.

Program and service level information

This section identifies the program and relevant service levels of Zowe. The program level refers to the APAR fixes
that have been incorporated into the program. The service level refers to the PTFs that have been incorporated into the
program.

Program level information

All issues of previous releases of Zowe that were resolved before August 2019 have been incorporated into this
packaging of Zowe.

Service level information

Since this is the first release of the SMP/E package, no PTFs have been created.

Installation requirements and considerations

The following sections identify the system requirements for installing and activating Zowe. The following
terminology is used:

• Driving System: the system on which SMP/E is executed to install the program.
• Target system: the system on which the program is configured and run.

Use separate driving and target systems in the following situations:

• When you install a new level of a product that is already installed, the new level of the product will replace the old
one. By installing the new level onto a separate target system, you can test the new level and keep the old one in
production at the same time.

• When you install a product that shares libraries or load modules with other products, the installation can disrupt
the other products. By installing the product onto a separate target system, you can assess these impacts without
disrupting your production system.

Driving system requirements

This section describes the environment of the driving system required to install Zowe.

Driving system machine requirements

The driving system can be run in any hardware environment that supports the required software.

Driving system programming requirements

Program Number Product Name Minimum VRM Minimum Service
Level will satisfy
these APARs

Included in the
shipped product?

5650-ZOS z/OS V2.2.0 or later N/A No

Notes:

https://github.com/zowe/community/blob/master/README.md#communication-channels
https://github.com/zowe/community/issues/new/choose

 | User Guide | 65

• SMP/E is a requirement for Installation and is an element of z/OS but can also be ordered as a separate product,
5655-G44, minimally V03.06.00.

• Installation might require migration to a new z/OS release to be service supported. See https://www-01.ibm.com/
software/support/lifecycle/index_z.html.

Zowe is installed into a file system, either HFS or zFS. Before installing Zowe, you must ensure that the target system
file system data sets are available for processing on the driving system. OMVS must be active on the driving system
and the target system file data sets must be mounted on the driving system.

If you plan to install Zowe in a zFS file system, this requires that zFS be active on the driving system. Information
on activating and using zFS can be found in z/OS Distributed File Service zSeries File System Administration
(SC24-5989).

Target system requirements

This section describes the environment of the target system required to install and use Zowe.

Zowe installs in the z/OS (Z038) SREL.

Target system machine requirements

The target system can run in any hardware environment that supports the required software.

Target system programming requirements

Installation requisites

Installation requisites identify products that are required and must be present on the system or products that are not
required but should be present on the system for the successful installation of Zowe.

Mandatory installation requisites identify products that are required on the system for the successful installation of
Zowe. These products are specified as PREs or REQs.

Zowe has no mandatory installation requisites.

Conditional installation requisites identify products that are not required for successful installation of Zowe but can
resolve such things as certain warning messages at installation time. These products are specified as IF REQs.

Zowe has no conditional installation requisites.

Operational requisites

Operational requisites are products that are required and must be present on the system, or, products that are not
required but should be present on the system for Zowe to operate all or part of its functions.

Mandatory operational requisites identify products that are required for this product to operate its basic functions. The
following tables lists the target system mandatory operational requisites for Zowe.

Program Number Product Name and Minimum VRM/Service Level

5650-ZOS IBM z/OS Management Facility V2.2.0 or higher

5655-SDK IBM SDK for Node.js - z/OS V8.16.0 or higher

5655-DGH IBM 64-bit SDK for z/OS Java Technology Edition
V8.0.0

Conditional operational requisites identify products that are not required for Zowe to operate its basic functions but
are required at run time for Zowe to operate specific functions. These products are specified as IF REQs. Zowe has no
conditional operational requisites.

Toleration/coexistence requisites

Toleration/coexistence requisites identify products that must be present on sharing systems. These systems can be
other systems in a multi-system environment (not necessarily Parallel SysplexTM), a shared DASD environment (such
as test and production), or systems that reuse the same DASD environment at different time intervals.

https://www-01.ibm.com/software/support/lifecycle/index_z.html
https://www-01.ibm.com/software/support/lifecycle/index_z.html
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3SC236887/$file/ioea700_v2r3.pdf

 | User Guide | 66

Zowe has no toleration/coexistence requisites.

Incompatibility (negative) requisites

Negative requisites identify products that must not be installed on the same system as Zowe.

Zowe has no negative requisites.

DASD storage requirements

Zowe libraries can reside on all supported DASD types.

Total DASD space required by Zowe

Library Type Total Space Required in 3390 Trks Description

Target 30 Tracks /

Distribution 12030 Tracks /

File System(s) 9000 Tracks /

Web Download 26111 Tracks These are temporary data sets, which
can be removed after the SMP/E
install.

Notes:

1. For non-RECFM U data sets, we recommend using system-determined block sizes for efficient DASD
utilization. For RECFM U data sets, we recommend using a block size of 32760, which is most efficient from the
performance and DASD utilization perspective.

2. Abbreviations used for data set types are shown as follows.

• U - Unique data set, allocated by this product and used by only this product. This table provides all the
required information to determine the correct storage for this data set. You do not need to refer to other tables
or program directories for the data set size.

• S - Shared data set, allocated by this product and used by this product and other products. To determine
the correct storage needed for this data set, add the storage size given in this table to those given in other
tables (perhaps in other program directories). If the data set already exists, it must have enough free space to
accommodate the storage size given in this table.

• E - Existing shared data set, used by this product and other products. This data set is not allocated by this
product. To determine the correct storage for this data set, add the storage size given in this table to those
given in other tables (perhaps in other program directories). If the data set already exists, it must have enough
free space to accommodate the storage size given in this table.

If you currently have a previous release of Zowe installed in these libraries, the installation of this release will
delete the old release and reclaim the space that was used by the old release and any service that had been
installed. You can determine whether these libraries have enough space by deleting the old release with a dummy
function, compressing the libraries, and comparing the space requirements with the free space in the libraries.

For more information about the names and sizes of the required data sets, see Allocate SMP/E target and
distribution libraries.

3. Abbreviations used for the file system path type are as follows.

• N - New path, created by this product.
• X - Path created by this product, but might already exist from a previous release.
• P - Previously existing path, created by another product.

 | User Guide | 67

4. All target and distribution libraries listed have the following attributes:

• The default name of the data set can be changed.
• The default block size of the data set can be changed.
• The data set can be merged with another data set that has equivalent characteristics.
• The data set can be either a PDS or a PDSE, with some exceptions. If the value in the "ORG" column specifies

"PDS", the data set must be a PDS. If the value in "DIR Blks" column specifies "N/A", the data set must be a
PDSE.

5. All target libraries listed have the following attributes:

• These data sets can be SMS-managed, but they are not required to be SMS-managed.
• These data sets are not required to reside on the IPL volume.
• The values in the "Member Type" column are not necessarily the actual SMP/E element types that are

identified in the SMPMCS.
6. All target libraries that are listed and contain load modules have the following attributes:

• These data sets can not be in the LPA, with some exceptions. If the value in the "Member Type" column
specifies "LPA", it is advised to place the data set in the LPA.

• These data sets can be in the LNKLST.
• These data sets are not required to be APF-authorized, with some exceptions. If the value in the "Member

Type" column specifies "APF", the data set must be APF-authorized.

Storage requirements for SMP/E work data sets

Library
DDNAME

TYPE ORG RECFM LRECL No. of 3390
Trks

No. of DIR
Blks

SMPWRK6 S PDS FB 80 (20,200) 50

SYSUT1 U SEQ -- -- (20,200) 0

In the table above, (20,200) specifies a primary allocaton of 20 tracks, and a secondary allocation of 200 tracks.

Storage requirements for SMP/E data sets

Library
DDNAME

TYPE ORG RECFM LRECL No. of 3390
Trks

No. of DIR
Blks

SMPPTS S PDSE FB 80 (12000,3000) 50

The following figures describe the target and distribution libraries and file system paths required to install Zowe. The
storage requirements of Zowe must be added to the storage required by other programs that have data in the same
library or path.

Note: Use the data in these tables to determine which libraries can be merged into common data sets. In addition,
since some ALIAS names may not be unique, ensure that no naming conflicts will be introduced before merging
libraries.

Storage requirements for Zowe target libraries

Note: These target libraries are not required for the initial alpha drop of Zowe SMP/E but will be required for
subsequent drops so are included here for future reference.

Library
DDNAME

Member
Type

Target
Volume

Type Org RECFM LRECL No. of
3390 Trks

No. of
DIR Blks

SZWEAUTHAPF Load
Modules

ANY U PDSE U 0 15 N/A

SZWESAMPSamples ANY U PDSE FB 80 15 5

 | User Guide | 68

Zowe file system paths

DDNAME TYPE Path Name

SZWEZFS X /usr/lpp/zowe/SMPE

Storage requirements for Zowe distribution libraries

Note: These target libraries are not required for the initial alpha drop of Zowe SMP/E but will be required for
subsequent drops so are included here for future reference.

Library
DDNAME

TYPE ORG RECFM LRECL No. of 3390
Trks

No. of DIR
Blks

AZWEAUTH U PDSE U 0 15 N/A

AZWESAMP U PDSE FB 80 15 5

AZWEZFS U PDSE VB 6995 12000 30

The following figures list data sets that are not used by Zowe, but are required as input for SMP/E.

Data Set
Name

TYPE ORG RECFM LRECL No. of 3390
Trks

No. of DIR
Blks

hlq.ZOWE.AZWE001.F1U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE001.F2U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE001.F4U PDSE VB 6995 9000 N/A

hlq.ZOWE.AZWE001.SMPMCSU SEQ FB 80 1 N/A

z/OS UNIX
file system

U zFS N/A N/A 17095 N/A

Note: These are temporary data sets, which can be removed after the SMP/E install.

FMIDs deleted

Installing Zowe might result in the deletion of other FMIDs.

To see which FMIDs will be deleted, examine the ++VER statement in the SMPMCS of the product. If you do not
want to delete these FMIDs at this time, install Zowe into separate SMP/E target and distribution zones.

Note: These FMIDs are not automatically deleted from the Global Zone. If you want to delete these FMIDs from
the Global Zone, use the SMP/E REJECT NOFMID DELETEFMID command. See the SMP/E Commands book for
details.

Special considerations

Zowe has no special considerations for the target system.

Installation instructions

This section describes the installation method and the step-by-step procedures to install and activate the functions of
Zowe.

Notes:

• If you want to install Zowe into its own SMP/E environment, consult the SMP/E manuals for instructions on
creating and initializing the SMPCSI and SMP/E control data sets.

• You can use the sample jobs that are provided to perform part or all of the installation tasks. The SMP/E jobs
assume that all DDDEF entries that are required for SMP/E execution have been defined in appropriate zones.

• You can use the SMP/E dialogs instead of the sample jobs to accomplish the SMP/E installation steps.

 | User Guide | 69

SMP/E considerations for installing Zowe

Use the SMP/E RECEIVE, APPLY, and ACCEPT commands to install this release of Zowe.

SMP/E options subentry values

The recommended values for certain SMP/E CSI subentries are shown in the following table. Using values lower than
the recommended values can result in failures in the installation. DSSPACE is a subentry in the GLOBAL options
entry. PEMAX is a subentry of the GENERAL entry in the GLOBAL options entry. See the SMP/E manuals for
instructions on updating the global zone.

Subentry Value Comment

DSSPACE (1200,1200,1400) Space allocation

PEMAX SMP/E Default IBM recommends using the SMP/E
default for PEMAX.

Overview of the installation steps

Follow these high-level steps to download and install Zowe Open Source Project (Base).

1. Download the Zowe SMP/E package
2. Allocate file system to hold the download package on page 70
3. Upload the download package to the host on page 71
4. Extract and expand the compressed SMPMCS and RELFILEs on page 71
5. Sample installation jobs on page 73
6. Create SMP/E environment (optional)
7. Perform SMP/E RECEIVE
8. Allocate SMP/E target and distribution libraries
9. Allocate, create and mount ZSF files (Optional) on page 76
10. Allocate z/OS UNIX paths
11. Create DDDEF entries on page 77
12. Perform SMP/E APPLY
13. Perform SMP/E ACCEPT
14. Run REPORT CROSSZONE on page 78
15. Cleaning up obsolete data sets, paths, and DDDEFs on page 79

Download the Zowe SMP/E package

To download the Zowe SMP/E package, open your web browser and go to the Zowe Download website. Click the
Zowe SMP/E Alpha button to save the files to a folder on your desktop.

You will receive 2 files on your desktop.

• AZWE001.pax.Z (binary)

The SMP/E input data sets to install Zowe are provided as compressed files in AZWE001.pax.Z. This pax archive
file holds the SMP/E MCS and RELFILEs.

• AZWE001.readme.txt (text)

The README file AZWE001.readme.txt is a single JCL file containing a job with the job steps you need to
begin the installation, including comprehensive comments on how to tailor them. There is a sample job step that
executes the z/OS UNIX System Services pax command to extract package archives. This job also executes the
GIMUNZIP program to expand the package archives so that the data sets can be processed by SMP/E.

Review this file on your desktop and follow the instructions that apply to your system.

https://www.zowe.org/#download

 | User Guide | 70

Allocate file system to hold the download package

You can either create a new z/OS UNIX file system (zFS) or create a new directory in an existing file system to place
AZWE001.pax.Z. The directory that will contain the download package must reside on the z/OS system where the
function will be installed.

To create a new file system, and directory, for the download package, you can use the following sample JCL
(FILESYS).

Copy and paste the sample JCL into a separate data set, uncomment the job, and modify the job to update required
parameters before submitting it.

//FILESYS JOB <job parameters>
//*
//***
//* This job must be updated to reflect your environment.
//* This sample:
//* . Allocates a new z/OS UNIX file system
//* . Creates a mount point directory
//* . Mounts the file system
//*
//* - Provide valid job card information
//* - Change:
//* @zfs_path@
//* ----+----1----+----2----+----3----+----4----+----5
//* - To the absolute z/OS UNIX path for the download
//* package (starting with /)
//* - Maximum length is 50 characters
//* - Do not include a trailing /
//* @zfs_dsn@
//* - To your file system data set name
//*
//* Your userid MUST be defined as a SUPERUSER to successfully
//* run this job
//*
//***
//*
//CREATE EXEC PGM=IDCAMS,REGION=0M,COND=(0,LT)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (-
 NAME(@zfs_dsn@) -
 TRK(#size) -
 /*VOLUME(volser)*/ -
 LINEAR -
 SHAREOPTIONS(3) -
)
//*
// SET ZFSDSN='@zfs_dsn@'
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,COND=(0,LT),
// PARM='-aggregate &ZFSDSN -compat'
//*STEPLIB DD DISP=SHR,DSN=IOE.SIOELMOD before z/OS 1.13
//*STEPLIB DD DISP=SHR,DSN=SYS1.SIEALNKE from z/OS 1.13
//SYSPRINT DD SYSOUT=*
//*
//MOUNT EXEC PGM=IKJEFT01,REGION=0M,COND=(0,LT)
//SYSEXEC DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 PROFILE MSGID WTPMSG
 oshell umask 0022; +
 mkdir -p @zfs_path@
 MOUNT +
 FILESYSTEM('@zfs_dsn@') +

 | User Guide | 71

 MOUNTPOINT('@zfs_path@') +
 MODE(RDWR) TYPE(ZFS) PARM('AGGRGROW')
//*

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Upload the download package to the host

Upload the AZWE001.readme.txt file in text format and the AZWE001.pax.Z file in binary format from your
workstation to the z/OS UNIX file system. The instructions in this section are also in the AZWE001.readme.txt file
that you downloaded.

There are many ways to transfer the files or make them available to the z/OS system where the package will be
installed. In the following sample dialog, we use FTP from a Microsoft Windows command line to do the transfer.
This assumes that the z/OS host is configured as an FTP host/server and that the workstation is an FTP client.
Commands or other information entered by the user are in bold, and the following values are assumed.

User enters: Values

mvsaddr TCP/IP address or hostname of the z/OS system

tsouid Your TSO user ID

tsopw Your TSO password

d: Location of the downloaded files

@zfs_path@ z/OS UNIX path where to store the files. This matches
the @zfs_path@ variable you specified in the previous
step.

Important! The AZWE001.pax.Z file must be uploaded to the z/OS driving system in binary format, or the
subsequent UNPAX step will fail.

Sample FTP upload scenario:

C:/>ftp mvsaddrConnected to mvsaddr.200-FTPD1 IBM FTP CS %version% at mvsaddr, %time% on %date
%. 220 Connection will close if idle for more than 5 minutes.User (mvsaddr:(none)): tsouid331 Send password
pleasePassword: tsopw230 tsouid is loaded on. Working directory is "tsouid.".ftp> cd @zfs_path@250 HFS directory
@zfs_path@ is the current working directoryftp> ascii200 Representation type is Ascii NonPrintftp> put c:/
AZWE001.readme.txt200 Port request OK.150 Storing data set @zfs_path@/AZWE001.readme.txt250 Transfer
completed successfully.ftp: 0344 bytes sent in 0.01 sec. (1366.67 Kbs)ftp binary200 Representation type is Imageftp>
put c:\AZWE001.pax.Z200 Port request OK.145 Storing data set @zfs_path@/AZWE001.pax.Z250 Transfer
completed successfully.ftp: 524192256 bytes sent in 1.26 sec. (1040.52 Kbs)ftp: quit221 Quit command received.
Goodbye.

If you are unable to connect with ftp and only able to use sftp, the commands above are the same except that you
will use sftp at the command prompt instead of ftp. Also, because sftp only supports binary file transfer, the ascii
and binary commands should be omitted. After you transfer the AZWE001.readme.txt file, it will be in an ASCII
codepage so you need to convert it to EBCDIC before it can be used. To convert AZWE001.readme.txt to EBCDIC,
log in to the distribution system using ssh and run an ICONV command.

C:>/ssh tsouid@mvsaddrtsouid@mvsaddr's password: tsopw/u/
tsouid:>cd:@zfs_path@@zfs_path:>@zfs_path:>iconv -f ISO8859-1 -t IBM-1047 AZWE001.readme.txt >
AZWE001.readme.EBCDIC@zfs_path:>rm AZWE001.readme.txt@zfs_path:>mv AZWE001.readme.EBCDIC
AZWE001.readme.txt@zfs_path:>exitC:>/

Extract and expand the compressed SMPMCS and RELFILEs

The AZWE001.readme.txt file uploaded in the previous step holds a sample JCL to expand the compressed SMPMCS
and RELFILEs from the uploaded AZWE001.pax.Z file into data sets for use by the SMP/E RECEIVE job. The JCL
is repeated here for your convenience.

• @zfs_path@ matches the variable that you specified in the previous step.

 | User Guide | 72

• If the oshell command gets a RC=256 and message "pax: checksum error on tape (got ee2e, expected 0)", then
the archive file was not uploaded to the host in binary format.

• GIMUNZIP allocates data sets to match the definitions of the original data sets. You might encounter errors if
your SMS ACS routines alter the attributes used by GIMUNZIP. If this occurs, specify a non-SMS managed
volume for the GINUMZIP allocation of the data sets. For example:

storclas-"storage_class" volume="data_set_volume"
newname-"..."/>

• Normally, your Automatic Class Selection (ACS) routines decide which volumes to use. Depending on your ACS
configuration, and whether your system has constraints on disk space, units, or volumes, some supplied SMP/E
jobs might fail due to volume allocation errors. See GIMUNZIP on page 73 for more details.

//EXTRACT JOB <job parameters>
//* - Change:

//* @PREFIX@

//* ----+----1----+----2----+

//* - To your desired data set name prefix

//* - Maximum length is 25 characters

//* - This value is used for the names of the

//* data sets extracted from the download-package

//* @zfs_path@

//* ----+----1----+----2----+----3----+----4----+----5

//* - To the absolute z/OS UNIX path for the download

//* package (starting with /)

//* - Maximum length is 50 characters

//* - Do not include a trailing /

//*
//UNPAX EXEC PGM=IKJEFT01,REGION=0M,COND=(0,LT)
//SYSEXEC DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 oshell cd @zfs_path@/ ; +
 pax -rvf AZWE001.pax.Z
//*
//GIMUNZIP EXEC PGM=GIMUNZIP,REGION=0M,COND=(0,LT)
//*STEPLIB DD DISP=SHR,DSN=SYS1.MIGLIB
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPDIR DD PATHDISP=KEEP,
// PATH='@zfs_path@/'
//SYSIN DD *
<GIMUNZIP>
<ARCHDEF archid="AZWE001.SMPMCS"
newname="@PREFIX@.ZOWE.AZWE001.SMPMCS"/>
<ARCHDEF archid="AZWE001.F1"
newname="@PREFIX@.ZOWE.AZWE001.F1"/>

 | User Guide | 73

<ARCHDEF archid="AZWE001.F2"
newname="@PREFIX@.ZOWE.AZWE001.F2"/>
<ARCHDEF archid="AZWE001.F4"
newname="@PREFIX@.ZOWE.AZWE001.F4"/>
</GIMUNZIP>
//*

GIMUNZIP

The GIMUNZIP job may issue allocation error messages for SYSUT1 similar to these:

IEF244I ZWE0GUNZ GIMUNZIP - UNABLE TO ALLOCATE 1 UNIT(S) 577
 AT LEAST 1 OFFLINE UNIT(S) NEEDED.
IEF877E ZWE0GUNZ NEEDS 1 UNIT(S) 578
FOR GIMUNZIP SYSUT1
FOR VOLUME SCRTCH- 1
OFFLINE
0AA4-0AA6 0AD0-0AD4
:
*07 IEF238D ZWE0GUNZ - REPLY DEVICE NAME OR 'CANCEL'.
 CNZ2605I At 10.10.22 the system will automatically 581
 reply: CANCEL
 to the following WTOR:
 0007 IEF238D ZWE0GUNZ - REPLY DEVICE NAME OR 'CANCEL'.
 R 0007,CANCEL
 IKJ56883I FILE SYSUT1 NOT ALLOCATED, REQUEST CANCELED
 - --TIMINGS (MINS.)--
 -JOBNAME STEPNAME PROCSTEP RC EXCP TCB SRB CLOCK
 -ZWE0GUNZ 12 2311 ****** .00 2.4
 -ZWE0GUNZ ENDED. NAME- TOTAL TCB CPU TIME=
 $HASP395 ZWE0GUNZ ENDED - RC=0012

The job will end with RC=12. If this happens, add a TEMPDS control statement to the existing SYSIN as shown
below:

//SYSIN DD *
<GIMUNZIP>
<TEMPDS volume="&VOLSER"> </TEMPDS>
<ARCHDEF archid="&FMID..SMPMCS"
newname="@PREFIX@.ZOWE.&FMID..SMPMCS"/>
<ARCHDEF archid="&FMID..F1"
newname="@PREFIX@.ZOWE.&FMID..F1"/>
<ARCHDEF archid="&FMID..F2"
newname="@PREFIX@.ZOWE.&FMID..F2"/>
<ARCHDEF archid="&FMID..F4"
newname="@PREFIX@.ZOWE.&FMID..F4"/>
</GIMUNZIP>
//*

where, &VOLSER is a DISK volume with sufficient free space to hold temporary copies of the RELFILES. As a
guide, this may require 1,000 cylinders, or about 650 MB.

Sample installation jobs

The following sample installation jobs are provided in hlq.ZOWE.AZWE001.F1, or equivalent, as part of the
project to help you install Zowe:

Job Name Job Type Description RELFILE

ZWE1SMPE SMP/E Sample job to create an
SMP/E environment
(optional)

ZOWE.AZWE001.F1

 | User Guide | 74

Job Name Job Type Description RELFILE

ZWE2RCVE RECEIVE Sample SMP/E RECEIVE
job

ZOWE.AZWE001.F1

ZWE3ALOC ALLOCATE Sample job to allocate
target and distribution
libraries

ZOWE.AZWE001.F1

ZWE4ZFS ALLOMZFS Sample job to allocate,
create mountpoint, and
mount zFS data sets

ZOWE.AZWE001.F1

ZWE5MKD MKDIR Sample job to invoke the
supplied ZWEMKDIR
EXEC to allocate file
system paths

ZOWE.AZWE001.F1

ZWE6DDEF DDDEF Sample job to define SMP/
E DDDEFs

ZOWE.AZWE001.F1

ZWE7APLY APPLY Sample SMP/E ACCEPT
job

ZOWE.AZWE001.F1

ZWE8ACPT ACCEPT Sample SMP/E ACCEPT
job

ZOWE.AZWE001.F1

Note: When Zowe is downloaded from the web, the RELFILE data set name will be prefixed by your chosen high-
level qualifier, as documented in the Extract and expand the compressed SMPMCS and RELFILEs on page 71
section.

You can access the sample installation jobs by performing an SMP/E RECEIVE (refer to Perform SMP/E RECEIVE),
then copy the jobs from the RELFILES to a work data set for editing and submission.

You can also copy the sample installation jobs from the product files by submitting the following job. Before you
submit the job, add a job statement and change the lowercase parameters to uppercase values to meet the requirements
of your site.

//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//IN DD DSN=ZOWE.AZWE001.F1,
// DISP=SHR,
//* VOL=SER=filevol,
// UNIT=SYSALLDA
//OUT DD DSNAME=jcl-library-name,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(TRK,(5,5,5)),
//* VOL=SER=dasdvol,
// UNIT=SYSALLDA
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSIN DD *
 COPY INDD=IN,OUTDD=OUT
/*

See the following information to update the statements in the sample above:

• IN:

• filevol is the volume serial of the DASD device where the downloaded files reside.

 | User Guide | 75

• OUT:

• jcl-library-name is the name of the output data set where the sample jobs are stored.
• dasdvol is the volume serial of the DASD device where the output data set resides. Uncomment the statement

is a volume serial must be provided.

The following supplied jobs might fail due to disk space allocation errors, as mentioned above for GIMUNZIP on
page 73. Review the following sections for example error and actions that you can take to resolve the error.

• ZWE2RCVE on page 75
• ZWE1SMPE and ZWE4ZFS on page 75
• ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

ZWE2RCVE

IEC032I E37-04,IGC0005E,ZWE2RCVE,RECEIVE,SMPTLIB,0AC0,USER10,
ZOWE.SMPE.AZWE001.F4

Add space and directory allocations to this SMPCNTL statement in the preceding ZWE1SMPE job:

ADD DDDEF(SMPTLIB) UNIT(SYSALLDA) .

This makes it as below:

ADD DDDEF(SMPTLIB) CYL SPACE(2,1) DIR(10) UNIT(SYSALLDA) .

ZWE1SMPE and ZWE4ZFS

Example error

IDC3506I REQUIRED VOLUMES AND/OR DEVICETYPES HAVE BEEN OMITTED
IDC3003I FUNCTION TERMINATED. CONDITION CODE IS 12

IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 12

Uncomment the VOLUMES(...) control statements and refer to the comments at the start of the JCL job for related
necessary changes.

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

Example error

IEF257I ZWE3ALOC ALLOCD ALLOCD AZWEZFS - SPACE REQUESTED NOT AVAILABLE
IEF272I ZWE3ALOC ALLOCD ALLOCD - STEP WAS NOT EXECUTED.

Uncomment the VOL=SER=&... control statements and refer to the comments at the start of the JCL job for related
necessary changes.

Create SMP/E environment (Optional)

If you are using an existing CSI, do not run the sample job ZWE1SMPE.

If you choose to create a new SMP/E environment for this install, a sample job is provided or you may choose to use
your own JCL. If you choose to use the sample job provided, edit and submit ZWE1SMPE. Consult the instructions
in the sample job for more information.

Note: If you want to use the default of letting your Automatic Class Selection (ACS) routines decide which volume to
use, comment out the following line in the sample job ZWE1SMPE.

// SET CSIVOL=#csivol

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

 | User Guide | 76

Perform SMP/E RECEIVE

Edit and submit sample job ZWE2RCVE to perform the SMP/E RECEIVE for Zowe. Consult the instructions in the
sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate SMP/E target and distributions libraries

Edit and submit sample job ZWE3ALOC to allocate the SMP/E target and distribution libraries for Zowe. Consult the
instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate, create and mount ZSF files (Optional)

This job allocates, creates a mountpoint, and mounts zFS data sets.

If you plan to install Zowe into a new z/OS UNIX file system, you can edit and submit the optional ZWE4ZFS job to
perform the following tasks. Consult the instructions in the sample job for more information.

• Create the z/OS UNIX file system
• Create a mountpoint
• Mount the z/OS UNIX file system on the mountpoint

The recommended z/OS UNIX file system type is zFS. The recommended mountpoint is /usr/lpp/zowe.

Before running the sample job to create the z/OS UNIX file system, you must ensure that OMVS is active on the
driving system. zFS must be active on the driving system if you are installing Zowe into a file system that is zFS.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the
new file system at IPL time. This action can be helpful if an IPL occurs before the installation is completed.

MOUNT FILESYSTEM('#dsn')
 MOUNTPOINT('/usr/lpp/zowe')
 MODE(RDWR) /* can be MODE(READ) */
 TYPE(ZFS) PARM('AGGRGROW') /* zFS, with extents */

See the following information to update the statements in the previous sample:

• #dsn is the name of the data set holding the z/OS UNIX file system.
• /usr/lpp/zowe is the name of the mountpoint where the z/OS UNIX file system will be mounted.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate z/OS UNIX paths

The target system HFS or zFS data set must be mounted on the driving system when running the sample ZWE5MKD
job since the job will create paths in the HFS or zFS.

Before running the sample job to create the paths in the file system, you must ensure that OMVS is active on the
driving system and that the target system's HFS or zFS file system is mounted on the driving system. zFS must be
active on the driving system if you are installing Zowe into a file system that is zFS.

If you plan to install Zowe into a new HFS or zFS file system, you must create the mountpoint and mount the new file
system on the driving system for Zowe.

The recommended mountpoint is /usr/lpp/zowe.

Edit and submit sample job ZWE5MKD to allocate the HFS or zFS paths for Zowe. Consult the instructions in the
sample job for more information.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the
new file system at IPL time. This action can be helpful if an IPL occurs before the installation is completed.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

 | User Guide | 77

Create DDDEF entries

Edit and submit sample job ZWE6DDEF to create DDDEF entries for the SMP/E target and distribution libraries for
Zowe. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Perform SMP/E APPLY

In this step, you run the sample job ZWE7APLY to apply Zowe. This step can take a long time to run, depending on
the capacity of your system, and on what other jobs are running.

Follow these steps

1. Ensure that you have the latest HOLDDATA; then edit and submit sample job ZWE7APLY to perform an SMP/E
APPLY CHECK for Zowe. Consult the instructions in the sample job for more information.

The latest HOLDDATA is available through several different portals, including http://service.software.ibm.com/
holdata/390holddata.html. The latest HOLDDATA may identify HIPER and FIXCAT APARs for the FMIDs you
will be installing. An APPLY CHECK will help you determine if any HIPER or FIXCAT APARs are applicable
to the FMIDs you are installing. If there are any applicable HIPER of FIXCAT APARs, the APPLY CHECK will
also identify fixing PTFs that will resolve the APARs, if a fixing PTF is available.

You should install the FMIDs regardless of the status of unresolved HIPER or FIXCAT APARs. However, do
not deploy the software until the unresolved HIPER and FIXCAT APARs have been analyzed to determine their
applicability. That is, before deploying the software either ensure fixing PTFs are applied to resolve all HIPER or
FIXCAT APARs, or ensure the problems reported by all HIPER or FIXCAT APARs are not applicable to your
environment.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ,
and IFREQ on the APPLY CHECK. The SMP/E root cause analysis identifies the cause only of errors and not of
warnings (SMP/E treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings, instead of errors).

Here are sample APPLY commands:

a. To ensure that all recommended and critical service is installed with the FMIDs, receive the latest
HOLDDATA and use the APPLY CHECK command as follows

APPLY S(fmid,fmid,...) CHECK
FORFMID(fmid,fmid,...)
SOURCEID(RSU*)
FIXCAT(IBM.PRODUCTINSTALL-REQUIREDSERVICE)
GROUPEXTEND .

• Some HIPER APARs might not have fixing PTFs available yet. You should analyze the symptom flags for the
unresolved HIPER APARs to determine if the reported problem is applicable to your environment and if you
should bypass the specific ERROR HOLDs in order to continue the installation of the FMIDs.

• This method requires more initial research, but can provide resolution for all HPERs that have fixing PTFs
available and not in a PE chain. Unresolved PEs or HIPERs might still exist and require the use of BYPASS.

a. To install the FMIDs without regard for unresolved HIPER APARs, you can add the
BYPASS(HOLDCLASS(HIPER)) operand to the APPLY CHECK command. This will allow you to install
FMIDs, even though one of more unresolved HIPER APARs exist. After the FMIDs are installed, use the
SMP/E REPORT ERRSYSMODS command to identify unresolved HIPER APARs and any fixing PTFs.

APPLY S(fmid,fmid,...) CHECK
FORFMID(fmid,fmid,...)
SOURCEID(RSU*)
FIXCAT(IBM.PRODUCTINSTALL-REQUIREDSERVICE)
GROUPEXTEND
BYPASS(HOLDCLASS(HIPER)) .

http://service.software.ibm.com/holdata/390holddata.html
http://service.software.ibm.com/holdata/390holddata.html

 | User Guide | 78

 ..any other parameters documented in the program directory

• This method is quicker, but requires subsequent review of the Exception SYSMOD report produced by the
REPORT ERRSYSMODS command to investigate any unresolved HIPERs. If you have received the latest
HOLDDATA, you can also choose to use the REPORT MISSINGFIX command and specify Fix Category
IBM.PRODUCTINSTALL-REQUIREDSERVICE to investigate missing recommended service.

• If you bypass HOLDs during the installation of the FMIDs because fixing PTFs are not yet available, you
can be notified when the fixing PTFs are available by using the APAR Status Tracking (AST) function of the
ServiceLink or the APAR Tracking function of Resource Link.

2. After you take actions that are indicated by the APPLY CHECK, remove the CHECK operand and run the job
again to perform the APPLY.

Note: The GROUPEXTENDED operand indicates the SMP/E applies all requisite SYSMODs. The requisite
SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from APPLY CHECK: You will receive a return code of 0 if the job runs
correctly.

Expected Return Codes and Messages from APPLY: You will receive a return code of 0 if the job runs correctly.

Perform SMP/E ACCEPT

Edit and submit sample job ZWE8ACPT to perform an SMP/E ACCEPT CHECK for Zowe. Consult the instructions
in the sample job for more information.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ, and
IFREQ on the ACCEPT CHECK. The SMP/E root cause analysis identifies the cause of errors but not warnings
(SMP/E treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings rather than errors).

Before you use SMP/E to load new distribution libraries, it is recommended that you set the ACCJCLIN indicator
in the distribution zone. In this way, you can save the entries that are produced from JCLIN in the distribution zone
whenever a SYSMOD that contains inline JCLIN is accepted. For more information about the ACCJCLIN indicator,
see the description of inline JCLIN in the SMP/E Commands book for details.

After you take actions that are indicated by the ACCEPT CHECK, remove the CHECK operand and run the job again
to perform the ACCEPT.

Note: The GROUPEXTEND operand indicates that SMP/E accepts all requisite SYSMODs. The requisite
SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from ACCEPT CHECK: You will receive a return code of 0 if this job
runs correctly.

If PTFs that contain replacement modules are accepted, SMP/E ACCEPT processing will link-edit or bind the
modules into the distribution libraries. During this processing, the Linkage Editor or Binder might issue messages that
indicate unresolved external references, which will result in a return code of 4 during the ACCEPT phase. You can
ignore these messages, because the distribution libraries are not executable and the unresolved external references do
not affect the executable system libraries.

Expected Return Codes and Messages from ACCEPT: You will receive a return code of 0 if this job runs
correctly.

Run REPORT CROSSZONE

The SMP/E REPORT CROSSZONE command identifies requisites for products that are installed in separate zones.
This command also creates APPLY and ACCEPT commands in the SMPPUNCH data set. You can use the APPLY
and ACCEPT commands to install those cross-zone requisites that the SMP/E REPORT CROSSZONE command
identifies.

After you install Zowe, it is recommended that you run REPORT CROSSZONE against the new or updated target
and distribution zones. REPORT CROSSZONE requires a global zone with ZONEINDEX entries that describe all the
target and distribution libraries to be reported on.

For more information about REPORT CROSSZONE, see the SMP/E manuals.

 | User Guide | 79

Cleaning up obsolete data sets, paths, and DDDEFs

The web download data sets listed in DASD storage requirements on page 66 are temporary data sets. You can
delete these data sets after you complete the SMP/E install.

Activating Zowe
File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you do not
have to take further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

• For information about how to customize Zowe, see Zowe Application Framework configuration on page 103.
• For information about how to use Zowe, see Getting started tutorial on page 121.

Configuring the Zowe runtime

After you install Zowe™ through either the convenience build by running the zowe-install.sh -I command or
through the SMP/E build by running the RECEIVE and APPLY jobs, you will have a Zowe runtime directory. You
must configure the Zowe runtime before it can be started.

1. Prerequisites on page 79
2. Configuring the Zowe runtime directory on page 80

a. Environment variables on page 80
b. Configuration variables on page 81

• Address space name on page 81
• Port allocations on page 82
• PROCLIB member name on page 83
• Certificates on page 83
• Unix File Permissions on page 85

3. Configuring the ZOWESVR started task on page 85

a. Creating the ZOWESVR PROCLIB member to launch the Zowe runtime on page 85
b. Configuring ZOWESVR to run under the correct user ID on page 86
c. Granting users permission to access Zowe on page 86

4. The Zowe Cross Memory Server on page 87

• Manually installing the Zowe Cross Memory Server on page 87
• Installing the Cross Memory Server using the script on page 94

5. Starting and stopping the Zowe runtime on z/OS on page 96

• Starting the ZOWESVR PROC on page 96
• Stopping the ZOWESVR PROC on page 96

6. Starting and stopping the Zowe Cross Memory Server on z/OS on page 97

Prerequisites

• The user ID that is used to perform the configuration part of the installation must have authority to read the z/
OSMF keyring. For how to check the name of the keyring and grant read access to the keyring, see the Trust z/
OSMF certificate topic.

 | User Guide | 80

• The user ID that is used to perform the configuration part of the installation must have READ permission for the
BPX.JOBNAME FACILITY class. To display who is authorized to the FACILITY class, issue the following
command:

RLIST FACILITY BPX.JOBNAME AUTHUSER

Additionally, you need to activate facility class, permit BPX.JOBNAME, and refresh facility class:

SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)
PERMIT BPX.JOBNAME CLASS(FACILITY) ID(&useridToAuthorizeHere) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

For more information, see Setting up the UNIX-related FACILITY and SURROGAT class profiles.

Configuring the Zowe runtime directory

You configure the Zowe runtime directory by running the script scripts/configure/zowe-configure.sh.

Before you run the script scripts/configure/zowe-configure.sh, check the values of Environment
variables on page 80 and Configuration variables on page 81 in the scripts/configure/zowe-
install.yaml file, as these are used to configure Zowe during execution of the script zowe-configure.sh.

For the convenience build, the location of the Zowe runtime directory will be the value of the install:rootDir
parameter from the file scripts/configure/zowe-install.yaml.

Environment variables

To configure the Zowe runtime, a number of ZFS folders need to be located for prerequisites on the platform
that Zowe needs to operate. These can be set as environment variables before the script is run. If the environment
variables are not set, the configuration script will attempt to locate default values.

• ZOWE_JAVA_HOME: The path where 64 bit Java 8 or later is installed. Defaults to /usr/lpp/java/
J8.0_64.

• ZOWE_EXPLORER_HOST: The hostname of where the explorer servers are launched from. Defaults to running
hostname -c.

When you run the configuration script for the first time, the script attempts to locate environment variables. The
configuration script creates a files named .zowe_profile that resides in the current user's home directory and
adds lines that specify the values of the environment variables to the file. The next time you run the install script, it
uses the same values in this file to avoid having to define them each time a runtime is configured.

Each time you run the configuration script, it retrieves environment variable settings in the following ways.

• When the .zowe-profile file exists in the home directory, the install script uses the values in this file to set
the environment variables.

• When the .zowe-profile file does not exist, the configuration script checks if the .profile file exists in
the home directory. If it does exist, the install script uses the values in this file to set the environment variables.
The install script does not update or execute the .profile file.

You can create, edit, or delete the .zowe_profile file (as needed) before each install to set the variables to
the values that you want. We recommend that you do not add commands to the .zowe_profile file, with the
exception of the export command and shell variable assignments.

Notes:

• If you wish to set the environment variables for all users, add the lines to assign the variables and their values to
the file /etc/profile.

• If the environment variables for ZOWE_ZOSMF_PATH, ZOWE_JAVA_HOME are not set and the install script
cannot determine a default location, the install script will prompt for their location. The install script will not
continue unless valid locations are provided.

• Ensure that the value of the ZOWE_EXPLORER_HOST variable is accessible from a machine external to the z/OS
environment thus users can log in to Zowe from their desktops. When there is no environment variable set and

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/fclass.htm

 | User Guide | 81

there is no .zowe_profile file with the variable set, the install script will default to the value of hostname
-c. In this case, ensure that the value of hostname -c is externally accessible from clients who want to use
Zowe as well as internally accessible from z/OS itself. If not accessible, then set an environment variable with
ZOWE_EXPLORER_HOST set to the correct host name, or create and update the .zowe_profile file in the
current user's home directory.

• Ensure that the value of the ZOWE_IPADDRESS variable is set correctly for your system. This should be the
IP address of your z/OS system which is externally accessible from clients who want to use Zowe. This is
particularly important for zD&T and cloud systems, where ping or dig on z/OS would return a different IP
address from the one that external clients would use to access z/OS.

Configuration variables

The file scripts/configure/zowe-install.yaml contains key:value pairs that configure the Zowe
runtime.

Directory that stores configuration

install:userDir is the directory that Zowe uses to store configuration. The default directory is ~/zowe-
user-dir where ~ is the home directory of the user who performs the installation. If you use the default directory,
ensure that the account that runs Zowe (default of IZUSVR) has write permission to both the home directory and the
zowe-user-dir directory.

Address space name

install:prefix defines a prefix for Zowe address space STC name associated with USS processes. With this,
the individual address spaces can be distinguished from each other in RMF records or SDSF views.

STC names have certain components and use the following format:

pfxnSS

where:

• pfx - Prefix that contains up to four characters, for example, ZOWE.
• n - Instance number
• SS - A subcomponent. SS can be one of the following values:

• AC - API ML Catalog
• AD - API ML Discovery Service
• AG - API ML Gateway
• DS - Node.js instance for the ZSS Server
• DT - Zowe Desktop Application Server
• EF - Explorer API Data Sets
• EJ - Explorer API Jobs
• SZ - ZSS Server
• UD - Explorer UI Data Sets
• UJ - Explorer UI Jobs
• UU - Explorer UI USS

The STC name of the main started task is pfxnSV. To view all the STCs for your instance of ZOWE in SDSF, you
can use the PREFIX pfxn*.

Example:

install:
prefix=ZOWE
instance=1

 | User Guide | 82

in the zowe-install.yaml file defines a prefix of ZOWE for the STC, so the first instance of Zowe API ML
Gateway identifier will be as follows:

ZOWE1AG

Port allocations

The port values are defined in the scripts/configure/zowe-install.yaml file.

• Zowe API Mediation Layer has three HTTPS ports, one for each micro-service; API Gateway, API Discovery and
API Catalog.

• z/OS Services has HTTPS ports for each of its micro-services; jobs and the data sets.
• z/OS desktop apps has three ports for each of its explorer apps; USS Explorer, MVS Explorer, JES Explorer
• The Zowe App Server has two ports: the HTTPS port used by the Zowe Application Server, and an HTTP port

that is used by the ZSS Server.

Example:

 api-mediation:
 catalogPort=7552
 discoveryPort=7553
 gatewayPort=7554
 externalCertificate=
 externalCertificateAlias=
 externalCertificateAuthorities=
 verifyCertificatesOfServices=true
 enableSso=false
 zosmfKeyring=IZUKeyring.IZUDFLT

 zos-services:
 jobsAPIPort=8545
 mvsAPIPort=8547

 zowe-desktop-apps:
 jobsExplorerPort=8546
 mvsExplorerPort=8548
 ussExplorerPort=8550

 zlux-server:
 httpsPort=8544
 zssPort=8542

Notes: If all of the default port values are acceptable, the ports do not need to be changed. To allocate ports, ensure
that the ports are not in use for the Zowe runtime servers.

To determine which ports are not available, follow these steps:

1. Display a list of ports that are in use with the following command:

TSO NETSTAT

2. Display a list of reserved ports with the following command:

TSO NETSTAT PORTLIST

The zowe-install.yaml file also contains the telnet and SSH port with defaults of 23 and 22. If your z/OS
LPAR is using different ports, edit the values. This allows the TN3270 terminal desktop application to connect as
well as the VT terminal desktop application.

 | User Guide | 83

Note: Unlike the ports needed by the Zowe runtime for its Zowe Application Framework and z/OS Services which
must be unused, the terminal ports are expected to be in use.

 # Ports for the TN3270 and the VT terminal to connect to
 terminals:
 sshPort=22
 telnetPort=23

PROCLIB member name

When the Zowe runtime is launched, it is run under a z/OS started task (STC). The PROCLIB can be automatically
created if desired, for example if the install is being run as part of a pipeline. Alternatively#you can disable auto-
creation by commenting out the zowe-server-proclib: block.

The scripts/configure/zowe-install.yaml file contains the dataset name and member name of the
ZOWESVR JCL to be used to run Zowe.

Example:

 # started task JCL member for Zowe job
 zowe-server-proclib:
 # dsName=SYS1.PROCLIB
 dsName=auto
 memberName=ZOWESVR

Follow these steps:

1. Specify the dataset name of the PROCLIB member you want to use with the dsName tag. For example,

 dsName=user.proclib

The following guidelines apply.

• Do not enclose the dataset name in quotes.
• The dataset name is not case-sensitive, but the dsName tag is case-sensitive and must be written exactly as

shown.
• The dataset name must be an existing z/OS dataset in the PROCLIB concatenation. The user who installs

Zowe must have update access to this dataset.
• If you omit the dsName tag or specify dsName=auto, the install script scans the available PROCLIB

datasets and places the JCL member in the first dataset where the installing user has write access.
2. Specify the member name of the PROCLIB member you want to use with the memberName tag. For example,

 memberName=ZOWEABC

The following guidelines apply.

• Do not enclose the member name in quotes.
• The member name is not case-sensitive, but the memberName tag is case-sensitive and must be written

exactly as shown.
• The member name must be a valid PDS member name in z/OS. If the member already exists, it will be

overwritten.
• If you omit the memberName tag or specify memberName=, the install script uses ZOWESVR.

Certificates

You can use existing certificate signed by an external certificate authority (CA) for HTTPS ports in API Mediation
Layer and Zowe Application Framework, or else you can let the Zowe configuration script generate a certificated
self-signed by the local API Mediation CA.

If you let the Zowe configuration generate a self-signed certificate, then it needs to be imported into your browser to
avoid challenges about untrusted network traffic. See Import the local CA certificate to your browser.

 | User Guide | 84

You can use an existing server certificate that is signed by an external CA such as a CA managed by the IT
department of your company. The benefit of such certificate is that it will be trusted by browsers in your company.

You can even use a public certificate authority such as Symantec, Comodo, or GoDaddy. Such certificate are trusted
by all browsers and most REST API clients. This is, however, a manual process of requesting a certificate. As such,
we recommend to start with the local API Mediation Layer CA for an initial evaluation.

You can use an existing certificate with the following procedure.

Follow these steps:

1. Update the value of externalCertificate in the api-mediation section of the scripts/
configure/zowe-install.yaml file. The value needs to point to a keystore in PKCS12 format that
contains the certificate with its private key. The file needs to be transferred as a binary to the z/OS system.
Currently only the PKCS12 keystore with the password set to password are supported.

2. Update the value of externalCertificateAlias to the alias of the server certificate in the keystore.

Note: If you don't know the certificate alias, run the following command where externalCertificate.p12
is a value of externalCertificate in the api-mediation section of the scripts/configure/
zowe-install.yaml file.

keytool -list -keystore externalCertificate.p12 -storepass password -
storetype pkcs12 -v

Expected output:

Keystore type: PKCS12
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: apiml
Creation date: Oct 9, 2019
Entry type: PrivateKeyEntry
Certificate chain length: 3
...

In this case, alias can be found in Alias name: apiml. Therefore, set
externalCertificateAlias=apiml.

3. Update the value of externalCertificateAuthorities to the path of the public certificate of the
certificate authority that has the signed the certificate. You can add additional certificate authorities separated by
spaces. This can be used for certificate authorities that have signed the certificates of the services that you want to
access via the API Mediation Layer.

4. (Optional) If you have trouble getting the certificates and you want only to evaluate Zowe, you can switch off the
certificate validation by setting verifyCertificatesOfServices=false. The HTTPS will still be used
but the API Mediation Layer will not validate any certificate.

Important! Switching off certificate evaluation is a non-secure setup.

Example:

 api-mediation:
 externalCertificate=/path/to/keystore.p12
 externalCertificateAlias=servercert
 externalCertificateAuthorities=/path/to/cacert.cer
 verifyCertificatesOfServices=true

You may also receive the following message:

apiml_cm.sh --action trust-zosmf has failed.

 | User Guide | 85

WARNING: z/OSMF is not trusted by the API Mediation Layer. Follow
 instructions in Zowe documentation about manual steps to trust z/OSMF

This error does not interfere with installation progress and can be remediated after the installation completes. See
Trust z/OSMF Certificate for more details.

Unix File Permissions

The next configuration step is to set the file and directory permissions correctly to allow the Zowe runtime servers to
start and operate successfully.

The configuration script will execute the file scripts/zowe-runtime-authorize.sh in the Zowe runtime
directory.

• If the script is successful, the result is reported.
• If for any reason the script fails to run because of insufficient authority by the user running the install, the

install process reports the errors. A user with sufficient authority should then run the zowe-runtime-
authorize.sh.

• If you attempt to start the Zowe runtime servers without the zowe-runtime-authorize.sh having
successfully completed, the results are unpredictable and Zowe runtime startup or runtime errors will occur.

Configuring the ZOWESVR started task

Zowe has a number of runtimes on z/OS: the z/OS Service microservice server, the Zowe Application Server, and
the Zowe API Mediation Layer microservices. A single PROCLIB is used to start all of these microservices. The
configuration step of the Zowe runtime will create the PROCLIB member and by default attempt to add it to the first
available PROCLIB in the JES2 concatenation path.

Creating the ZOWESVR PROCLIB member to launch the Zowe runtime

Note: The name of the PROCLIB member might vary depending on the standards in place at each z/OS site, however
for this documentation, the PROCLIB member is called ZOWESVR.

At the end of the configuration, a Unix file ZOWESVR.jcl is created under the scripts runtime directory. The
contents of this file need to placed in a JCL member of the PROCLIB concatenation for the Zowe runtime in order
for it to be executed as a started task. By default the configuration script does this automatically. If the user specifies
dsName=auto, or omits the dsName tag, or sets it to null by coding dsName=, the install script proceeds as
follows and stops after the first successful write to the destination PROCLIB.

1. Try JES2 PROCLIB concatenation.
2. Try master JES2 JCL.
3. Try SYS1.PROCLIB.

If this succeeds, you will see a message like the following one:

PROC ZOWESVR placed in USER.PROCLIB

Otherwise you will see messages beginning with the following information:

Failed to put ZOWESVR.JCL in a PROCLIB dataset.

In this case, you need to copy the PROC manually. Issue the TSO oget command to copy the ZOWESVR.jcl file to
the preferred PROCLIB:

oget '$INSTALL_DIR/files/templates/ZOWESVR.jcl' 'MY.USER.PROCLI(ZOWESVR)'

You can place the PROC in any PROCLIB data set in the PROCLIB concatenation, but some data sets such as
SYS1.PROCLIB might be restricted, depending on the permission of the user.

 | User Guide | 86

You can tailor the JCL at this line

//ZOWESVR PROC SRVRPATH='{{root_dir}}'

to replace the root_dir with the location of the Zowe runtime directory that contains the z/OS Services. The
install process inserts the expanded install:rootDir value from the scripts/configure/zowe-
install.yaml file into the SRVRPATH for you by default. Otherwise you must specify that path on the START
command when you start Zowe in SDSF:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR'

Configuring ZOWESVR to run under the correct user ID

The ZOWESVR must be configured as a started task (STC) under the IZUSVR user ID. This only needs to be
done once per z/OS system and would be typically done the first time you configure a Zowe runtime. If the Zowe
runtime is uninstalled or a new Zowe is installed and configured, you do not need to re-run the step to associate the
ZOWESVR STC with the Zowe user ID of IZUSVR.

To configure ZOWESVR to run as a STC under the user ID of IZUSVR, you can run the convenience script
scripts/configure/zowe-config-stc.sh in the runtime folder.

Alternatively, if you do not wish to run this script, you can manually configure ZOWESVR to run under the IZUSVR
user ID by taking the following steps.

Note: You must replace ZOWESVR in the commands below with the name of your PROCLIB member that you
specified as memberName=ZOWESVR in the scripts/configure/zowe-install.yaml file.

• If you use RACF, issue the following commands:

RDEFINE STARTED ZOWESVR.* UACC(NONE) STDATA(USER(IZUSVR) GROUP(IZUADMIN)
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
SETROPTS REFRESH RACLIST(STARTED)

• If you use CA ACF2, issue the following commands:

SET CONTROL(GSO)
INSERT STC.ZOWESVR LOGONID(IZUSVR) GROUP(IZUADMIN) STCID(ZOWESVR)
F ACF2,REFRESH(STC)

• If you use CA Top Secret, issue the following commands:

TSS ADDTO(STC) PROCNAME(ZOWESVR) ACID(IZUSVR)

Granting users permission to access Zowe

TSO user IDs using Zowe must have permission to access the z/OSMF services that are used by Zowe. They should
be added to the the IZUUSER group for standard users or IZUADMIN for administrators,

• If you use RACF, issue the following command:

CONNECT (userid) GROUP(IZUADMIN)

• If you use CA ACF2, issue the following commands:

ACFNRULE TYPE(TGR) KEY(IZUADMIN) ADD(UID(<uid string of user>) ALLOW)
F ACF2,REBUILD(TGR)

• If you use CA Top Secret, issue the following commands:

TSS ADD(userid) PROFILE(IZUADMIN)
TSS ADD(userid) GROUP(IZUADMGP)

 | User Guide | 87

The Zowe Cross Memory Server

The Zowe Cross Memory Server provides privileged cross-memory services to Zowe. The Zowe Desktop requires
that the server be installed, configured, and started. The Zowe API Mediation Layer does not.

Overview

The Cross Memory Server has two components: an angel process server and its auxiliary address spaces. Each runs
as a started task. The Cross Memory Server uses the angel process server address space and starts, controls, and
delegates work to the auxiliary (AUX) address spaces.

An example use case would be a system service that requires supervisor state but cannot run in cross-memory mode.
The service can run in an AUX address space and be invoked by the Cross Memory Server, which acts as a proxy for
unauthorized users of the service.

To install and configure the Cross Memory Server, you must create or edit APF authorized load libraries, program
properties table (PPT) entries, and a parmlib. You can configure the Cross Memory Server one of the following ways:

• Manually
• Using a script

Before you choose a method, read the documentation below. Manual installation requires familiarity with z/OS.
Running the script requires the ID of the user to have required authorities and priviledges.

The angel process server runs under the started task ZWESIS01. The auxiliary address spaces run under the started
task ZWESAUX. The ZWESIS01 started task starts and stops the ZWESAUX task as needed. You do not start or
stop the ZWESAUX manually.

The ZWESIS01 started task runs the load module ZWESIS01, serves the ZOWESVR started task, and provides
secure services that require elevated privileges, such as supervisor state, system key, or APF-authorization. The
ZWESAUX started task runs the load module ZWESAUX.

Manually installing the Zowe Cross Memory Server

A number of files used by the manual installation are included in the USS directory xmem-server/zss. Before
you start the installation, check and ensure that the xmem-server/zss directory is in the Zowe runtime directory.
If it does not exist, follow these steps to create it and extract the xmem-server/zss.pax file, which places the
files into it:

1. Navigate to the xmem-server directory.
2. To create the zss directory, enter the command: mkdir zss
3. To navigate to the zss directory, enter the command: cd zss
4. To extract the zss.pax file and place required files into the xmem-server/zss directory, enter the

command: pax -ppx -rf ../zss.pax

To manually install the Cross Memory Server, take the following steps:

1. Copy the load modules and add JCL to a PROCLIB:

a. The Cross Memory Server has two load modules, ZWESIS01 and ZWESAUX, provided in ZWESIS01 and
ZWESAUX files in the xmem-server\zss\LOADLIB directory. To copy the files to a user-defined data set,
you can issue the following commands:

cp -X ZWESIS01 "//'<zwes_loadlib>(ZWESIS01)'"

cp -X ZWESAUX "//'<zwes_loadlib>(ZWESAUX)'"

Where <zwes_loadlib> is the name of the data set, for example ZWES.SISLOAD. The <zwes_loadlib>
data set must be a PDSE due to language requirements.

b. You must specify the <zwes_loadlib> data set in the STEPLIB DD statement of the two PROCLIB
JCL members which are used for the cross-memory server's started tasks, so that the appropriate version of
the software is loaded correctly. Sample JCL for these PROCLIB members is provided in the ZWESIS01 and

 | User Guide | 88

ZWESAUX files in the xmem-server/zss/SAMPLIB directory. Copy these to your system PROCLIB, such
as SYS1.PROCLIB, or your preferred PROCLIB in the JES2 Concatenation.

Do not add the <zwes_loadlib> data set to the system LNKLST or LPALST concatenations.

The user IDs that are assigned to the started tasks must have a valid OMVS segment and read access to the
product data sets. The Cross Memory Server loads the modules to LPA for its PC-cp services.

2. Add PPT entries to the system PARMLIB:

a. The Cross Memory Server and its auxiliary address spaces must run in key 4 and be non-swappable. For
the server to start in this environment, add the following PPT entries for the server and address spaces to the
SCHEDxx member of the system PARMLIB.

PPT PGMNAME(ZWESIS01) KEY(4) NOSWAP

PPT PGMNAME(ZWESAUX) KEY(4) NOSWAP

b. Then issue the following command to make the SCHEDxx changes effective:

/SET SCH=xx

3. Add the load libraries to the APF authorization list:

Because the Cross Memory Server provides priviledges services, its load libraries require APF-authorization. To
check whether a load library is APF-authorized, you can issue the following TSO command:

D PROG,APF,DSNAME=ZWES.SISLOAD

where the value of DSNAME is the name of the data set that contains the ZWESIS01 and ZWESAUX load
modules.

To dynamically add a load library to the APF list if the load library is not SMS-managed, issue the following TSO
command:

SETPROG APF,ADD,DSNAME=ZWES.SISLOAD,VOLUME=volser

If the load library is SMS-managed, issue the following TSO command:

SETPROG APF,ADD,DSNAME=ZWES.SISLOAD,SMS

where the value of DSNAME is the name of the data set that contains the ZWESIS01 and ZWESAUX load
modules.

4. Add a PARMLIB member:

When started, the ZWESIS01 started task must find a valid ZWESISPxx PARMLIB member. The xmem-
server/files/zss/SAMPLIB/ZWESIP00 file contains the default configuration values. You can copy this
member to your system PARMLIB data set, or allocate the default PDS data set ZWES.SISAMP that is specified
in the ZWESIS01 started task JCL.

5. Configure SAF:

The Cross Memory Server performs a sequence of SAF checks to protect its services from unauthorized callers.
To do this, it uses the FACILITY class and a ZWES.IS entry. Valid callers must have READ access to the

 | User Guide | 89

ZWES.IS profile. Those callers include the STC user under which the ZOWESVR started task runs. It is
recommended that you also grant READ access to the STC user under which the ZWESAUX started task runs.

To activate the FACILITY class, define a ZWES.IS profile, and grant READ access to the ZOWESVR and
ZWESAUX users, issue the following commands. (The commands assume that you will run the ZOWESVR STC
under the IZUSVR user):

• If you use RACF, issue the following commands:

• To see the current class settings, use:

SETROPTS LIST

• To activate the FACILITY class, use:

SETROPTS CLASSACT(FACILITY)

• To RACLIST the FACILITY class, use:

SETROPTS RACLIST(FACILITY)

• To define the ZWES.IS profile in the FACILITY class and grant IZUSVR READ access, issue the
following commands:

RDEFINE FACILITY ZWES.IS UACC(NONE)

PERMIT ZWES.IS CLASS(FACILITY) ID(IZUSVR) ACCESS(READ)

PERMIT ZWES.IS CLASS(FACILITY) ID(<zwesaux_user>) ACCESS(READ)

where <zwesaux_user> is the user under which the ZWESAUX started task runs.

SETROPTS RACLIST(FACILITY) REFRESH

• To check whether the permission has been successfully granted, issue the following command:

RLIST FACILITY ZWES.IS AUTHUSER

This shows the user IDs who have access to the ZWES.IS class, which should include IZUSVR with READ
access.

• If you use CA ACF2, issue the following commands:

SET RESOURCE(FAC)

RECKEY ZWES ADD(IS ROLE(IZUSVR) SERVICE(READ) ALLOW)

F ACF2,REBUILD(FAC)

• If you use CA Top Secret, issue the following commands, where owner-acid may be IZUSVR or a
different ACID:

TSS ADD(`owner-acid`) IBMFAC(ZWES.)

TSS PERMIT(IZUSVR) IBMFAC(ZWES.IS) ACCESS(READ)

Notes

 | User Guide | 90

• The Cross Memory Server treats "no decision" style SAF return codes as failures. If there is no covering
profile for the ZWES.IS resource in the FACILITY class, the user will be denied.

• Cross Memory Server clients other than ZSS might have additional SAF security requirements. For more
information, see the documentation for the specific client.

6. Configure an ICSF cryptographic services environment:

To generate symmetric keys, the IZUSVR user who runs ZOWESVR requires READ access to CSFRNGL in the
CSFSERV class.

Define or check the following configurations depending on whether ICSF is already installed:

• The ICSF or CSF job that runs on your z/OS system.
• The configuration of ICSF options in SYS1.PARMLIB(CSFPRM00), SYS1.SAMPLIB, SYS1.PROCLIB.
• Create CKDS, PKDS, TKDS VSAM data sets.
• Define and activate the CSFSERV class:

• If you use RACF, issue the following commands:

RDEFINE CSFSERV profile-name UACC(NONE)

PERMIT profile-name CLASS(CSFSERV) ID(tcpip-stackname) ACCESS(READ)

PERMIT profile-name CLASS(CSFSERV) ID(userid-list) ... [for

 | User Guide | 91

userids IKED, NSSD, and Policy Agent]

SETROPTS CLASSACT(CSFSERV)

SETROPTS RACLIST(CSFSERV) REFRESH

• If you use CA ACF2, issue the following commands (note that profile-prefix and profile-
suffix are user-defined):

SET CONTROL(GSO)

INSERT CLASMAP.CSFSERV RESOURCE(CSFSERV) RSRCTYPE(CSF)

F ACF2,REFRESH(CLASMAP)

SET RESOURCE(CSF)

RECKEY profile-prefix ADD(profile-suffix uid(UID string for tcpip-
stackname) SERVICE(READ) ALLOW)

RECKEY profile-prefix ADD(profile-suffix uid(UID string for IZUSVR)
 SERVICE(READ) ALLOW)

(repeat for userids IKED, NSSD, and Policy Agent)

F ACF2,REBUILD(CSF)

• If you use CA Top Secret, issue the following command (note that profile-prefix and profile-
suffix are user defined):

TSS ADDTO(owner-acid) RESCLASS(CSFSERV)

TSS ADD(owner-acid) CSFSERV(profile-prefix.)

TSS PERMIT(tcpip-stackname) CSFSERV(profile-prefix.profile-suffix)
 ACCESS(READ)

TSS PERMIT(user-acid) CSFSERV(profile-prefix.profile-suffix)
 ACCESS(READ)

(repeat for user-acids IKED, NSSD, and Policy Agent)

Notes

• The user under which zssServer runs will need READ access to CSFRNGL in the CSFSERV class.
• Determine whether you want SAF authorization checks against CSFSERV and set

CSF.CSFSERV.AUTH.CSFRNG.DISABLE accordingly.
• Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation,

initialization, and customization.
• CCA and/or PKCS #11 coprocessor for random number generation.
• Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if required.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

 | User Guide | 92

7. Configure security environment switching:

When responding to API requests, the node zssServer running under USS must be able to change the security
environment of its process to associate itself with the security context of the logged in user. This is called
impersonation.

Typically, the zssServer runs under the ZOWESVR started task. So to enable impersonation, you must grant the
user ID associated with the ZOWESVR started task UPDATE access to the BPX.SERVER and BPX.DAEMON
FACILITY classes.

You can issue the following commands first to check if you already have the BPX facilities defined as part of
another server configuration, such as the FTPD daemon. Review the output to confirm that the two BPX facilities
exist and the user who runs the ZOWESVR started task has UPDATE access to both facilities.

• If you use RACF, issue the following commands:

RLIST FACILITY BPX.SERVER AUTHUSER

RLIST FACILITY BPX.DAEMON AUTHUSER

• If you use CA Top Secret, issue the following commands:

TSS WHOHAS IBMFAC(BPX.SERVER)

TSS WHOHAS IBMFAC(BPX.DAEMON)

• If you use CA ACF2, issue the following commands:

SET RESOURCE(FAC)

LIST BPX

If the user who runs the ZOWESVR started task does not have UPDATE access to both facilities, follow the
instructions below.

• If you use RACF, complete the following steps:

Click to Expand

a. Activate and RACLIST the FACILITY class. This may have already been done on the z/OS environment
if another z/OS server has been previously configured to take advantage of the ability to change its security

 | User Guide | 93

environment, such as the FTPD daemon that is included with z/OS Communications Server TCP/IP
services.

SETROPTS CLASSACT(FACILITY)

SETROPTS RACLIST(FACILITY)

b. Define the BPX facilities. This may have already been done on behalf of another server such as the FTPD
daemon.

RDEFINE FACILITY BPX.SERVER UACC(NONE)

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

c. Having activated and RACLIST the FACILITY class, the user ID who runs the ZOWESVR started task
must be given update access to the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

PERMIT BPX.SERVER CLASS(FACILITY) ID(<zowesvr_user>) ACCESS(UPDATE)

PERMIT BPX.DAEMON CLASS(FACILITY) ID(<zowesvr_user>) ACCESS(UPDATE)

 | User Guide | 94

/* Activate these changes */

SETROPTS RACLIST(FACILITY) REFRESH

d. Issue the following commands to check whether permission has been successfully granted:

RLIST FACILITY BPX.SERVER AUTHUSER

RLIST FACILITY BPX.DAEMON AUTHUSER

• If you use CA Top Secret, complete the following steps:

Click to Expand

a. Define the BPX Resource and access for <zss_server_user>.

TSS ADD(`owner-acid`) IBMFAC(BPX.)

TSS PERMIT(<zowesvr_user>) IBMFAC(BPX.SERVER) ACCESS(UPDATE)

TSS PERMIT(<zowesvr_user>) IBMFAC(BPX.DAEMON) ACCESS(UPDATE)

b. Issue the following commands and review the output to check whether permission has been successfully
granted:

TSS WHOHAS IBMFAC(BPX.SERVER)

TSS WHOHAS IBMFAC(BPX.DAEMON)

• If you use CA ACF2, complete the following steps:

Click to Expand

a. Define the BPX Resource and access for <zowesvr_user>.

SET RESOURCE(FAC)

RECKEY BPX ADD(SERVER ROLE(<zowesvr_user>) SERVICE(UPDATE) ALLOW)

RECKEY BPX ADD(DAEMON ROLE(<zowesvr_user>) SERVICE(UPDATE) ALLOW)

F ACF2,REBUILD(FAC)

b. Issue the following commands and review the output to check whether permission has been successfully
granted:

SET RESOURCE(FAC)

LIST BPX

Installing the Cross Memory Server using the script

Users with sufficient z/OS authority can install the Cross Memory Server using a script. The script, xmem-
server/zowe-install-apf-server.sh, reads configuration parameters from the xmem-server/zowe-
install-apf-server.yaml file. The script creates the USS directory xmem-server/zss in the Zowe
runtime directory by expanding the file xmem-server/zss.pax. The script creates the APF authorized load
library, copies the load modules, creates the PROCLIB, defines the ZWES.IS FACILITY class, and grants READ
access to the STC user under which the ZOWESVR started task runs.

 | User Guide | 95

The script does not perform the following tasks:

• Grant READ access to the STC user under which the ZWESAUX started task runs, which is recommended. You
must grant access by following the step "Configure SAF" in the Manually installing the Zowe Cross Memory
Server on page 87 documentation above.

• Create the required PPT entries. You must create these by following the step "Add PPT entries to the system
PARMLIB" in the Manually installing the Zowe Cross Memory Server on page 87 documentation above.

• Configure anything for ICSF cryptographic services. If you have this environment, follow the step "Configure an
ICSF cryptographic services environment" in Manually installing the Zowe Cross Memory Server on page 87
documentation above.

Installing using the script

1. Specify the following data set parameters in the xmem-server/zowe-install-apf-server.yaml file:

 # Datasets that APF server will be installed into
 install:
 # PROCLIB dataset name (required, no default values)
 proclib=
 # PARMLIB dataset name (${USER}.PARMLIB by default)
 parmlib=
 # LOADLIB dataset name (${USER}.LOADLIB by default)
 loadlib=
 # ZSS server name (default name is ZWESIS_STD),
 # make sure that this equals to zssCrossMemoryServerName in zlux-server
 in zowe-install.yaml
 zssCrossMemoryServerName=ZWESIS_STD

where,

• install:proclib is the data set name that the ZWESIS01 and ZWESAUX JCL members that are used to start the
ZWESIS01 and ZWESAUX started tasks will be copied into, for example, USER.PROCLIB.

• install:parmlib is the data set name that the ZWESIP00 PARMLIB member will be copied into and used by the
ZWESIS01 PROCLIB. Choose a value such as IZUSVR.PARMLIB.

• install:loadlib is the data set name that the ZWESIS01 and ZWESAUX load modules will be copied into. This
data set will be created as a PDSE and be APF authorized by the script. Choose a value such as USER.LOADLIB.

• zssCrossMemoryServerName is the name of the ZSS Cross Memory Server. The default name is ZWESIS_STD.
If you want to run only one version of Zowe, you can use the default name. If you want to run different versions
of Zowe in parallel, you must specify a unique name for each Zowe instance. If you want to test a new version of
Zowe in parallel to an older version, you must change the default name to a unique one when you install the new
version.

1. Specify the following user parameters in the xmem-server/zowe-install-apf-server.yaml file:

 # APF server users
 users:
 # User to run Zowe server (required, no default values)
 zoweUser=
 # TSS Facility Owner (Required for TSS. 'auto' supplies the running user)
 tssFacilityOwner=auto
 # APF server STC user (ZWESISTC by default)
 stcUser=
 # APF server STC user UID (required if STC user doesn't exist)
 stcUserUid=
 # STC user group (required if either STC user or profile doesn't exist)
 stcGroup=

where:

 | User Guide | 96

• users:zoweUser is the TSO user ID that the ZOWESVR started task runs under. For the majority of installs, this
will be IZUSVR, so enter IZUSVR as the value, and the script will give this user access to the READ ZWES.IS
FACILITY class that allows Zowe to use the cross memory server.

• tssFacilityOwner - If you specify auto (which must be lower case), the result of running the command id -u -
n will be used as the value. Otherwise, the given value will be used.

• users:stcUser is the user ID that the ZWESIS01 and ZWESAUX started tasks will be run under. Enter the same
value as the user ID that is running ZOWESVR, so choose IZUSVR.

• users:stcUserUid. This is the Unix user ID of the TSO user ID used to run the ZWESIS01 and ZWESAUX started
tasks. If the user ID is IZUSVR to see the Unix user ID enter the command id IZUSVR which will return the
stcUserUid in the uid result. In the example below IZUSVR has a uid of 210, so users:stcUserUid=210
should be entered.

/:>id IZUSVR
uid=210(IZUSVR) gid=202(IZUADMIN) groups=205(IZUSECAD)

• users:stcGroup is the user group that the ZWESIS01 and ZWESAUX started tasks will be run under. Enter the
same values as the user group that is running ZOWESVR, so choose IZUADMIN.

1. Add required PPT entries, grant the ZWESAUX user READ access, and if necessary configure an ICSF
cryptographic services environment.

2. Run the zowe-install-apf-server.sh script.

Starting and stopping the Zowe runtime on z/OS

Zowe has a number of runtimes on z/OS: the z/OS Service microservice server, the Zowe Application Server, and
the Zowe API Mediation Layer microservices. When you run the ZOWESVR PROC, all of these components start.
Stopping ZOWESVR PROC stops all of the components that run as independent Unix processes.

Starting the ZOWESVR PROC

To start the ZOWESVR PROC, run the zowe-start.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts
./zowe-start.sh

where:

$ZOWE_ROOT_DIR is the directory where you installed the Zowe runtime. This script starts the ZOWESVR PROC
for you so you do not have to log on to TSO and use SDSF.

If you prefer to use SDSF to start Zowe, start ZOWESVR by issuing the following operator command in SDSF:

/S ZOWESVR

By default, Zowe uses the runtime version that you most recently installed. To start a different runtime, specify its
server path on the START command:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR'

To test whether the API Mediation Layer is active, open the URL: https://<hostname>:7554.

To test whether the Zowe desktop is active, open the URL: https://<hostname>:8554.

The port number 7554 is the default API Gateway port and the port number 8554 is the default Zowe desktop port.
You can overwrite theses port in the zowe-install.yaml file before the zowe-configure.sh script is run.
See the section Port allocations on page 82.

Stopping the ZOWESVR PROC

To stop the ZOWESVR PROC, run the zowe-stop.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts

 | User Guide | 97

./zowe-stop.sh

If you prefer to use SDSF to stop Zowe, stop ZOWESVR by issuing the following operator command in SDSF:

/C ZOWESVR

Either method will stop the z/OS Service microservice server, the Zowe Application Server, and the zSS server.

When you stop the ZOWESVR, you might get the following error message:

IEE842I ZOWESVR DUPLICATE NAME FOUND- REENTER COMMAND WITH 'A='

This error results when there is more than one started task named ZOWESVR. To resolve the issue, stop the required
ZOWESVR instance by issuing the following commands:

/C ZOWESVR,A=asid

You can obtain the asid from the value of A=asid when you issue the following commands:

/D A,ZOWESVR

Starting and stopping the Zowe Cross Memory Server on z/OS

The Cross Memory server is run as a started task from the JCL in the PROCLIB member ZWESIS01. It supports
reusable address spaces and can be started through SDSF with the operator start command with the REUSASID=YES
keyword:

/S ZWESIS01,REUSASID=YES

The ZWESIS01 task starts and stops the ZWEAUX task as needed. Do not start the ZWEAUX task manually.

To end the Zowe APF Angel process, issue the operator stop command through SDSF:

/P ZWESIS01

Note: The starting and stopping of the ZOWESVR for the main Zowe servers is independent of the ZWESIS01
angel process. If you are running more than one ZOWESVR instance on the same LPAR, then these will be sharing
the same ZWESIS01 cross memory server. Stopping ZWESIS01 will affect the behavior of all Zowe servers on the
same LPAR. The Zowe Cross Memory Server is designed to be a long-lived address space. There is no requirement
to recycle on a regular basis. When the cross-memory server is started with a new version of the ZWESIS01 load
module, it will abandon its current load module instance in LPA and will load the updated version.

Verifying Zowe installation on z/OS

Once Zowe™ is running and the startup sequence is complete, you can check the configuration files and jobs for
Zowe on your z/OS system to ensure that the installation process is successful. To do this, follow these steps.

1. Navigate to the runtime $ZOWE_ROOT_DIR/scripts directory, where $ZOWE_ROOT_DIR is the location of
the Zowe runtime directory.

2. Run the zowe-verify.sh script by issuing the following command:

zowe-verify.sh

The script writes its messages to your terminal window. The results are marked OK, Info, Warning or Error.
Correct any reported errors and restart the Zowe server. The zowe-verify.sh script does not change any settings,
so you can run it as often as required.

Next steps

 | User Guide | 98

Follow the instructions in the following sections to verify that the components are installed correctly and are
functional.

• Verifying Zowe Application Framework installation on page 98
• Verifying z/OS Services installation
• Verifying API Mediation installation on page 98

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

where:

• myHost is the host on which you installed the Zowe Application Server.
• httpPort is the port number that is assigned to node.http.port in zluxserver.json.
• httpsPort is the port number that is assigned to node.https.port in zluxserver.json.

For example, if the Zowe Application Server runs on host myhost and the port number that is
assigned to node.https.port is 12345, you specify https://myhost:12345/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html.

Verifying z/OS Services installation

After the ZOWESVR procedure is started, you can verify the installation of z/OS Services from an internet browser
by entering the following case-sensitive URL:

https://hostName:<_gatewayPort_>/api/v1/jobs?prefix=*

where, gatewayPort is the port number that is assigned to api:mediation:gatewayPort in zowe-
install.yaml.

Verifying API Mediation installation

Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed
through the API Gateway using the following URL:

https://hostName:basePort/api/v1/apicatalog/application/health

The hostName is set during install, and basePort is set as the gatewayPort parameter.

Example:

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the grep
utility to parse out the response status variable value

$ curl -v -k --silent https://hostName:basePort/api/v1/apicatalog/
application/health 2>&1 | grep -Po '(?<=\"status\"\:\")[^\"]+'
UP

The response UP confirms that API Mediation Layer is installed and is running properly.

Installing Zowe CLI

Install Zowe™ CLI on your computer. You can learn about new CLI features in the Release notes on page 13 or read
about overall CLI functionality in the Zowe overview on page 8.

Tip: If you are familiar with command-line tools and want to get started using Zowe CLI quickly, see Zowe CLI
quick start on page 26

 | User Guide | 99

Methods to install Zowe CLI

Use one of the following methods to install Zowe CLI.

• Installing Zowe CLI on page 98

• Methods to install Zowe CLI on page 99

If you encounter problems when you attempt to install Zowe CLI, see Troubleshooting Zowe CLI on page 291.

Installing Zowe CLI from a local package

If you do not have internet access at your site, use the following method to install Zowe CLI from a local package.

Follow these steps:

1. Ensure that the following prerequisite software is installed on your computer:

• Node.js V8.0 or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed.

• Node Package Manager V5.0 or later

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

2. Obtain the installation files. From the Zowe Download website, click Zowe Command Line Interface to
download the Zowe CLI installation package named zowe-cli-package-*v*.*r*.*m*.zip to your
computer.

Note:

• v indicates the version
• r indicates the release number
• m indicates the modification number

3. Open a command line window such as Windows Command Prompt. Browse to the directory where you
downloaded the Zowe CLI installation package (.zip file). Issue the following command to unzip the files:

unzip zowe-cli-package-v.r.m.zip

Example:

unzip zowe-cli-package-1.0.1.zip

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the .zip
file. You can extract the contents of the zip file to your preferred location.

Optional: Double-click the Zowe CLI installation package to extract its contents into the directory where you
downloaded the package. (Windows and Mac computers contain built-in software that lets you extract .zip files
into a preferred location.)

4. Issue the following command against the extracted directory to install Zowe CLI on your computer:

npm install -g zowe-cli.tgz

Note: On Linux, you might need to prepend sudo to your npm commands so that you can issue the install and
uninstall commands. For more information, see Troubleshooting Zowe CLI on page 291.

Zowe CLI is installed on your computer. See Installing Zowe CLI plug-ins on page 148 for information about
the commands for installing plug-ins from the package.

https://nodejs.org/en/download/
https://zowe.org/#download

 | User Guide | 100

5. (Optional) Create a zosmf profile so that you can issue commands that communicate with z/OSMF. For
information about how to create a profile, see Creating Zowe CLI profiles on page 116.

Tip: Profiles are a Zowe CLI feature that let you store configuration information for use on multiple commands.
You can create a profile that contains your username, password, and connection details for a particular mainframe
system, then reuse that profile to avoid typing it again on every command.

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For information about how to connect the CLI to the mainframe (using command-line options, user
profiles, or environment variables), see Defining Zowe CLI connection details on page 115. You can also test your
connection to z/OSMF with or without a profile.

Installing Zowe CLI from an online registry

If your computer is connected to the Internet, you can use the following method to install Zowe CLI from an npm
registry.

Follow these steps:

1. Ensure that the following required software is installed on your computer:

• Node.js V8.0 or later

Tip: You might need to restart the command prompt after installing Node.js. Issue the command node --
version to verify that Node.js is installed.

• Node Package Manager V5.0 or later

npm is included with the Node.js installation. Issue the command npm --version to verify that npm is
installed.

2. Issue the following command to set the registry to the Zowe CLI scoped package. In addition to setting the scoped
registry, your default registry must be set to an npm registry that includes all of the dependencies for Zowe CLI,
such as the global npm registry:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

3. Issue the following command to install Zowe CLI from the registry:

npm install -g @brightside/core@lts-incremental

4. (Optional) To install all available plug-ins to Zowe CLI, issue the following command:

zowe plugins install @brightside/cics@lts-incremental @brightside/db2@lts-
incremental

Note: The IBM Db2 plug-in requires additional configuration. For more information about how to install multiple
plug-ins, update to a specific version of a plug-in, and install from specific registries, see Installing Zowe CLI
plug-ins on page 148.

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For information about how to connect the CLI to the mainframe (using command-line options, user
profiles, or environment variables), see Defining Zowe CLI connection details on page 115. You can also test your
connection to z/OSMF with or without a profile.

Updating Zowe CLI

Zowe™ CLI is updated continuously. You can update Zowe CLI to a more recent version using online registry
method or the local package method. However, you can only update Zowe CLI using the method that you used to
install Zowe CLI.

• (Optional) Identify the currently installed version of Zowe CLI on page 101
• (Optional) Identify the currently installed versions of Zowe CLI plug-ins on page 101
• Update Zowe CLI from the online registry on page 101

https://nodejs.org/en/download/

 | User Guide | 101

• Update or revert Zowe CLI to a specific version on page 101
• Update Zowe CLI from a local package on page 101

(Optional) Identify the currently installed version of Zowe CLI

Issue the following command:

zowe -V

(Optional) Identify the currently installed versions of Zowe CLI plug-ins

Issue the following command:

zowe plugins list

Update Zowe CLI from the online registry

You can update Zowe CLI to the latest version from the online registry on Windows, Mac, and Linux computers.

Note: The following steps assume that you set the npm registries for the @brightside scopes as described in
Installing Zowe CLI from an online registry on page 100.

Follow these steps:

1. Issue the following command to update Zowe CLI to the most recent @lts-incremental version:

npm install -g @brightside/core@lts-incremental

2. Reinstall the plug-ins and update existing plug-ins using the following command:

zowe plugins install @brightside/cics@lts-incremental @brightside/db2@lts-
incremental

3. Recreate any user profiles that you created before you updated to the latest version of Zowe CLI.

Update or revert Zowe CLI to a specific version

Optionally, you can update Zowe CLI (or revert) to a known version. The following example illustrates the syntax to
update Zowe CLI to version 3.3.1:

npm install -g @brightside/core@3.3.1

Update Zowe CLI from a local package

To update Zowe CLI from an offline (.tgz), local package, uninstall your current package then reinstall from a new
package using the Install CA Brightside from a Local Package instructions. For more information, see Uninstalling
Zowe CLI from the desktop on page 102 and Installing Zowe CLI from a local package on page 99.

Important! Recreate any user profiles that you created before the update.

Uninstalling Zowe

You can uninstall Zowe™ if you no longer need to use it. Follow these procedures to uninstall each Zowe component.

• Uninstalling Zowe from z/OS
• Uninstalling Zowe CLI from the desktop on page 102

Uninstalling Zowe from z/OS

Follow these steps on z/OS:

 | User Guide | 102

1. Stop the Zowe started task which stops all of its microservices by using the following command:

C ZOWESVR

2. Delete the ZOWESVR member from your system PROCLIB data set.

To do this, you can issue the following TSO DELETE command from the TSO READY prompt or from ISPF
option 6:

delete 'your.zowe.proclib(zowesvr)'

Alternatively, you can issue the TSO DELETE command at any ISPF command line by prefixing the command
with TSO:

tso delete 'your.zowe.proclib(zowesvr)'

To query which PROCLIB data set that ZOWESVR is put in, you can view the SDSF JOB log of ZOWESVR and
look for the following message:

IEFC001I PROCEDURE ZOWESVR WAS EXPANDED USING SYSTEM LIBRARY
 your.zowe.proclib

If no ZOWESVR JOB log is available, issue the /$D PROCLIB command at the SDSF COMMAND INPUT
line and BROWSE each of the DSNAME=some.jes.proclib output lines in turn with ISPF option 1, until
you find the first data set that contains member ZOWESVR. Then issue the DELETE command as shown above.

3. Remove RACF® \(or equivalent\) definitions using the following command:

RDELETE STARTED (ZOWESVR.*)
SETR RACLIST(STARTED) REFRESH
REMOVE (userid) GROUP(IZUUSER)

where userid indicates the user ID that is used to install Zowe.

Uninstalling Zowe CLI from the desktop

Important\! The uninstall process does not delete the profiles and credentials that you created when using the product
from your computer. To delete the profiles from your computer, delete them before you uninstall Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe CLI.

Follow these steps:

1. Open a command line window.

Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.
2. List all profiles that you created for a Command Group by issuing the following command:

 zowe profiles list <profileType>

Example:

$ zowe profiles list zosmf
The following profiles were found for the module zosmf:
'SMITH-123' (DEFAULT)
smith-123@SMITH-123-W7 C:\Users\SMITH-123
$

 | User Guide | 103

3. Delete all of the profiles that are listed for the command group by issuing the following command:

Tip: For this command, use the results of the list command.

Note: When you issue the delete command, it deletes the specified profile and its credentials from the
credential vault in your computer's operating system.

zowe profiles delete <profileType> <profileName> --force

Example:

zowe profiles delete zosmf SMITH-123 --force

4. Repeat Steps 2 and 3 for all Zowe CLI command groups and profiles.
5. Uninstall Zowe CLI by issuing one of the following commands:

• If you installed Zowe CLI from the package, issue the following command

npm uninstall --global @brightside/core

• If you installed Zowe CLI from the online registry, issue the following command:

npm uninstall --global brightside

The uninstall process removes all Zowe CLI installation directories and files from your computer.
6. Delete the C:\Users\<user_name>\.brightside directory on your computer. The directory contains the

Zowe CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.
7. If you installed Zowe CLI from the online registry, issue the following command to clear your scoped npm

registry:

npm config set @brightside:registry

Configuring Zowe

Zowe Application Framework configuration

After you install Zowe™, you can optionally configure the Zowe Application Framework as a Mediation Layer client,
configure connections for the terminal application plug-ins, or modify the Zowe Application Server and Zowe System
Services (ZSS) configuration, as needed.

Configuring the framework as a Mediation Layer client

For simpler Zowe administration and better security, you can install an instance of the Zowe Application Framework
as an API Mediation Layer client.

This configuration is simpler to administer because the framework servers are accessible externally through a single
port. It is more secure because you can implement stricter browser security policies for accessing cross-origin content.

You must use SSL certificates to configure the Zowe Application Server to communicate with the SSL-enabled
Mediation Layer. Those certificates were created during the Zowe installation process, and are located in the zlux-
app-server/deploy/instance/ZLUX/serverConfig directory.

Enabling the Application Server to register with the Mediation Layer

1. Open the Application Server configuration file: zlux-app-server/deploy/instance/ZLUX/
serverConfig/zluxserver.json The file might be in the zlux-app-server/config directory.
If so, navigate to the zlux-build folder and run the ant deploy command to deploy the file to the correct
location.

 | User Guide | 104

2. Specify the following values:

• mediationLayer: If this object is not there, create it. It contains all of the key-value pairs.
• server: Container for most of the key-value pairs.
• hostname (string): Specify the hostname that the Application Server can use to access the Mediation Layer

servers. The Mediation Layer servers must be on a single system.
• port (number): Specify the Mediation Layer discovery server TCP port.
• gatewayPort (number): Specify the gateway TCP port (used for single sign-on).
• isHttps (boolean): Specify true to use HTTPS (recommended).
• enabled (boolean): Specify true to enable the Application Server to use the Mediation Layer.

For example:

 "mediationLayer": {
 "server": {
 "hostname": "localhost",
 "port": 10011,
 "gatewayPort": 10012,
 "isHttps": true
 },
 "enabled": true
 }

To verify that the server registered correctly, open the log file in the zlux/zlux-app-server/log directory.
The following line should be at the bottom (with the current date and time):

[20xx-xx-xx xx:xx:xx.xxx _zsf.apiml INFO] - Eureka Client Registered

The registration process might take a few minutes. If the line is not there, make sure that the Mediation Layer values
you enabled in the zluxserver.json file are correct.

Accessing the Application Server

To access the Application Server through the Mediation Layer, use the Mediation Layer gateway server hostname and
port. For example, when accessed directly, this is Zowe Desktop URL: https://<appservername_port>/
ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

When accessed through the Mediation Layer, this is the Zowe Desktop URL: https://<gwsname_port>/ui/
v1/zlux/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Setting up terminal application plug-ins

Follow these optional steps to configure the default connection to open for the terminal application plug-ins.

Setting up the TN3270 mainframe terminal application plug-in

_defaultTN3270.json is a file in tn3270-ng2/, which is deployed during setup. Within this file, you can
specify the following parameters to configure the terminal connection:

 "host": <hostname>
 "port": <port>
 "security": {
 type: <"telnet" or "tls">
 }

Setting up the VT Terminal application plug-in

_defaultVT.json is a file in vt-ng2/, which is deployed during setup. Within this file, you can specify the
following parameters to configure the terminal connection:

 "host":<hostname>
 "port":<port>
 "security": {

 | User Guide | 105

 type: <"telnet" or "ssh">
 }

Configuration file

The Zowe Application Server and ZSS rely on many parameters to run, which includes setting up networking,
deployment directories, plug-in locations, and more.

For convenience, the Zowe Application Server and ZSS read from a JSON file with a common structure. ZSS reads
this file directly as a startup argument, while the Zowe Application Server (as defined in the zlux-server-
framework repository) accepts several parameters, which are intended to be read from a JSON file through an
implementer of the server, such as the example in the zlux-app-server repository, the js/zluxServer.js
file. This file accepts a JSON file that specifies most, if not all, of the parameters needed. Other parameters can be
provided through flags, if needed.

An example of a JSON file (zluxserver.json) can be found in the zlux-app-server repository, in the
config directory.

Note: All examples are based on the zlux-app-server repository.

Network configuration

Note: The following attributes are to be defined in the server's JSON configuration file.

The Zowe Application Server can be accessed over HTTP, HTTPS, or both, provided it has been configured for either
(or both).

HTTP

To configure the server for HTTP, complete these steps:

1. Define an attribute http within the top-level node attribute.
2. Define port within http. Where port is an integer parameter for the TCP port on which the server will listen.

Specify 80 or a value between 1024-65535.

HTTPS

For HTTPS, specify the following parameters:

1. Define an attribute https within the top-level node attribute.
2. Define the following within https:

• port: An integer parameter for the TCP port on which the server will listen. Specify 443 or a value between
1024-65535.

• certificates: An array of strings, which are paths to PEM format HTTPS certificate files.
• keys: An array of strings, which are paths to PEM format HTTPS key files.
• pfx: A string, which is a path to a PFX file which must contain certificates, keys, and optionally Certificate

Authorities.
• certificateAuthorities (Optional): An array of strings, which are paths to certificate authorities files.
• certificateRevocationLists (Optional): An array of strings, which are paths to certificate revocation list (CRL)

files.

Note: When using HTTPS, you must specify pfx, or both certificates and keys.

Network example

In the example configuration, both HTTP and HTTPS are specified:

 "node": {
 "https": {
 "port": 8544,
 //pfx (string), keys, certificates, certificateAuthorities, and
 certificateRevocationLists are all valid here.
 "keys": ["../deploy/product/ZLUX/serverConfig/server.key"],

 | User Guide | 106

 "certificates": ["../deploy/product/ZLUX/serverConfig/server.cert"]
 },
 "http": {
 "port": 8543
 }
 }

Deploy configuration

When the Zowe Application Server is running, it accesses the server's settings and reads or modifies the contents of
its resource storage. All of this data is stored within the Deploy folder hierarchy, which is spread out into a several
scopes:

• Product: The contents of this folder are not meant to be modified, but used as defaults for a product.
• Site: The contents of this folder are intended to be shared across multiple Zowe Application Server instances,

perhaps on a network drive.
• Instance: This folder represents the broadest scope of data within the given Zowe Application Server instance.
• Group: Multiple users can be associated into one group, so that settings are shared among them.
• User: When authenticated, users have their own settings and storage for the application plug-ins that they use.

These directories dictate where the Configuration Dataservice on page 238 stores content.

Deploy example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 installation process.
 "rootDir":"../deploy",
 "productDir":"../deploy/product",
 "siteDir":"../deploy/site",
 "instanceDir":"../deploy/instance",
 "groupsDir":"../deploy/instance/groups",
 "usersDir":"../deploy/instance/users"

Application plug-in configuration

This topic describes application plug-ins that are defined in advance.

In the configuration file, you can specify a directory that contains JSON files, which tell the server what application
plug-in to include and where to find it on disk. The backend of these application plug-ins use the server's plug-in
structure, so much of the server-side references to application plug-ins use the term plug-in.

To include application plug-ins, define the location of the plug-ins directory in the configuration file, through the top-
level attribute pluginsDir.

Note: In this example, the directory for these JSON files is /plugins. Yet, to separate configuration files from
runtime files, the zlux-app-server repository copies the contents of this folder into /deploy/instance/
ZLUX/plugins. So, the example configuration file uses the latter directory.

Plug-ins directory example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the install
 process.
//...
 "pluginsDir":"../deploy/instance/ZLUX/plugins",

Logging configuration

For more information, see Logging utility on page 252.

 | User Guide | 107

ZSS configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are:rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the server, but
if the Zowe Application Server and ZSS are not run from the same location, then these directories can be different.

The zssPort attribute is specific to ZSS. This is the TCP port on which ZSS listens in order to be contacted by the
Zowe Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting the Zowe Application Server to ZSS

When you run the Zowe Application Server, specify the following flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

• -h: Declares the host where ZSS can be found. Use as "-h \<hostname\>"
• -P: Declares the port at which ZSS is listening. Use as "-P \<port\>"

Configuring ZSS for HTTPS

To secure ZSS, you can use Application Transparent Transport Layer Security (AT-TLS) to enable Hyper Text
Transfer Protocol Secure (HTTPS) on communication with ZSS.

Before you begin, you must have a basic knowledge of RACF and AT-TLS, and you must have Policy Agent
configured. For more information on AT-TLS and Policy Agent, see the z/OS Knowledge Center.

To configure ZSS for HTTPS, you create a certificate authority (CA) certificate and a personal certificate, and add the
personal certificate to a key ring. Then you define an AT-TLS rule. Then you copy the certificate to the Zowe App
Server and specify values in the Zowe App Server configuration file.

By default, the Zowe App Server is the only client that communicates with the ZSS server. In these steps, you
configure HTTPS between them by creating a CA certificate and using it to sign a personal certificate. If you want
to configure other clients to communicate with ZSS, best practice is to sign their certificates using a recognized
certificate authority, such as Symantec. For more information, see documentation for that client.

Note: Bracketed values below (including the brackets) are variables. Replace them with values relevant to your
organization.

Creating certificates and a key ring

Use the IBM Resource Access Control Facility (RACF) to create a CA certificate and a personal certificate, and sign
the personal certificate with the CA certificate. Then create a key ring with the personal certificate attached.

1. Enter the following command to generate a RACF (CA) certificate:

RACDCERT CERTAUTH GENCERT +
 SUBJECTSDN(CN('[common_name]') +
 OU('[organizational_unit]') +
 O('[organization_name]') +
 L('[locality]') SP('[state_or_province]') C('[country]')) +
 KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN) +
 WITHLABEL('[ca_label]') +
 NOTAFTER(DATE([xxxx/xx/xx])) +
 SIZE(2048)

Note: [common_name] must be the ZSS server host name.

1. Enter the follow command to generate a RACF personal certificate signed by the CA certificate:

RACDCERT ID('[cert_owner]') GENCERT +
 SUBJECTSDN(CN('[common_name]') +
 OU('[organizational_unit]') +
 O('[organization_name]') +
 L('[locality]') SP('[state_or_province]') C('[country]')) +
 KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN) +

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/transtls.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/pbn_pol_agnt.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2/en/homepage.html

 | User Guide | 108

 WITHLABEL('[personal_label]') +
 NOTAFTER(DATE([xxxx/xx/xx])) +
 SIZE(2048) +
 SIGNWITH(CERTAUTH LABEL('[ca_label]'))

1. Enter the following command to create a RACF key ring and connect the personal certificate to the key ring:

RACDCERT ID([cert_owner]) ADDRING([ring_name])
RACDCERT CONNECT(ID([cert_owner]) LABEL('[cert_label]') RING([ring_name]))

1. Enter the following command to refresh the DIGTRING and DIGTCERT classes to activate your changes:

SETROPTS RACLIST(DIGTRING,DIGTCERT) REFRESH

1. Enter the following command to verify your changes:

RACDCERT LISTRING([ring_name]) ID([cert_owner])

1. Enter the following command to export the RACF CA certificate to a dataset:

RACDCERT EXPORT(LABEL('[ca_label]')) CERTAUTH DSN('[output_dataset_name]')
 FORMAT(CERTB64)

Defining the AT-TLS rule

To define the AT-TLS rule, use the sample below to specify values in your AT-TLS Policy Agent Configuration file:

TTLSRule ATTLS1~ZSS
{
 LocalAddr All
 RemoteAddr All
 LocalPortRange [zss_port]
 Jobname *
 Userid *
 Direction Inbound
 Priority 255
 TTLSGroupActionRef gAct1~ZSS
 TTLSEnvironmentActionRef eAct1~ZSS
 TTLSConnectionActionRef cAct1~ZSS
}
TTLSGroupAction gAct1~ZSS
{
 TTLSEnabled On
 Trace 1
}
TTLSEnvironmentAction eAct1~ZSS
{
 HandshakeRole Server
 EnvironmentUserInstance 0
 TTLSKeyringParmsRef key~ZSS
 Trace 1
}
TTLSConnectionAction cAct1~ZSS
{
 HandshakeRole Server
 TTLSCipherParmsRef cipherZSS
 TTLSConnectionAdvancedParmsRef cAdv1~ZSS
 Trace 1
}
TTLSConnectionAdvancedParms cAdv1~ZSS
{
 SSLv3 Off

 | User Guide | 109

 TLSv1 Off
 TLSv1.1 Off
 TLSv1.2 On
 CertificateLabel [personal_label]
}
TTLSKeyringParms key~ZSS
{
 Keyring [ring_name]
}
TTLSCipherParms cipher~ZSS
{
 V3CipherSuites TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 V3CipherSuites TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
 V3CipherSuites TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 V3CipherSuites TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 V3CipherSuites TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 V3CipherSuites TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 V3CipherSuites TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 V3CipherSuites TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
}

Configuring the Zowe App Server for HTTPS communication with ZSS

Copy the CA certificate to the ZSS server. Then in the Zowe App Server configuration file, specify the location of the
certificate, and add a parameter to specify that ZSS uses AT-TLS.

1. Enter the following command to copy the CA certificate to the correct location in UNIX System Services (USS):

cp "//'[output_dataset_name]'" 'zlux-app-server/deploy/instance/ZLUX/
serverConfig/[ca_cert]'

1. In the zlux-app-server/deploy/instance/ZLUX/serverConfig directory, open the
zluxserver.json file.

2. In the node.https.certificateAuthorities object, add the CA certificate file path, for example:

"certificateAuthorities": ["../deploy/instance/ZLUX/serverConfig/[ca_cert]"]

1. In the agent.http object add the key-value pair "attls": true, for example:

"agent": {
 "host": "localhost",
 "http": {
 "ipAddresses": ["127.0.0.1"],
 "port": 8542,
 "attls": true
 }
}

Installing additional ZSS instances

After you install Zowe, you can install and configure additional instances of ZSS on the same z/OS server. You might
want to do this to test different ZSS versions.

The following steps assume you have installed a Zowe runtime instance (which includes ZSS), and that you are
installing a second runtime instance to install an additional ZSS.

1. To stop the installed Zowe runtime, in SDSF enter the following command:

/C ZOWESVR

2. Install a new Zowe runtime by following steps in Installing Zowe on z/OS.

Note: In the zowe-install.yaml configuration file, specify ports that are not used by the first Zowe runtime.

 | User Guide | 110

3. To restart the first Zowe runtime, in SDSF enter the following command:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR'

Where '$ZOWE_ROOT_DIR' is the first Zowe runtime root directory. By default the command starts the most
recently installed runtime unless you specify the root directory of the runtime that you want to start.

4. To specify a name for the new ZSS instance, follow these steps:

a. Copy the PROCLIB member JCL named ZWESIS01 that was installed with the new runtime.
b. Rename the copy to uniquely identify it as the JCL that starts the new ZSS, for example ZWESIS02.
c. Edit the JCL, and in the NAME parameter specify a unique name for the cross-memory server, for example:

//ZWESIS02 PROC NAME='ZWESIS_MYSRV',MEM=00,RGN=0M

Where ZWESIS_MYSRV is the unique name of the new ZSS.
5. To start the new ZSS, in SDSF enter the following command:

 /S ZWESIS02

6. Make sure that the TSO user ID that runs the first ZSS started task also runs the new ZSS started task. The default
ID is IZUSVR.

7. In the new ZSS zluxserver.json configuration file, add a "privilegedServerName" parameter and
specify the new ZSS name, for example:

"rootDir":"../deploy",
"productDir":"../deploy/product",
"siteDir":"../deploy/site",
"instanceDir":"../deploy/instance",
"groupsDir":"../deploy/instance/groups",
"usersDir":"../deploy/instance/users",
"pluginsDir":"../deploy/instance/ZLUX/plugins",
"privilegedServerName":"ZWESIS_MYSRV",
"dataserviceAuthentication": { ... }

Note: The default location of zluxserver.json is $ZOWE_ROOT_DIR/zlux-app-server/deploy/
instance/ZLUX/serverConfig/zluxserver.json

8. Run the zlux-build/deploy.sh command redeploy and make the zluxserver.json change take effect.
9. To start the new Zowe runtime, in SDSF enter the following command:

/S ZOWESVR

10. To verify that the new cross-memory server is being used, check for the following messages in the ZOWESVR
server job log:

ZIS status - Ok (name='ZWESIS_MYSRV ', cmsRC=0, description='Ok',
clientVersion=2)

Applying role-based access control to dataservices

To apply role-based access control (RBAC) to dataservice endpoints, you must enable RBAC for Zowe, and then use
a z/OS security product such as RACF to map roles and authorities to the endpoints. After you apply RBAC, Zowe
checks authorities before allowing access to the endpoints.

You can apply access control to Zowe endpoints and to your application endpoints. Zowe provides endpoints for a
set of configuration dataservices and a set of core dataservices. Applications can use Configuration Dataservice on
page 238 to store and their own configuration and other data. Administrators can use core endpoints to get status
information from the Application Framework and ZSS servers. Any dataservice added as part of an application plugin
is a service dataservice.

 | User Guide | 111

Defining the RACF ZOWE class

If you use RACF security, take the following steps define the ZOWE class to the CDT class:

1. Make sure that the CDT class is active and RACLISTed.
2. In TSO, issue the following command:

RDEFINE CDT ZOWE UACC(NONE)
CDTINFO(
 DEFAULTUACC(NONE)
 FIRST(ALPHA) OTHER(ALPHA,NATIONAL,NUMERIC,SPECIAL)
 MAXLENGTH(246)
 POSIT(607)
 RACLIST(DISALLOWED))

If you receive the following message, ignore it:

"Warning: The POSIT value is not within the recommended ranges for
 installation use. The valid ranges are 19-56 and 128-527."

3. In TSO, issue the following command to refresh the CDT class:

SETROPTS RACLIST(CDT) REFRESH

4. In TSO, issue the following command to activate the ZOWE class:

SETROPTS CLASSACT(ZOWE)

For more information RACF security administration, see the IBM Knowledge Center at https://www.ibm.com/
support/knowledgecenter/.

Enabling RBAC

By default, RBAC is disabled and all authenticated Zowe users can access all dataservices. To enable RBAC, follow
these steps:

1. Open the Zowe Application Server configuration JSON file. In the default server instance, the configuration file is
/zlux-app-server/config/zluxserver.json.

2. In the dataserviceAuthentication object, add "rbac": true.

Creating authorization profiles

For users to access endpoints after you enable RBAC, in the ZOWE class you must create System Authorization
Facility (SAF) profiles for each endpoint and give users READ access to those profiles.

Endpoints are identified by URIs in the following format:

/<product>/plugins/<plugin_id>/services/<service>/<version>/<path>

For example:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Where the path is /users/fred.

SAF profiles have the following format:

<product>.<instance_id>.<service>.<pluginid_with_underscores>.<service>.<HTTP_method>.<url_with_forward_slashes_replaced_by_periods>

For example, to issue a POST request to the dataservice endpoint documented above, users must have READ access
to the following profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

For configuration dataservice endpoint profiles use the service code CFG. For core dataservice endpoints use COR.
For all other dataservice endpoints use SVC.

https://www.ibm.com/support/knowledgecenter/
https://www.ibm.com/support/knowledgecenter/

 | User Guide | 112

Creating generic authorization profiles

Some endpoints can generate an unlimited number of URIs. For example, an endpoint that performs a DELETE
action on any file would generate a different URI for each file, and users can create an unlimited number of files. To
apply RBAC to this type of endpoint you must create a generic profile, for example:

ZLUX.DEFAULT.COR.ORG_ZOWE_FOO.BAZ.DELETE.**

You can create generic profile names using wildcards, such as asterisks (*). For information on generic profile
naming, see IBM documentation.

Configuring basic authorization

The following are recommended for basic authorization:

• To give administrators access to everything in Zowe, create the following profile and give them UPDATE access
to it: ZLUX.**

• To give non-administrators basic access to the site and product, create the following profile and give them READ
access to it: ZLUX.*.ORG_ZOWE_*

• To prevent non-administrators from configuring endpoints at the product and instance levels, create the following
profile and do not give them access to it: ZLUX.DEFAULT.CFG.**

• To give non-administrators all access to user, create the following profile and give them UPDATE access to it:
ZLUX.DEFAULT.CFG.*.*.USER.**

Endpoint URL length limitations

SAF profiles cannot contain more than 246 characters. If the path section of an endpoint URL is long enough that the
profile name exceeds the limit, the path is trimmed to only include elements that do not exceed the limit. To avoid this
issue, we recommend that appliction developers maintain relatively short endpoint URL paths.

For information on endpoint URLs, see Dataservice endpoint URL lengths and RBAC

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the zluxserver.json
file.

For example:

"logLevels": {
 "_zsf.routing": 0,
 "_zsf.install": 0,
 "_zss.traceLevel": 0,
 "_zss.fileTrace": 1
}

Specify the following settings inside the logLevels object.

All settings are optional.

Zowe Application Server tracing

To determine how the Zowe Application Server (zlux-app-server) is working, you can assign a logging level to
one or more of the pre-defined logger names in the zluxserver.json file.

The log prefix for the Zowe Application Server is _zsf, which is used by the server framework. (Applications and
plug-ins that are attached to the server do not use the _zsf prefix.)

The following are the logger names that you can specify:

_zsf.bootstrap Logging that pertains to the startup of the server.

_zsf.auth Logging for network calls that must be checked for authentication and authorization purposes.

_zsf.static Logging of the serving of static files (such as images) from an application's /web folder.

_zsf.child Logging of child processes, if any.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha100/egnoff.htm

 | User Guide | 113

_zsf.utils Logging for miscellaneous utilities that the server relies upon.

_zsf.proxy Logging for proxies that are set up in the server.

_zsf.install Logging for the installation of plug-ins.

_zsf.apiml Logging for communication with the api mediation layer.

_zsf.routing Logging for dispatching network requests to plug-in dataservices.

_zsf.network Logging for the HTTPS server status (connection, ports, IP, and so on)

Log levels

The log levels are:

• SEVERE = 0,
• WARNING = 1,
• INFO = 2,
• FINE = 3,
• FINER = 4,
• FINEST = 5

FINE, FINER, and FINEST are log levels for debugging, with increasing verbosity.

Enabling tracing for ZSS

To increase logging for ZSS, you can assign a logging level (an integer value greater than zero) to one or more of the
pre-defined logger names in the zluxserver.json file.

A higher value specifies greater verbosity.

The log prefix for ZSS is _zss. The following are the logger names that you can specify:

_zss.traceLevel: Controls general server logging verbosity.

_zss.fileTrace: Logs file serving behavior (if file serving is enabled).

_zss.socketTrace: Logs general TCP Socket behavior.

_zss.httpParseTrace: Logs parsing of HTTP messages.

_zss.httpDispatchTrace: Logs dispatching of HTTP messages to dataservices.

_zss.httpHeadersTrace: Logs parsing and setting of HTTP headers.

_zss.httpSocketTrace: Logs TCP socket behavior for HTTP.

_zss.httpCloseConversationTrace: Logs HTTP behavior for when an HTTP conversation ends.

_zss.httpAuthTrace: Logs behavior for session security.

When you are finished specifying the settings, save the zluxserver.json file.

Zowe Application Framework logging

The Zowe Application Framework log files contain processing messages and statistics. The log files are generated in
the following default locations:

• Zowe Application Server: zlux-app-server/log/nodeServer-yyyy-mm-dd-hh-mm.log
• ZSS: zlux-app-server/log/zssServer-yyyy-mm-dd-hh-mm.log

The logs are timestamped in the format yyyy-mm-dd-hh-mm and older logs are deleted when a new log is created at
server startup.

Controlling the logging location

The log information is written to a file and to the screen. (On Windows, logs are written to a file only.)

 | User Guide | 114

ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables

To control where the information is logged, use the environment variable ZLUX_NODE_LOG_DIR, for the Zowe
Application Server, and ZSS_LOG_DIR, for ZSS. While these variables are intended to specify a directory, if you
specify a location that is a file name, Zowe will write the logs to the specified file instead (for example: /dev/null
to disable logging).

When you specify the environment variables ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR and you
specify directories rather than files, Zowe will timestamp the logs and delete the older logs that exceed the
ZLUX_NODE_LOGS_TO_KEEP threshold.

ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

If you set the log file name for the Zowe Application Server by setting the ZLUX_NODE_LOG_FILE environment
variable, or if you set the log file for ZSS by setting the ZSS_LOG_FILE environment variable, there will only be one
log file, and it will be overwritten each time the server is launched.

Note: When you set the ZLUX_NODE_LOG_FILE or ZSS_LOG_FILE environment variables, Zowe will not
override the log names, set a timestamp, or delete the logs.

If the directory or file cannot be created, the server will run (but it might not perform logging properly).

Retaining logs

By default, the last five logs are retained. To specify a different number of logs to retain, set
ZLUX_NODE_LOGS_TO_KEEP (Zowe Application Server logs) or ZSS_LOGS_TO_KEEP (ZSS logs) to the
number of logs that you want to keep. For example, if you set ZLUX_NODE_LOGS_TO_KEEP to 10, when the
eleventh log is created, the first log is deleted.

Administering the servers and plugins using an API

You can use a REST API to retrieve and edit Zowe Application Server and ZSS server configuration values, and list,
add, update, and delete plugins. If an administrator has configured Zowe to use RBAC, they must authorize you to
access the endpoints.

The API returns the following information in a JSON response:

API Description

/server (GET) Returns a list of accessible server endpoints for the Zowe
Application Server.

/server/config (GET) Returns the Zowe Application Server configuration from
the zluxserver.json file.

/server/log (GET) Returns the contents of the Zowe Application Server log
file.

/server/loglevels (GET) Returns the verbosity levels set in the Zowe Application
Server logger.

/server/environment (GET) Returns Zowe Application Server environment
information, such as the operating system version, node
server version, and process ID.

/server/reload (GET) Reloads the Zowe Application Server. Only available in
cluster mode.

/server/agent (GET) Returns a list of accessible server endpoints for the ZSS
server.

/server/agent/config (GET) Returns the ZSS server configuration from the
zluxserver.json file.

/server/agent/log (GET) Returns the contents of the ZSS log file.

https://docs.zowe.org/stable/user-guide/mvd-configuration.html#applying-role-based-access-control-to-dataservices

 | User Guide | 115

API Description

/server/agent/loglevels (GET) Returns the verbosity levels of the ZSS logger.

/server/agent/environment (GET) Returns ZSS environment information.

/server/config/:attrib (POST) Specify values for server configuration attributes in the
zluxserver.json file. You can change a subset of
configuration values.

/server/logLevels/name/:componentName/level/:level
(POST)

Specify the logger that you are using and a verbosity
level.

/plugins (GET) Returns a list of all plugins and their dataservices.

/plugins (PUT) Adds a new plugin or upgrades an existing plugin. Only
available in cluster mode.

/plugins/:id (DELETE) Deletes a plugin. Only available in cluster mode.

Swagger API documentation is provided in the /zlux-app-server/doc/swagger/server-plugins-
api.yaml file. To see it in HTML format, you can paste the contents into the Swagger editor at https://
editor.swagger.io/.

Note: The "agent" end points interact with the agent specified in the zluxserver.json file. By default this is
ZSS.

Configuring Zowe CLI

This section explains how to define and verify your connection to the mainframe through Zowe™ CLI. You can also
configure CLI settings, such as the level of detail produced in logs and the location of the home directory on your
computer.

Note: The configuration for the CLI is stored on your computer in a directory such as C:\Users\user01\.zowe. The
configuration includes log files, your profile information, and CLI plug-ins that are installed. When you troubleshoot
an issue with the CLI, the log files in the imperative and zowe folders contain valuable information.

• Defining Zowe CLI connection details on page 115
• Testing Zowe CLI connection to z/OSMF
• Setting Zowe CLI log levels on page 120
• Setting the Zowe CLI home directory on page 121

Defining Zowe CLI connection details

Zowe CLI has a command option order of precedence that lets you define arguments and options for commands
in multiple ways (command-line, environment variables, and profiles). This provides flexibility when you issue
commands and write automation scripts. This topic explains order of precedence and different methods for specifying
your mainframe connection details.

• Understanding command option order of precedence on page 115
• Creating Zowe CLI profiles on page 116
• Defining Environment Variables on page 117
• Integrating with API Mediation Layer on page 118

Understanding command option order of precedence

Before you issue commands, it is helpful to understand the command option order of precedence. The following is the
order in which Zowe CLI searches for your command arguments and options when you issue a command:

1. Arguments and options that you specify directly on the command line.
2. Environment variables that you define in the computer's operating system. For more information, see Defining

Environment Variables on page 117
3. User profiles that you create.

 | User Guide | 116

4. The default value for the argument or option.

The affect of the order is that if you omit an argument/option from the command line, Zowe CLI searches for an
environment variable that contains a value that you defined for the argument/option. If Zowe CLI does not find a
value for the argument/option in an environment variable, Zowe CLI searches your user profiles for the value that you
defined for the option/argument. If Zowe CLI does not find a value for the argument/option in your profiles, Zowe
CLI executes the command using the default value for the argument/option.

Note: If a required option or argument value is not located, you receive a syntax error message that states Missing
Positional Argument or Missing Option.

Creating Zowe CLI profiles

Profiles let you store configuration details for use on multiple commands. You can create a profile that contains your
username, password, and connection details for a particular mainframe system, then reuse that profile to avoid typing
it again on every command. Switch between profiles to quickly target different mainframe subsystems.

Notes:

• Profile values are stored on your computer in plaintext in the C:\Users\<yourUsername>\.zowe
\profiles folder.

• Profiles are not required to use the CLI. You can choose to specify all connection details in options on every
command.

• For information about securely connecting to the server when you issue commands, see Certificate security on
page 120.

Displaying profiles help

To learn about the options available for creating zosmf profiles, issue the following command:

zowe profiles create zosmf-profile --help

Creating and Using a profile

Create a profile, then use the profile when you issue a command. For example, substitute your connection details and
issue the following command to create a profile with the name myprofile123:

zowe profiles create zosmf-profile myprofile123 --host host123 --port
 port123 --user ibmuser --password pass123

Issue the following command to list all data sets under the username ibmuser on the system specified in
myprofile123:

zowe zos-files list data-set "ibmuser.*" --zosmf-profile myprofile123

After you create a profile, you can verify that it can communicate with z/OSMF. For more information, see Testing
Connection to z/OSMF.

Creating a profile that accesses API Mediation Layer

You can create profiles that access either an exposed API or API Mediation Layer (API ML) in the following ways:

• When you create a profile, specify the host and port of the API that you want to access. When you only provide
the host and port configuration, Zowe CLI connects to the exposed endpoints of a specific API.

• When you create a profile, specify the host, port, and the base path of API ML instance that you want to access.
Using the base path to API ML, Zowe CLI routes your requests to an appropriate instance of the API based on the
system load and the available instances of the API.

For more information, see Integrating with API Mediation Layer on page 118.

Example:

 | User Guide | 117

The following example illustrates the command to create a profile that connects to z/OSMF through API ML with the
base path my/api/layer:

zowe profiles create zosmf myprofile -H <myhost> -P <myport> -u <myuser> --
pw <mypass> --base-path <my/api/layer>

After you create a profile, verify that it can communicate with z/OSMF. For more information, see Testing Zowe CLI
connection to z/OSMF.

Defining Environment Variables

You can define environment variables in your environment to execute commands more efficiently. You can store a
value, such as your password, in an environment variable, then issue commands without specifying your password
every time. The term environment refers to your operating system, but it can also refer to an automation server, such
as Jenkins or a Docker container. In this section we explain how to transform arguments and options from Zowe CLI
commands into environment variables and define them with a value.

• Assigning an environment variable for a value that is commonly used.

For example, you might want to specify your mainframe user name as an environment variable on your computer.
When you issue a command and omit the --username argument, Zowe CLI automatically uses the value
that you defined in the environment variable. You can now issue a command or create any profile type without
specifying your user name repeatedly.

• Overriding a value that is used in existing profiles.

For example, you might want to override a value that you previously set on multiple profiles to avoid recreating
each profile.This reduces the number of profiles that you need to maintain and lets you avoid specifying every
option on command line for one-off commands.

• Specifying environment variables in a Jenkins environment (or other automation server) to store
credentials securely.

You can set values in Jenkins environment variables for use in scripts that run in your CI/CD pipeline. You
can define Jenkins environment variables in the same manner that you can on your computer. You can also
define sensitive information in the Jenkins secure credential store. For example, you might need to define your
mainframe password in the secure credential store so that it is not available in plain text.

Transforming arguments/options to environment variable format

Transform the option/argument into the correct format for a Zowe CLI environment variable, then define values to the
new variable. The following rules apply to this transformation:

• Prefix environment variables with ZOWE_OPT_
• Convert lowercase letters in arguments/options to uppercase letters
• Convert hyphens in arguments/options to underscores

Tip: See your operating system documentation for information about how to set and get environment variables. The
procedure for setting environment variables varies between Windows, Mac, and various versions of Linux operating
systems.

Examples:

The following table shows command line options that you might want to transform and the resulting environment
variable to which you should define the value. Use the appropriate procedure for for your operating system to define
the variables.

Command Option Environment Variable Use Case

--user ZOWE_OPT_USER Define your mainframe user name
to an environment variable to avoid
specifying it on all commands or
profiles.

 | User Guide | 118

Command Option Environment Variable Use Case

--reject-unauthorized ZOWE_OPT_REJECT_UNAUTHORIZEDDefine a value of true to the --
reject-unathorized flag
when you always require the flag
and do not want to specify it on all
commands or profiles.

Setting environment variables in an automation server

You can use environment variables in an automation server, such as Jenkins, to write more efficient scripts and make
use of secure credential storage.

You can either set environment variables using the SET command within your scripts, or navigate to Manage
Jenkins \> Configure System \> Global Properties and define an environment variable in the Jenkins GUI. For
example:

Using secure credential storage

Automation tools such as Jenkins automation server usually provide a mechanism for securely storing configuration
(for example, credentials). In Jenkins, you can use withCredentials to expose credentials as an environment
variable (ENV) or Groovy variable.

Note: For more information about using this feature in Jenkins, see Credentials Binding Plugin in the Jenkins
documentation.

Integrating with API Mediation Layer

The API Mediation Layer provides a single point of access to a defined set of microservices. The API Mediation
Layer provides cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and API documentation.

When Zowe CLI executes commands that connect to a service through the API Mediation Layer, the layer routes the
command execution requests to an appropriate instance of the API. The routing path is based on the system load and
available instances of the API.

Use the --base-path option on commands to let all of your Zowe CLI core command groups (excludes plug-in
groups) access REST APIs through an API Mediation Layer. To access API Mediation Layers, you specify the base
path, or URL, to the API gateway as you execute your commands. Optionally, you can define the base path URL as
an environment variable or in a profile that you create.

Examples:

https://jenkins.io/doc/pipeline/steps/credentials-binding/

 | User Guide | 119

The following example illustrates the base path for a REST request that is not connecting through an API Mediation
Layer to one system where an instance of z/OSMF is running:

https://mymainframehost:port/zosmf/restjobs/jobs

The following example illustrates the base path (named api/v1/zosmf1) for a REST request to an API mediation
layer:

https://myapilayerhost:port/api/v1/zosmf1/zosmf/restjobs/jobs

The following example illustrates the command to verify that you can connect to z/OSMF through an API Mediation
Layer that contains the base path my/api/layer:

zowe zosmf check status -H <myhost> -P <myport> -u <myuser> --pw <mypass> --
base-path <my/api/layer>

More Information:

• Zowe overview on page 8
• Creating a profile that accesses API Mediation Layer on page 116

Testing Zowe CLI connection to z/OSMF

You can issue a command at any time to receive diagnostic information from the server and confirm that Zowe CLI
can communicate with z/OSMF or other mainframe APIs.

Important! By default, the server certificate is verified against a list of Certificate Authorities (CAs) trusted by
Mozilla. This handshake ensures that the CLI can trust the server. You can append the flag --ru false to any of
the following commands to bypass the certificate verification against CAs. If you use the --ru false flag, ensure
that you understand the potential security risks of bypassing the certificate requirement at your site. For the most
secure environment, system administrators configure a server keyring with a server certificate signed by a Certificate
Authority (CA). For more information, see Certificate security on page 120.

Without a Profile

Verify that your CLI instance can communicate with z/OSMF.

zowe zosmf check status --host <host> --port <port> --user <username> --pass
 <password>

Default profile

After you Creating Zowe CLI profiles on page 116, verify that you can use your default profile to communicate
with z/OSMF:

zowe zosmf check status

Specific profile

After you Creating Zowe CLI profiles on page 116, verify that you can use a specific profile to communicate with
z/OSMF:

zowe zosmf check status --zosmf-profile <profile_name>

The commands return a success or failure message and display information about your z/OSMF server, such as the
z/OSMF version number. Report any failure to your systems administrator and use the information for diagnostic
purposes.

 | User Guide | 120

Certificate security

Certificates authorize communication between a server and client, such as z/OSMF and Zowe CLI. The client CLI
must "trust" the server to successfully issue commands. Use one of the following methods to let the CLI communicate
with the server:

• Configure certificates signed by a Certificate Authority (CA) on page 120
• Extend trusted certificates on client on page 120
• Bypass certificate requirement with CLI flag on page 120

Configure certificates signed by a Certificate Authority (CA)

System Administrators can configure the server with a certificate signed by a Certificate Authority (CA) trusted by
Mozilla. When a CA trusted by Mozilla exists in the certificate chain, the CLI automatically recognizes the server and
authorizes the connection.

Related information:

• Using certificates with z/OS client/server applications in the IBM Knowledge Center.
• Configuring the z/OSMF key ring and certificate in the IBM Knowledge Center.
• Certificate management in Zowe API Mediation Layer
• Mozilla Included CA Certificate List

Extend trusted certificates on client

If your organization uses self-signed certificates in the certificate chain (rather than a CA trusted by Mozilla), you can
download the certificate to your computer add it to the local list of trusted certificates. Provide the certificate locally
using the NODE_EXTRA_CERTS environment variable. Organizations might want to configure all client computers
to trust the self-signed certificate.

This blog post outlines the process for using environment variables to trust the self-signed certificate.

Bypass certificate requirement with CLI flag

If you do not have server certificates configured at your site, or you want to trust a known self-signed certificate,
you can append the --reject-unauthorized false flag to your CLI commands. Setting the --reject-
unauthorized flag to false rejects self-signed certificates and essentially bypasses the certificate requirement.

Important! Understand the security implications of accepting self-signed certificates at your site before you use this
command.

Example:

zowe zosmf check status --host <host> --port <port> --user <username> --pass
 <password> --reject-unauthorized false

Setting Zowe CLI log levels

You can set the log level to adjust the level of detail that is written to log files:

Important\! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,
command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

ZOWE_APP_LOG
_LEVEL

Zowe CLI logging level Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

ZOWE_IMPERATIVE
_LOG_LEVEL

Imperative CLI Framework
logging level

Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha700/icha700_Using_certificates_with_z_OS_client_server_applications.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://wiki.mozilla.org/CA/Included_Certificates
https://medium.com/@dkelosky/zowe-cli-providing-node-extra-ca-certs-117727d936e5

 | User Guide | 121

Setting the Zowe CLI home directory

You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log files,
profiles, and plug-ins for the product:

Environment Variable Description Values Default

ZOWE_CLI_HOME Zowe CLI home directory
location

Any valid path on your
computer

Your computer default
home directory

Using Zowe

Getting started tutorial

Contents

• Learning objectives on page 121
• Estimated time on page 121
• Prerequisites and assumptions on page 122
• Logging in to the Zowe Desktop on page 122
• Querying JES jobs and viewing related status in JES Explorer on page 124
• Using TN3270 in Zowe Desktop to view the job on page 126
• Editing a data set in MVS Explorer on page 136
• Using the Zowe CLI to edit a data set on page 137
• Viewing the data set changes in MVS Explorer on page 139
• Next steps on page 139

• Go deeper with Zowe on page 139
• Try the Extending Zowe scenarios on page 139
• Give feedback on page 139

Learning objectives

This tutorial walks you through the Zowe™ interfaces, including the Zowe Desktop and Zowe CLI, with several
simple tasks to help you get familiar with Zowe.

• If you are new to Zowe, start with this tutorial to explore the base Zowe features and functions.
• If you are already familiar with Zowe interfaces and capabilities, you might want to visit the Extending section

which guides you to extend Zowe by creating your own APIs or applications.

• Onboarding Overview on page 158
• Overview on page 219
• Developing for Zowe CLI on page 206

By the end of the session, you'll know how to:

• Log in to the Zowe Desktop
• Query jobs with filters and view the related status by using the JES Explorer
• View jobs by using TN3270 in the Zowe Desktop
• View and edit data sets by using the MVS Explorer
• Edit a data set and upload it to the mainframe by using Zowe Command-Line Interface (CLI)

As an introductory scenario, no previous knowledge of Zowe is needed.

Estimated time

This tutorial guides you through the steps in roughly 20 minutes. If you explore other concepts related to this tutorial,
it can take longer to complete.

 | User Guide | 122

Prerequisites and assumptions

Before you begin, it is assumed that you have already successfully installed Zowe. You are ready to launch Zowe
Desktop and Zowe CLI.

For information about how to install Zowe, see Planning the installation on page 34.

Important!

• In this tutorial, the following parameters are used as an example. Replace them with your own settings when you
follow the tutorial in your environment.

• URL to access the Zowe Desktop: https://s0w1:8544/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

• Mainframe credentials:

• Username: ibmuser
• Password: sys1

• It is assumed that you perform the tasks in a Windows environment and that you have Visual Studio Code (VS
Code) installed.

Logging in to the Zowe Desktop

Access and navigate the Zowe Desktop to view the Zowe applications. In this tutorial, you will use the Firefox
browser to log in to the Zowe Desktop.

The URL to access the Zowe Desktop is https://myhost:httpsPort/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html in your own environment, where:

• myHost is the host on which you are running the Zowe Application Server.
• httpsPort is the value that was assigned to node.https.port in zluxserver.json. For example, if

you run the Zowe Application Server on host myhost and the value that is assigned to node.https.port in
zluxserver.json is 12345, you would specify https://myhost:12345/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html.

Follow these steps:

 | User Guide | 123

1. In the address field, enter the URL to access the Zowe Desktop. In this tutorial, the following URL is used as an
example:

https://s0w1:8544/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

2. On the login page of the Zowe Desktop, enter your mainframe credentials. In this tutorial, the following ID is used
as an example:

• Username: ibmuser
• Password: sys1

3. Press Enter.

Upon authentication of your user name and password, the Zowe Desktop opens. Several applications are pinned to the
taskbar. Click the Start menu to see a list of applications that are installed by default. You can pin other applications
to the taskbar by right-clicking the application icon and selecting Pin to taskbar.

 | User Guide | 124

Next, you will use the JES Explorer application to query the jobs with filters and view the related status.

Querying JES jobs and viewing related status in JES Explorer

Use the Job Entry Subsystem (JES) Explorer to query JES jobs with filters and view the related status.

Follow these steps:

1. Click the Start menu in the Zowe Desktop.

2. Scroll down to find the JES Explorer icon and click to open it. The JES Explorer is displayed. If prompted to
provide credentials for authentication, enter your mainframe credentials.

 | User Guide | 125

3. Click the Job Filters column to expand the filter criteria. You can filter jobs on various criteria by Owner, Prefix,
Job ID, and Status. By default, the jobs are filtered by Owner. In this tutorial, the example owner is IBMUSER.

4. To query the jobs starting with SDSF and in an active status, clear the field of Owner, then enter SDSF* in the
Prefix field and select ACTIVE from the Status drop-down list, and click APPLY.

Note: Wildcard is supported. Valid wildcard characters are asterisk (*), percent sign (%), and question mark (?).

 | User Guide | 126

5. From the job filter results, click the job named SDSF. The data sets for this job are listed.

6. Click JESJCL to open the JESJCL data set. The contents of this data set are displayed. You can also select other
data sets to view their contents.

Tip: You can hover over the text in purple color to display a hover help window.

You used the JES Explorer to query the JES jobs with filters and viewed the related steps, files, and status.

Close the JES Explorer window. Next, you'll use the TN3270 application plug-in in the Zowe Desktop to view the
same job that you viewed in this task.

Using TN3270 in Zowe Desktop to view the job

Use the TN3270 application plug-in to view the same job that you filtered out in the previous task.

Zowe not only provides new modern applications to interact with z/OS®, but also integrates the traditional TN3270
tool that you are familiar with. This TN3270 application plug-in provides a 3270 connection to the mainframe on
which the Zowe Application Server runs.

Follow these steps:

 | User Guide | 127

1. From the taskbar at the bottom of the Zowe Desktop, click the TN3270 icon to open the TN3270 application plug-
in.

The TN3270 panel is displayed, which offers selections to access various mainframe services.

 | User Guide | 128

2. Enter the following command and press Enter to log on to TSO:

LOGON ibmuser

 | User Guide | 129

3. On the TSO/E LOGON panel, enter the password sys1 in the Password field and press Enter.

You successfully log on to TSO.

 | User Guide | 130

4. When you see the following screen, press Enter. The ISPF Primary Option Menu is displayed.

 | User Guide | 131

5. Access SDSF to view output from a job. To do this,

a. Type M at the Option prompt and press Enter.

b. Type 5 and press Enter.

 | User Guide | 132

 | User Guide | 133

6. To view the jobs in an active status, type DA at the command input prompt and press Enter. The jobs that are
running are displayed.

 | User Guide | 134

7. To query the jobs that start with SDSF, type prefix sdsf; owner * at the command input prompt and press
Enter.

 | User Guide | 135

8. To view the contents of the job, type S next to the job name SDSF and press Enter.

The contents of the job are displayed.

 | User Guide | 136

Close the TN3270 window. In the next step, you will use the MVS Explorer to make changes to a data set.

Editing a data set in MVS Explorer

Use the MVS Explorer to create and edit a data set member and save the changes. The MVS Explorer view lets you to
browse the MVS file system by creating filters against data set names.

Follow these steps:

1. Click the Start menu on Zowe Desktop.
2. Scroll down to find the MVS Explorer icon and pin this application to the desktop for later use.
3. Click the MVS Explorer icon on the task bar. The MVS Explorer opens. The Filter field is pre-filled with the

user name. In this tutorial, the filter string is IBMUSER. All the data sets matching this filter are displayed. You
can expand a data set name and see the members in it.

 | User Guide | 137

4. Enter USER.Z23B.PARMLIB in the Filter field to locate this data set and then click to expand it. Ensure that
there is no extra space before the data set member name that you enter.

5. Right-click the USER.Z23B.PARMLIB data set and select New Dataset Member.

6. Enter ZTRIAL as the data set member name and click OK to create the data set member.

7. Click the data set member you just created and edit it by adding a new sentence, for example, First change
to Zowe zTrial.

8. Click SAVE to save your edits.

The following message Save success for USER.Z23B.PARMLIB(ZTRIAL) pops up quickly at the bottom of
the MVS Explorer window, which indicates that your edits are successfully saved.

Leave the MVS Explorer window open; we will look at the contents of the data set in a later step. If asked to leave the
page, choose Stay on Page. Next, you will use Zowe CLI to view and add another change to the same data set.

Using the Zowe CLI to edit a data set

Use Zowe CLI to download the same data set that you edited by using MVS Explorer in the previous step, edit it, and
upload the changes to the mainframe.

Zowe CLI is a command-line interface that lets you interact with z/OS from various other platforms, such as cloud
or distributed systems, to submit jobs, issue TSO and z/OS console commands, integrate z/OS actions into scripts,
produce responses as JSON documents, and more. With this extensible and scriptable interface, you can tie in
mainframes to distributed DevOps pipelines and build automation.

 | User Guide | 138

Follow these steps:

1. Start the Command Prompt or a terminal in your local desktop. In this tutorial, it's assumed that you use Windows
Command Prompt.

2. (Optional) Issue the following command to view the top-level help descriptions.

zowe --help

Tip: The command zowe initiates the product on a command line. All Zowe CLI commands begin with zowe.
3. To list the data sets of USER, enter the following command:

zowe zos-files list data-set "USER.*"

The following data sets are listed.

4. To download all the data set members of USER.Z23B.PARMLIB, enter the following command:

zowe zos-files download all-members "USER.Z23B.PARMLIB"

The message "Data set downloaded successfully" indicates that the data set members are downloaded. A file
heirarchy is added to your current directory.

5. To open the data set member named ZTRIAL in Visual Studio Code, issue the following command against the
same directory where you issued the download command:

code USER/Z23B/PARMLIB/ZTRIAL.txt

Alternatively, navigate to the PARMLIB directory and issue code ZTRIAL.txt.

The file opens in a text editor (in this example, VS Code). You will see the changes you made in the previous step
by using the MVS Explorer.

6. Add the text Second change to Zowe zTrial to the file and then use Ctrl+S to save your edits.

 | User Guide | 139

7. Open the Command Prompt again and upload your changes to the mainframe by entering the following command:

zowe zos-files upload file-to-data-set USER/Z23B/PARMLIB/ZTRIAL.txt
 "USER.Z23B.PARMLIB"

The following message indicates that you successfully uploaded your changes:

Congratulations! You used Zowe CLI to edit a data set member and upload the changes to mainframe.

Close the Command Prompt window. In the next step, you will open the MVS Explorer again to view the updates that
you made to the data set in this procedure.

Viewing the data set changes in MVS Explorer

Use the MVS Explorer to view the data set changes from the previous step.

Procedure

1. Return to the Zowe Desktop and open the MVS Explorer application.
2. Locate the data set member USER.Z23B.PARMLIB > ZTRIAL and click the refresh icon. You will see the

changes you just made by using Zowe CLI.

Congratulations! You explored several applications on the Zowe Desktop and learned how to work with them.

Next steps

Here are some next steps.

Go deeper with Zowe

In roughly 20 minutes, you used the MVS™ Explorer and Zowe CLI to edit the same data set member, and used the
JES Explorer and TN3270 to query the same JES job with filters, all without leaving Zowe. Now that you're familiar
with Zowe components, you can continue to learn more about the project. Zowe also offers many more plug-ins for
both Zowe Desktop and Zowe CLI.

For more information, see the Using the Zowe Desktop on page 140.

For a complete list of available CLI commands, explore the Zowe CLI Command Reference Guide.

Try the Extending Zowe scenarios

You can add your own application plug-ins to Zowe. See how easy it is to extend Zowe to create your own APIs and
applications by reading the Onboarding Overview on page 158 section.

Give feedback

Did you find this tutorial useful? You can tell us what you think about this tutorial via an online survey.

https://forms.gle/Ztu9AjgV6HRr1kEs9

 | User Guide | 140

If you encounter any problems or have an idea for improving this tutorial, you can create a GitHub issue here.

Using the Zowe Desktop

You can use the Zowe™ Application Framework to create application plug-ins for the Zowe Desktop. For more
information, see Overview on page 219.

Navigating the Zowe Desktop

From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

where:

• myHost is the host on which you are running the Zowe Application Server.
• httpsPort is the value that was assigned to node.https.port in zluxserver.json. For example, if

you run the Zowe Application Server on host myhost and the value that is assigned to node.https.port in
zluxserver.json is 12345, you would specify https://myhost:12345/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html.

Logging in and out of the Zowe Desktop

1. To log in, enter your mainframe credentials in the Username and Password fields.
2. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the the avatar in the lower right corner and click Sign Out.

Pinning applications to the task bar

1. Click the Start menu.
2. Locate the application you want to pin.
3. Right-click the on the application icon and select Pin to taskbar.

Changing the desktop language

Use the Languages setting in the personalization panel to change the desktop language. After you change the
language and restart Zowe, desktop menus and text display in the specified language. Applications that support the
specified desktop language also display in that language.

1. Click the personalization icon in the lower right corner.
2. Click Languages.
3. In the Languages dialog, click a language, and then click Apply.
4. When you are prompted, restart Zowe.

Zowe Desktop application plug-ins

Application plug-ins are applications that you can use to access the mainframe and to perform various tasks.
Developers can create application plug-ins using a sample application as a guide. The following application plug-ins
are installed by default:

Hello World Sample

The Hello World sample application plug-in for developers demonstrates how to create a dataservice and how to
create an application plug-in using Angular.

IFrame Sample

The IFrame sample application plug-in for developers demonstrates how to embed pre-made webpages within the
desktop as an application and how an application can request an action of another application (see the source code for
more information).

https://github.com/zowe/docs-site/issues

 | User Guide | 141

z/OS Subsystems

The z/OS Subsystems plug-in helps you find information about the important services on the mainframe, such as
CICS, Db2, and IMS.

TN3270

This TN3270 plug-in provides a 3270 connection to the mainframe on which the Zowe Application Server runs.

VT Terminal

The VT Terminal plug-in provides a connection to UNIX System Services and UNIX.

API Catalog

The API Catalog plug-in lets you view API services that have been discovered by the API Mediation Layer. For more
information about the API Mediation Layer, Discovery Service, and API Catalog, see Zowe overview on page 8.

Editor

With the Zowe Editor you can create and edit files on the system that Zowe serves.

Workflows

From the Workflows application plug-in you can create, manage, and use z/OSMF workflows to manage your system.

JES Explorer

Use this application to query JES jobs with filters, and view the related steps, files, and status. You can also purge
jobs from this view.

MVS Explorer

Use this application to browse the MVS™ file system by using a high-level qualifier filter. With the MVS Explorer,
you can complete the following tasks:

• List the members of partitioned data sets.
• Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").
• Submit data sets that contain JCL to Job Entry Subsystem (JES).
• Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for

JCL and REXX.
• Conduct basic validation of record length when editing JCL.
• Delete data sets and members.
• Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is then

reusable for example in help tickets.

USS Explorer

Use this application to browse the USS files by using a path. With the USS Explorer, you can complete the following
tasks:

• List files and folders.
• Create new files and folders.
• Edit files with basic syntax highlighting and content assist for JCL and REXX.
• Delete files and folders.

Using the Workflows application plug-in

The Workflows application plug-in is available from the Zowe Deskstop Start menu. To launch Workflows, click the
Start menu in the lower-left corner of the desktop and click the Workflows application plug-in icon. The Users/Tasks
Workflows window opens.

Logging on to the system

If you are prompted to log on to the system, complete these steps:

1. Enter your user ID and password.

 | User Guide | 142

2. Click Sign in.

Updating the data display

To refresh the data on any tab, click in the upper right corner of the window.

Configuration

From the Configuration tab, you can view, add, and remove servers.

Adding a z/OSMF server

Complete these steps to add a new z/OSMF server:

1. Click the Configuration tab.
2. Click the plus sign (+) on the left side of the window.
3. In the Host field, type the name of the host.
4. In the Port field, type the port number.
5. Click OK.

Testing a server connection

To test the connection, click Test. When the server is online the Online indicator next to the server Host and Port is
green.

Setting a server as the default z/OSMF server

Complete these steps to set a default z/OSMF server:

1. Click Set as default.
2. Enter your user ID and password.
3. Click Sign in.

Note: You must specify a default server.

Removing a server

To remove a server, click x next to the server that you want to remove.

Reload a server configuration

To reload a server configuration, click Reload.

Save a server configuration

To save a server configuration, click Save.

Workflows

To display all workflows on the system, click the Workflows tab.

You can sort the workflows based on the following information:

Workflow

The name of the workflow.

Description

The description of the workflow.

Version

The version number.

Owner

The user ID of the workflow owner.

System

 | User Guide | 143

The system identifier.

Status

The status of the workflow (In progress or Completed).

Progress

Indicates how much of the workflow has been completed based on the number of tasks completed.

Searching workflows

To locate a specific workflow, type a search string in the search box in the upper right corner of the window.

Defining a workflow

To define a workflow, complete these steps:

1. From the Workflows tab, click Actions > New workflow. (By default, the Advanced Mode check box is
selected.)

2. In the Name field, specify a descriptive name for the workflow.
3. In the Workflow definition file field, specify the primary XML file for this workflow.
4. In the System field, specify a system.
5. In the Owner field, specify the user ID of the person that is responsible for assigning the tasks in the workflow.

(To set the owner to the current user, select the Set owner to current user check box.)
6. Click OK.

Viewing tasks

To view the tasks associated with a workflow, click the My Tasks tab. Workflows that have assigned tasks are shown
on the left side of the window. The task work area is on the right side of the window.

You can choose to view workflows that have Pending or Completed tasks or you can choose to view all workflows
(Pending and Completed) and their tasks, regardless of the task status.

For each workflow, you can click the arrow to expand or collapse the task list. Assigned tasks display below each
workflow. Hovering over each task displays more information about the task, such as the status and the owner.

Each task has a indicator of PERFORM (a step to be performed) or CHECK (Check the step that was performed).
Clicking CHECK or PERFORM opens a work area on the right side of the window. When a task is complete, a
green clipboard icon with a checkmark is displayed.

Note: If you are viewing tasks on a Pending or Completed tab, only those workflows that have tasks with a
corresponding status, are displayed.

Task work area

When you click CHECK or PERFORM, a work area on the right side of the window opens to display the steps to

complete the task. Expand or collapse the work area by clicking .

Tip: Hovering over the task description in the title bar of the work area window on the right side displays more
information about the corresponding workflow and the step description.

Performing a task

1. To perform a task that has steps that are assigned to you, click PERFORM.
2. Use the work area to perform the steps associated with the selected task. Depending on the task, you might use an

embedded tool (such as another application) or you might complete a series of steps to complete the task.
3. If there are multiple steps to perform, click Next to advance to the next step for the task.
4. Click Finish.

Note: When a task is complete, a green clipboard icon with a checkmark is displayed next to the task.

Checking a task

1. To check a task, click CHECK.

 | User Guide | 144

2. In the task work area, view the JESMSGLG, JESJCL, JESYSMSG, or SYSTSPRT output that is associated with
the selected task.

Managing tasks

To manage a task in the PERFORM status, click to the right of the task status. Choose from the following options:

Properties

Display the title and description of the task.

Perform

Perform the first step.

Skip

Skip this step.

Override Complete

Override the completion of the step. The selected step will be bypassed and will not be performed for this workflow.
You must ensure that the step is performed manually.

Assignment

Opens the Manage Assignees window where authorized users can add or remove the user ID of the person that is
assigned to the step.

Return

Remove ownership of the step.

Viewing warnings

To view any warning messages that were encountered, click the Warnings tab. A message is listed in this tab each
time it is encountered.

To locate a specific message, type a search string in the search box in the upper right corner of the window.

You can sort the warning messages based on the following information.

Message Code

The message code that is associated with the warning.

Description

A description of the warning.

Date

The date of the warning.

Corresponding Workflow

The workflow that is associated with the warning.

Using the Editor

With the Zowe Editor, you can create and edit the many types of files.

Specifying a language server

To specify a language server, complete these steps:

1. From the Language Server menu, select URL*.
2. From the Language Server Setting, Put your config here area, paste your configuration.
3. Ensure that the Enable Language Server check box is selected.
4. Click Save.

 | User Guide | 145

Specifying a language

From the Language menu, select the language you want to use.

Opening a directory

To open a directory on the system, complete these steps:

1. From the File menu, select Open Directory.(Alternatively, you can click Open Directory in the File Explorer.)
2. From the Open Directory, Input Your Directory field, type the name of the directory you want to open. For

example: /u/zs1234
3. Click Open.

The File Explorer on the left side of the window lists the folders and files in the specified directory. Clicking on a
folder expands the tree. Clicking on a file opens a tab that displays the file contents.

Creating a new file

To create a new file, complete these steps:

1. From the File menu, select New File. The New File tab opens.
2. From the New File, File Name field, type the name of the file.
3. Click Create.

Saving a file

To save a file, click File > Save.

Note: To save all files, click File > Save All (or Ctrl+S).

API Catalog

As an application developer, use the API Catalog to view what services are running in the API Mediation Layer.
Through the API Catalog, you can also view the associated API documentation corresponding to a service,
descriptive information about the service, and the current state of the service. The tiles in the API Catalog can be
customized by changing values in the mfaas.catalog-ui-tile section defined in the application.yml of a service. A
microservice that is onboarded with the API Mediation Layer and configured appropriately, registers automatically
with the API Catalog and a tile for that service is added to the Catalog.

Note: For more information about how to configure the API Catalog in the application.yml, see: Java REST APIs
with Spring Boot on page 161.

View Service Information and API Documentation in the API Catalog

Use the API Catalog to view services, API documentation, descriptive information about the service, the current state
of the service, service endpoints, and detailed descriptions of these endpoints.

Note: Verify that your service is running. At least one started and registered instance with the Discovery Service is
needed for your service to be visible in the API Catalog.

Follow these steps:

1. Use the search bar to find the service that you are looking for. Services that belong to the same product family are
displayed on the same tile.

Example: Sample Applications, Endevor, SDK Application

 | User Guide | 146

2. Click the tile to view header information, the registered services under that family ID, and API documentation for
that service.

Notes:

• The state of the service is indicated in the service tile on the dashboard page. If no instances of the service are
currently running, the tile displays a message displays that no services are running.

• At least one instance of a service must be started and registered with the discovery service for it to be visible in
the API Catalog. If the service that you are onboarding is running, and the corresponding API documentation
is displayed, this API documentation is cached and remains visible even when the service and all service
instances stop.

• Descriptive information about the service and a link to the home page of the service is displayed.

Example:

 | User Guide | 147

3. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the
endpoint description, and the full structure of the endpoint.

Example:

Notes:

• If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.
• The structure of the endpoint is displayed relative to the base URL.
• The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:

/api/v1/{yourServiceId}/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/api/v1/{yourServiceId}/{endpointName}

Both links target the same endpoint location.

 | User Guide | 148

Zowe CLI extensions and plug-ins

Extending Zowe CLI

You can install plug-ins to extend the capabilities of Zowe™ CLI. Plug-ins CLI to third-party applications are also
available, such as Visual Studio Code Extension for Zowe (powered by Zowe CLI). Plug-ins add functionality to the
product in the form of new command groups, actions, objects, and options.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

• Installing Zowe CLI plug-ins on page 148
• IBM® CICS® Plug-in for Zowe CLI on page 152
• IBM® Db2® Database Plug-in for Zowe CLI on page 152
• Zowe Explorer Extension for VSCode on page 155

Software requirements for Zowe CLI plug-ins

Before you use Zowe™ CLI plug-ins, complete the following steps:

1. Install Installing Zowe CLI on page 98 on your computer.
2. Complete the following configurations:

Plug-in Required Configurations

IBM® CICS® Plug-in for Zowe CLI on page 152 • Ensure that IBM CICS Transaction Server v5.2 or
later is installed and running in your mainframe
environment

• IBM CICS Management Client Interface (CMCI) is
configured and running in your CICS region.

IBM® Db2® Database Plug-in for Zowe CLI on page
152

• Download and prepare the ODBC driver (required for
only package installations) and address the licensing
requirements.

• (MacOS) Download and Install Xcode.

Important! You can perform the required configurations for the plug-ins that you want to use before or after you
install the plug-ins. However, if you do not perform the required configurations, the plug-ins will not function as
designed.

Installing Zowe CLI plug-ins

Use commands in the plugins command group to install and manage Zowe™ CLI plug-ins.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of commands. Install
third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

You can install the following Zowe plug-ins:

• IBM® CICS® Plug-in for Zowe CLI
• IBM® Db2® Plug-in for Zowe CLI
• Third-party Zowe Conformant Plug-ins

Use either of the following methods to install plug-ins:

• Install from an online NPM registry. Use this method when your computer can access the Internet.

For more information, see Installing plug-ins from an online registry on page 149.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://developer.apple.com/xcode/resources/
https://www.openmainframeproject.org/projects/zowe/conformance

 | User Guide | 149

• Install from a local package. With this method, you download and install the plug-ins from a bundled set of .tgz
files. Use this method when your computer cannot access the Internet.

For more information, see Installing plug-ins from a local package on page 149.

Installing plug-ins from an online registry

Install Zowe CLI plug-ins using npm commands on Windows, Mac, and Linux. The procedures in this article assume
that you previously installed the core CLI.

Follow these steps:

1. Meet the Software requirements for Zowe CLI plug-ins on page 148 that you install.
2. Set the proper target registry by issuing the following command:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

3. Issue the following command to install a plug-in:

zowe plugins install <my-plugin>

Note: Replace <my-plugin> with the installation command syntax in the following table:

Plug-in Installation Command Syntax

IBM CICS Plug-in for Zowe CLI @brightside/cics@lts-incremental

IBM Db2 Plug-in for Zowe CLI @brightside/db2@lts-incremental

4. (Optional) Issue the following command to install two or more plug-ins using one command. Separate the <my-
plugin> names with one space.

zowe plugins install <@brightside/my-plugin1> <@brightside/my-plugin2>
 <@brightside/my-plugin3> ...

Note: The IBM Db2 Plug-in for Zowe CLI requires additional licensing and ODBC driver configurations. If you
installed the DB2 plug-in, see IBM® Db2® Database Plug-in for Zowe CLI on page 152.

You installed Zowe CLI plug-ins.

Installing plug-ins from a local package

Install plug-ins from a local package on any computer that has limited or no access to the Internet. The procedure
assumes that you previously installed the core CLI.

Follow these steps:

1. Meet the Software requirements for Zowe CLI plug-ins on page 148 that you want to install.
2. Obtain the installation files.

From the Zowe Download website, click Download Zowe CLI to download the Zowe CLI installation package
named zowe-cli-package-*v*.*r*.*m*.zip to your computer.

Note: v indicates the version, r indicates the release number, and m indicates the modification number

https://zowe.org/download/

 | User Guide | 150

3. Open a command-line window such as Windows Command Prompt. Browse to the directory where you
downloaded the Zowe CLI installation package. Issue the following command to unzip the files:

unzip zowe-cli-package-v.r.m.zip

Example:

unzip zowe-cli-package-1.0.1.zip

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the file.
Optionally, extract the contents of the .zip file to your preferred location.

4. Open a command-line window and change to the local directory where you extracted the zip file.

Example:

cd C:\Users\userID\my_downloads\<file_name>.zip

5. Issue the following command to install the plug-in:

zowe plugins install <my-plugin>

Replace <my-plugin> with the .tgz file name listed in the following table:

Plug-in .tgz File Name

IBM CICS Plug-in for Zowe CLI cics.tgz

IBM Db2 Plug-in for Zowe CLI db2.tgz

You installed Zowe CLI plug-ins.

Validating plug-ins

Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify) to verify
that the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing
command groups in the base application. The command response provides you with details or error messages about
how the plug-ins integrate with Zowe CLI.

The validate command has the following syntax:

zowe plugins validate [plugin]

• [plugin](Optional) Specifies the name of the plug-in that you want to validate. If you do not specify a plug-in
name, the command validates all installed plug-ins. The name of the plug-in is not always the same as the name of
the NPM package.

|Plug-in|Syntax| |-|-| |IBM CICS Plug-in for Zowe CLI|@brightside/cics| |IBM Db2 Plug-in for Zowe
CLI|@brightside/db2| |||

Examples: Validate plug-ins

• The following example illustrates the syntax to use to validate the IBM CICS Plug-in for Zowe CLI:

zowe plugins validate @brightside/cics

• The following example illustrates the syntax to use to validate all installed plug-ins:

zowe plugins validate

Updating plug-ins

You can update Zowe CLI plug-ins from an online registry or from a local package.

 | User Guide | 151

Update plug-ins from an online registry

Issue the update command to install the latest stable version or a specific version of a plug-in that you installed
previously. The update command has the following syntax:

zowe plugins update [plugin...] [--registry <registry>]

•
Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same
as the name of the NPM package. You can use npm semantic versioning to specify a plug-in version to which to
update. For more information, see npm semver.

• [--registry \<registry>\]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

The following example illustrates the syntax to use to update an installed plug-in to the latest version:

zowe plugins update @brightside/my-plugin@lts-incremental

The following example illustrates the syntax to use to update a plug-in to a specific version:

zowe plugins update @brightside/my-plugin@"^1.2.3"

Update plug-ins from a local package

You can update plug-ins from a local package. You acquire the media from the Zowe Download website and update
the plug-ins using the zowe plugins install command.

To update plug-ins from a local package, follow the steps described in Installing plug-ins from a local package on
page 149.

Uninstall Plug-ins

Issue the uninstall command to uninstall plug-ins from Zowe CLI. After the uninstall process completes
successfully, the product no longer contains the plug-in configuration.

The uninstall command contains the following syntax:

zowe plugins uninstall [plugin]

• [plugin]

Specifies the name of the plug-in that you want to uninstall.

The following table describes the uninstallation command synstax for each plug-in:

Plug-in Uninstallation Command Syntax

IBM CICS Plug-in for Zowe CLI @brightside/cics

IBM Db2 Plug-in for Zowe CLI @brightside/db2

Example:

The following example illustrates the command to uninstall the CICS plug-in:

zowe plugins uninstall @brightside/cics

https://zowe.org/download/

 | User Guide | 152

IBM® CICS® Plug-in for Zowe CLI

The IBM® CICS® Plug-in for Zowe™ CLI lets you extend Zowe CLI to interact with CICS programs and
transactions. The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction
with CICS. For more information, see CICS management client interface on the IBM Knowledge Center.

• Use cases on page 152
• Commands on page 152
• Software requirements on page 152
• Installing on page 152
• Creating a user profile on page 152

Use cases

As an application developer, you can use the plug-in to perform the following tasks:

• Deploy code changes to CICS applications that were developed with COBOL.
• Deploy changes to CICS regions for testing or delivery. See the Commands on page 152 for an example of how

you can define programs to CICS to assist with testing and delivery.
• Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.
• Deploy build artifacts to CICS regions.
• Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is
available for download in three formats: a PDF document, an interactive online version, and a ZIP file containing the
HTML for the online version.

• Browse Online
• Download (ZIP)
• Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins on
page 148.

Installing

Use one of the following methods to install or update the plug-in:

• Installing plug-ins from an online registry on page 149
• Installing plug-ins from a local package on page 149

Creating a user profile

You can set up a CICS profile to avoid typing your connection details on every command. The profile contains your
host, port, username, and password for the CMCI instance of your choice. You can create multiple profiles and switch
between them if necessary. Issue the following command to create a cics profile:

zowe profiles create cics <profile name> -H <host> -P <port> -u <user> -p
 <password>

Note: For more information, issue the command zowe profiles create cis --help

IBM® Db2® Database Plug-in for Zowe CLI

The IBM® Db2® Database Plug-in for Zowe™ CLI lets you interact with Db2 for z/OS to perform tasks through
Zowe CLI and integrate with modern development tools. The plug-in also lets you interact with Db2 to advance
continuous integration and to validate product quality and stability.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
4c6ac420baca8a5cfa200d9a7281eba1888630f3.zip
1b5058fcf805c9919ce030238504d5a2dbe8fa15.pdf

 | User Guide | 153

Zowe CLI Plug-in for IBM Db2 Database lets you execute SQL statements against a Db2 region, export a Db2 table,
and call a stored procedure. The plug-in also exposes its API so that the plug-in can be used directly in other products.

[]

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM DB2 Database to perform the following tasks:

• Execute SQL and interact with databases.
• Execute a file with SQL statements.
• Export tables to a local file on your computer in SQL format.
• Call a stored procedure and pass parameters.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is
available for download in three formats: a PDF document, an interactive online version, and a ZIP file containing the
HTML for the online version.

• Browse Online
• Download (ZIP)
• Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins on
page 148.

Installing

Use one of the following methods to install the the Zowe CLI Plug-in for IBM Db2 Database:

• Installing from an online registry on page 153
• Installing from a local package on page 153

Installing from an online registry

If you installed Zowe CLI from online registry, complete the following steps:

1. Open a command line window and issue the following command:

zowe plugins install @brightside/db2@lts-incremental

2. Addressing the license requirement on page 154 to begin using the plug-in.

Installing from a local package

Follow these procedures if you downloaded the Zowe installation package:

Downloading the ODBC driver

Download the ODBC driver before you install the Db2 plug-in.

Follow these steps:

1. Download the ODBC CLI Driver. Use the table within the download URL to select the correct CLI Driver for
your platform and architecture.

2. Create a new directory named odbc_cli on your computer. Remember the path to the new directory. You will
need to provide the full path to this directory immediately before you install the Db2 plug-in.

3. Place the ODBC driver in the odbc_cli folder. Do not extract the ODBC driver.

You downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe CLI.

4c6ac420baca8a5cfa200d9a7281eba1888630f3.zip
1b5058fcf805c9919ce030238504d5a2dbe8fa15.pdf
https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url

 | User Guide | 154

Installing the plug-in

Now that the Db2 ODBC CLI driver is downloaded, set the IBM_DB_INSTALLER_URL environment variable and
install the Db2 plug-in to Zowe CLI.

Follow these steps:

1. Open a command line window and change the directory to the location where you extracted the zowe-cli-
bundle.zip file. If you do not have the zowe-cli-bundle.zip file, see the topic Install Zowe CLI from
local package in Installing Zowe CLI on page 98 for information about how to obtain and extract it.

2. From a command line window, set the IBM_DB_INSTALLER_URL environment variable by issuing the
following command:

• Windows operating systems:

set IBM_DB_INSTALLER_URL=<path_to_your_odbc_folder>/odbc_cli

• Linux and Mac operating systems:

export IBM_DB_INSTALLER_URL=<path_to_your_odbc_folder>/odbc_cli

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli, you would issue
the following command:

 set IBM_DB_INSTALLER_URL=C:\odbc_cli

3. Issue the following command to install the plug-in:

zowe plugins install zowe-db2.tgz

4. Addressing the license requirement on page 154 to begin using the plug-in.

Addressing the license requirement

The following steps are required for both the registry and offline package installation methods:

1. Locate your client copy of the Db2 license. You must have a properly licensed and configured Db2 instance for
the Db2 plugin to successfully connect to Db2 on z/OS.

Note: The license must be of version 11.1 if the Db2 server is not db2connectactivated. You can buy a
db2connect license from IBM. The connectivity can be enabled either on server using db2connectactivate utility
or on client using client side license file. To know more about DB2 license and purchasing cost, please contact
IBM Customer Support.

2. Copy your Db2 license file and place it in the following directory.

• Windows:

<zowe_home>\plugins\installed\node_modules\@brightside\db2\node_modules
\ibm_db\installer\clidriver\license

• Linux:

<zowe_home>/plugins/installed/lib/node_modules/@brightside/db2/
node_modules/ibm_db/installer/clidriver/license

Tip: By default, <zowe_home> is set to ~/.zowe on *NIX systems, and C:\Users\<Your_User>\.zowe
on Windows systems.

After the license is copied, you can use the Db2 plugin functionality.

Creating a user profile

Before you start using the IBM Db2 plug-in, create a profile.

 | User Guide | 155

Issue the command -DISPLAY DDF in the SPUFI or ask your DBA for the following information:

• The Db2 server host name
• The Db2 server port number
• The database name (you can also use the location)
• The user name
• The password
• If your Db2 systems use a secure connection, you can also provide an SSL/TSL certificate file.

To create a db2 profile in Zowe CLI, issue the following command with your connection details for the Db2 instance:

zowe profiles create db2 <profile name> -H <host> -P <port> -d <database> -u
 <user> -p <password>

Note For more information, issue the command zowe profiles create db2-profile --help

Zowe Explorer Extension for VSCode

The Zowe Explorer extension for Visual Studio Code (VSCode) lets you interact with data sets, USS files and jobs
that are stored on z/OS mainframe. Install the extension directly to VSCode to enable the extension within the GUI.
For some users, working with data sets and USS files from VSC can be more convenient than using 3270 emulators,
and complements your Zowe CLI experience.

Note: The primary documentation for the Zowe Explorer is available on the Visual Studio Code Marketplace. This
article is a high-level overview of the extension.

• Use-Cases on page 155
• Software requirements on page 155
• Installing on page 155

Use-Cases

As a developer, you can use Zowe Explorer to perform the following tasks.

• View, rename, copy and filter mainframe data sets, USS files and jobs.
• Create download, edit, upload, and delete PDS and PDS members.
• Create Zowe CLI compatible zosmf profiles.
• Switch between Zowe CLI zosmf profiles to quickly target different mainframe systems.
• Submit jobs.

Software requirements

Before you use the extension, meet the following software requirements on your computer:

• Get access to z/OSMF.
• Install Node.js v8.0 or later.
• Install VSCode.
• Create one Zowe CLI zosmf profile so that the extension can communicate with the mainframe.

Note: You might use an existing Zowe CLI zosmf profile that was created with the Zowe CLI v.2.0.0 or later.

Installing

1. Address Software requirements on page 155.
2. Open VSCode. Navigate to the Extensions tab on the left side of the UI.
3. Click the green Install button to install the extension.
4. Restart VSCode.

The extension is now installed and available for use.

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://nodejs.org/en/download/
https://code.visualstudio.com/

Tip: For information about how to install the extension from a VSIX file and run system tests on the extension, see
the Developer README file in the Zowe VSCode extension GitHub repository.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README.md

Chapter

3
Extending

Topics:

• Developing for API Mediation
Layer

• Developing for Zowe CLI
• Developing for Zowe Application

Framework
• Zowe Conformance Program

 | Extending | 158

Developing for API Mediation Layer

Onboarding Overview

Overview of APIs

Before identifying the API you want to expose in the API Mediation Layer, it is useful to consider the structure
of APIs. An application programming interface (API) is a set of rules that allow programs to talk to each other. A
developer creates an API on a server and allows a client to talk to the API. Representational State Transfer (REST)
determines the look of an API and is a set of rules that developers follow when creating an API. One of these rules
states that a user should be able to get a piece of data (resource) through URL endpoints using HTTP. These resources
are usually represented in the form of JSON or XML documents. The preferred documentation type in Zowe™ is in
the JSON format.

A REST API service can provide one or more REST APIs and usually provides the latest version of each API. A
REST service is hosted on a web server which can host one or more services, often referred to as applications. A
web server that hosts multiple services or applications is referred to as a web application server. Examples of web
application servers are Apache Tomcat or WebSphere Liberty.

Note: Definitions used in this procedure follow the OpenAPI specification. Each API has its own title, description,
and version (versioned using Semantic Versioning 2.0.0).

The following diagram shows the relations between various types of services, their APIs, REST API endpoints, and
the API gateway:

http://tomcat.apache.org/
https://developer.ibm.com/wasdev/websphere-liberty/
https://swagger.io/specification/
https://semver.org/spec/v2.0.0.html

 | Extending | 159

«Service»
service1

Web Application Server

«Service»
service3

«Service»
service2

«API»
/v1
/endpoint1
/endpoint2

«API»
/v1
/endpoint1
/endpoint2

«API»
/v2
/endpoint1
/endpoint2

«API»
/v1
/endpoint1
/endpoint2

API Gateway
/api/v1/service1
/api/v2/service1

/api/v2/service2

/api/v1/service3

A web server can host
one or more API services

A service usually provides one API

A service can run
in its own embedded web server

A service can provide
multiple versions of a REST API

API Gateway routes
HTTP requests to REST APIs

Sample REST API Service

In microservice architecture, a web server usually provides a single service. A typical example of a single service
implementation is a Spring Boot web application.

To demonstrate the concepts that apply to REST API services, we use the following example of a Spring Boot REST
API service: https://github.com/swagger-api/swagger-samples/tree/master/java/java-spring-boot. This example is used
in the REST API onboarding guide: REST API without code changes required.

You can build this service using instructions in the source code of the Spring Boot REST API service example
(https://github.com/swagger-api/swagger-samples/blob/master/java/java-spring-boot/README.md).

The Sample REST API Service has a base URL. When you start this service on your computer, the service base URL
is: http://localhost:8080.

Note: If a service is deployed to a web application server, the base URL of the service (application) has the following
format: https://application-server-hostname:port/application-name.

 | Extending | 160

This sample service provides one API that has the base path /v2, which is represented in the base URL of the API
as http://localhost:8080/v2. In this base URL, /v2 is a qualifier of the base path that was chosen by the
developer of this API. Each API has a base path depending on the particular implementation of the service.

This sample API has only one single endpoint:

• /pets/{id} - Find pet by ID.

This endpoint in the sample service returns information about a pet when the {id} is between 0 and 10. If {id} is
greater than 0 or a non-integer then it returns an error. These are conditions set in the sample service.

Tip: Access http://localhost:8080/v2/pets/1 to see what this REST API endpoint does. You should get the following
response:

{
 "category": {
 "id": 2,
 "name": "Cats"
 },
 "id": 1,
 "name": "Cat 1",
 "photoUrls": [
 "url1",
 "url2"
],
 "status": "available",
 "tags": [
 {
 "id": 1,
 "name": "tag1"
 },
 {
 "id": 2,
 "name": "tag2"
 }
]
}

Note: The onboarding guides demonstrate how to add the Sample REST API Service to the API Mediation Layer to
make the service available through the petstore service ID.

The following diagram shows the relations between the Sample REST API Service and its corresponding API, REST
API endpoint, and API gateway:

 | Extending | 161

«Service»
petstore

«API»
/v2
/pets

API Gateway
/api/v2/petstore

API Gateway routes
HTTP requests to /v2 of the API in the petstore service

The petstore service provides one API (/v2)
This service runs in its own embedded web server

This sample service provides a Swagger document in JSON format at the following URL:

http://localhost:8080/v2/swagger.json

The Swagger document is used by the API Catalog to display the API documentation.

API Service Types

The process of onboarding depends on the method that is used to develop the API service.

While any REST API service can be added to the API Mediation Layer, this documentation focuses on following
types of REST APIs:

• Services that can be updated to support the API Mediation Layer natively by updating the service code:

• Java REST APIs with Spring Boot on page 161
• Java Jersey REST APIs on page 183
• Java REST APIs service without Spring Boot on page 173

• REST APIs without code changes required on page 196

Tip: When developing a new service, we recommend that you update the code to support the API Mediation Layer
natively. Use the previously listed onboarding guides for services that can be updated to support the API Mediation
Layer natively. The benefit of supporting the API Mediation Layer natively is that it requires less configuration for
the system administrator. Such service can be moved to different systems, can be listened to on a different port, or
additional instances can be started without the need to change configuration of the API Mediation Layer.

Java REST APIs with Spring Boot

Zowe™ API Mediation Layer (API ML) provides a single point of access for mainframe service REST APIs. For a
high-level overview of this component, see API Mediation Layer on page 10.

 | Extending | 162

Note: Spring is a Java-based framework that lets you build web and enterprise applications. For more information,
see the Spring website.

As an API developer, use this guide to onboard your REST API service into the Zowe API Mediation Layer. This
article outlines a step-by-step process to make your API service available in the API Mediation Layer.

1. Add Zowe API enablers to your service on page 162
2. Add API ML onboarding configuration on page 164
3. Externalize API ML configuration parameters on page 172
4. Test your service on page 173
5. Review the configuration examples of the discoverable client on page 173

Add Zowe API enablers to your service

In order to onboard a REST API with the Zowe ecosystem, you add the Zowe Artifactory repository definition to the
list of repositories, then add the Spring enabler to the list of your dependencies, and finally add enabler annotations to
your service code. Enablers prepare your service for discovery and swagger documentation retrieval.

Follow these steps:

1. Add the Zowe Artifactory repository definition to the list of repositories in Gradle or Maven build systems. Use
the code block that corresponds to your build system.

• In a Gradle build system, add the following code to the build.gradle file into the repositories block.

maven {
 url 'https://zowe.jfrog.io/zowe/libs-release'
}

Note: You can define the gradle.properties file where you can set your username, password, and the
read-only repo URL for access to the Zowe Artifactory. By defining the gradle.properties, you do not
need to hardcode the username, password, and read-only repo URL in your gradle.build file.

Example:

 # Artifactory repositories for builds
 artifactoryMavenRepo=https://zowe.jfrog.io/zowe/libs-release

• In a Maven build system, follow these steps:

a) Add the following code to the pom.xml file:

<repository>
 <id>Zowe</id>
 <url>https://zowe.jfrog.io/zowe/libs-release</url>
</repository>

b) Create a settings.xml file and copy the following XML code block which defines the login credentials
for the Zowe Artifactory. Use valid credentials.

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>Zowe</id>
 </server>
</servers>

https://spring.io/

 | Extending | 163

</settings>

c) Copy the settings.xml file inside the ${user.home}/.m2/ directory.
2. Add a JAR package to the list of dependencies in Gradle or Maven build systems. Zowe API Mediation Layer

supports Spring Boot versions 1.5.9 and 2.0.4.

• If you use Spring Boot release 1.5.x in a Gradle build system, add the following code to the build.gradle file
into the dependencies block:

 compile group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
spring-v1-springboot-1.5.9.RELEASE', version: '1.1.0'

• If you use Spring Boot release 1.5.x in a Maven build system, add the following code to the pom.xml file:

 <dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-spring-v1-
springboot-1.5.9.RELEASE</artifactId>
 <version>1.1.0</version>
 </dependency>

• If you use the Spring Boot release 2.0.x in a Gradle build system, add the following code to the
build.gradle file into the dependencies block:

compile group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
spring-v2-springboot-2.0.4.RELEASE', version: '1.1.0'

• If you use the Spring Boot release 2.0.x in a Maven build system, add the following code to the pom.xml file:

<dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-spring-v2-
springboot-2.0.4.RELEASE</artifactId>
 <version>1.1.0</version>
</dependency>

3. Add the following annotations to the main class of your Spring Boot, or add these annotations to an extra Spring
configuration class:

• @ComponentScan({"com.ca.mfaas.enable", "com.ca.mfaas.product"})

Makes an API documentation endpoint visible within the Spring context.
• @EnableApiDiscovery

Exposes your Swagger (OpenAPI) documentation in the Zowe ecosystem to make your micro service
discoverable in the Zowe ecosystem.

Note: The @EnableApiDiscovery annotation uses the Spring Fox library. If your service uses the library
already, some fine tuning may be necessary.

Example:

 package com.ca.mfaas.DiscoverableClientSampleApplication;
 ..
 import com.ca.mfaas.enable.EnableApiDiscovery;
 import org.springframework.context.annotation.ComponentScan;
 ..
 @EnableApiDiscovery
 @ComponentScan({"com.ca.mfaas.enable", "com.ca.mfaas.product"})
 ...
 public class DiscoverableClientSampleApplication {...

 | Extending | 164

You are now ready to build your service to include the code pieces that make it discoverable in the API Mediation
Layer and to add Swagger documentation.

Add API ML onboarding configuration

As an API service developer, you set multiple configuration settings in your application.yml that correspond to the
API ML. These settings enable an API to be discoverable and included in the API catalog. Some of the settings
in the application.yml are internal and are set by the API service developer. Some settings are externalized and
set by the customer system administrator. Those external settings are service parameters and are in the format:
${environment.*}.

Important! Spring Boot configuration can be externalized in multiple ways. For more information see: Externalized
configuration. This Zowe onboarding documentation applies to API services that use an application.yml file for
configuration. If your service uses a different configuration option, transform the provided configuration sample to
the format that your API service uses.

Tip: For information about how to set your configuration when running a Spring Boot application under an external
servlet container (TomCat), see the following short stackoverflow article: External configuration for spring-boot
application.

Follow these steps:

1. Add the following #MFAAS configuration section in your application.yml:

 ##
 # MFAAS configuration section

 ##
 mfaas:
 discovery:
 serviceId: ${environment.serviceId}
 locations: ${environment.discoveryLocations}
 enabled: ${environment.discoveryEnabled:true}
 endpoints:
 statusPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/info
 healthPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/health
 homePage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
 info:
 serviceTitle: ${environment.serviceTitle}
 description: ${environment.serviceDescription}
 # swaggerLocation:
 resource_location_of_your_static_swagger_doc.json
 fetchRegistry: false
 region: default
 service:
 hostname: ${environment.hostname}
 ipAddress: ${environment.ipAddress}
 catalog-ui-tile:
 id: yourProductFamilyId
 title: Your API service product family title in the API catalog
 dashboard tile
 description: Your API service product family description in the
 API catalog dashboard tile
 version: 1.0.0
 server:
 scheme: http
 port: ${environment.port}

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application

 | Extending | 165

 contextPath: /yourServiceUrlPrefix
 security:
 sslEnabled: true
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/ssl_local/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/ssl_local/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password

 eureka:
 instance:
 appname: ${mfaas.discovery.serviceId}
 hostname: ${mfaas.service.hostname}
 statusPageUrlPath: ${mfaas.discovery.endpoints.statusPage}
 healthCheckUrl: ${mfaas.discovery.endpoints.healthPage}
 homePageUrl: ${mfaas.discovery.endpoints.homePage}
 metadata-map:
 routed-services:
 api_v1:
 gateway-url: "api/v1"
 service-url: ${mfaas.server.contextPath}
 apiml:
 apiInfo:
 - apiId: ${mfaas.discovery.serviceId}
 gatewayUrl: api/v1
 swaggerUrl: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
api-doc
 documentationUrl: https://www.zowe.org
 mfaas:
 api-info:
 apiVersionProperties:
 v1:
 title: Your API title for swagger JSON which
 is displayed in API Catalog / service / API Information
 description: Your API description for
 swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers
 # apiPattern: /v1/.* # alternative to
 basePackage for exposing endpoints which match the regex pattern to
 swagger JSON
 discovery:
 catalogUiTile:
 id: ${mfaas.catalog-ui-tile.id}
 title: ${mfaas.catalog-ui-tile.title}
 description: ${mfaas.catalog-ui-
tile.description}
 version: ${mfaas.catalog-ui-tile.version}
 enableApiDoc:
 ${mfaas.discovery.info.enableApiDoc:true}
 service:
 title: ${mfaas.discovery.info.serviceTitle}
 description: ${mfaas.discovery.info.description}
 client:
 enabled: ${mfaas.discovery.enabled}
 healthcheck:

 | Extending | 166

 enabled: true
 serviceUrl:
 defaultZone: ${mfaas.discovery.locations}
 fetchRegistry: ${mfaas.discovery.fetchRegistry}
 region: ${mfaas.discovery.region}

 ##
 # Application configuration section

 ##
 server:
 # address: ${mfaas.service.ipAddress}
 port: ${mfaas.server.port}
 servlet:
 contextPath: ${mfaas.server.contextPath}
 ssl:
 enabled: ${mfaas.security.sslEnabled}
 protocol: ${mfaas.security.protocol}
 ciphers: ${mfaas.security.ciphers}
 keyStore: ${mfaas.security.keyStore}
 keyAlias: ${mfaas.security.keyAlias}
 keyPassword: ${mfaas.security.keyPassword}
 keyStorePassword: ${mfaas.security.keyStorePassword}
 keyStoreType: ${mfaas.security.keyStoreType}
 trustStore: ${mfaas.security.trustStore}
 trustStoreType: ${mfaas.security.trustStoreType}
 trustStorePassword: ${mfaas.security.trustStorePassword}

 spring:
 application:
 name: ${mfaas.discovery.serviceId}

In order to run your application locally, you need to define variables used under the environment group.

##
Local configuration section
##

environment:
 serviceId: Your service id
 serviceTitle: Your service title
 serviceDescription: Your service description
 discoveryEnabled: true
 hostname: localhost
 port: Your service port
 discoveryLocations: https://localhost:10011/eureka/
 ipAddress: 127.0.0.1

Important: Add this configuration also to the application.yml used for testing. Failure to add this
configuration to the application.yml will cause your tests to fail.

 | Extending | 167

2. Change the MFaaS parameters to correspond with your API service specifications. Most of these internal
parameters contain "your service" text.

Note: ${mfaas.*} variables are used throughout the application.yml sample to reduce the number of
required changes.

Tip: When existing parameters set by the system administrator are already present in your configuration file (for
example, hostname, address, contextPath, and port), we recommend that you replace them with
the corresponding MFaaS properties.

a. Discovery Parameters

• mfaas.discovery.serviceId

Specifies the service instance identifier to register in the API ML installation. The service ID is used in the
URL for routing to the API service through the gateway. The service ID uniquely identifies instances of a
microservice in the API ML. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

• The same service ID should be set for only multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.
• The service ID must match the spring.application.name parameter.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API
Gateway appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/endpoint1/...

• If the customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/endpoint1/...

• mfaas.discovery.locations

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

http://eureka:password@141.202.65.33:10311/eureka/

• mfaas.discovery.enabled

Specifies whether the API service instance is to be discovered in the API ML. The system administrator at the
customer site defines this parameter. Set this parameter to true if the API ML is installed and configured.
Otherwise, you can set this parameter to false to exclude an API service instances from the API ML.

• mfaas.discovery.fetchRegistry

Specifies whether the API service is to receive regular update notifications from the discovery service. Under
most circumstances, you can accept the default value of false for the parameter.

• mfaas.discovery.region

Specifies the geographical region. This parameter is required by the Discovery client. Under most
circumstances you can accept the value default for the parameter.

 | Extending | 168

b. Service and Server Parameters

• mfaas.service.hostname

Specifies the hostname of the system where the API service instance runs. This parameter is externalized and
is set by the customer system administrator. The administrator ensures the hostname can be resolved by DSN
to the IP address that is accessible by applications running on their z/OS systems.

• mfaas.service.ipAddress

Specifies the local IP address of the system where the API service instance runs. This IP address may or may
not be a public IP address. This parameter is externalized and set by the customer system administrator.

• mfaas.server.scheme

Specifies whether the API service is using the HTTPS protocol. This value can be set to https or http
depending on whether your service is using SSL.

• mfaas.server.port

Specifies the port that is used by the API service instance. This parameter is externalized and set by the
customer system administrator.

• mfaas.server.contextPath

Specifies the prefix that is used within your API service URL path.

Examples:

• If your API service does not use an extra prefix in the URL (for example, http://host:port/
endpoint1/), set this value to /.

• If your API service uses an extra URL prefix set the parameter to that prefix value. For the URL:
http://host:port/filemaster/endpoint1/, set this parameter to /filemaster.

• In both examples, the API service URL appears as the following URL when routed through the Gateway:

http://gateway:port/serviceId/endpoint1/

c. API Catalog Parameters

These parameters are used to populate the API Catalog. The API Catalog contains information about every
registered API service. The Catalog also groups related APIs. Each API group has its own name and description.

 | Extending | 169

Catalog groups are constructed in real-time based on information that is provided by the API services. Each group
is displayed as a tile in the API Catalog UI dashboard.

• mfaas.catalog-ui-tile.id

Specifies the unique identifier for the API services product family. This is the grouping value used by the API
ML to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog
UI dashboard tile. Specify a value that does not interfere with API services from other products.

• mfaas.catalog-ui-tile.title

Specifies the title of the API services product family. This value is displayed in the API Catalog UI dashboard
as the tile title

• mfaas.catalog-ui-tile.description

Specifies the detailed description of the API services product family. This value is displayed in the API
Catalog UI dashboard as the tile description

• mfaas.catalog-ui-tile.version

Specifies the semantic version of this API Catalog tile. Increase the version when you introduce new changes
to the API services product family details (title and description).

• mfaas.discovery.info.serviceTitle

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API Catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
• mfaas.discovery.info.description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1". This value is
displayed in the API Catalog when a specific API service instance is selected. This parameter is externalized
and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
Describe the service so that the end user knows the function of the service.

• mfaas.discovery.info.swaggerLocation

Specifies the location of a static swagger document. The JSON document contained in this file is displayed
instead of the automatically generated API documentation. The JSON file must contain a valid OpenAPI 2.x
Specification document. This value is optional and commented out by default.

Note: Specifying a swaggerLocation value disables the automated JSON API documentation generation
with the SpringFox library. By disabling auto-generation, you need to keep the contents of the manual swagger

 | Extending | 170

definition consistent with your endpoints. We recommend to use auto-generation to prevent incorrect endpoint
definitions in the static swagger documentation.

d. Metadata Parameters

The routing rules can be modified with parameters in the metadata configuration code block.

Note: If your REST API does not conform to Zowe API Mediation layer REST API Building codes, configure
routing to transform your actual endpoints (serviceUrl) to gatewayUrl format. For more information see: REST
API Building Codes

• eureka.instance.metadata-map.routed-services.<prefix>

Specifies a name for routing rules group. This parameter is only for logical grouping of further parameters.
You can specify an arbitrary value but it is a good development practice to mention the group purpose in the
name.

Examples:

api_v1
api_v2

• eureka.instance.metadata-map.routed-services.<prefix>.gatewayUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

• metadata-map.routed-services.<prefix>.serviceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

• eureka.instance.metadata-map.apiml.apiInfo.apiId

Specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The API
ID can be used to locate the same APIs that are provided by different services. The creator of the API defines
this ID. The API ID needs to be a string of up to 64 characters that uses lowercase alphanumeric characters and
a dot: .. We recommend that you use your organization as the prefix.

• eureka.instance.metadata-map.apiml.apiInfo.gatewayUrl

The base path at the API gateway where the API is available. Ensure that it is the same path as the gatewayUrl
value in the routes sections.

• eureka.instance.metadata-map.apiml.apiInfo.documentationUrl

(Optional) Link to external documentation, if needed. The link to the external documentation can be included
along with the Swagger documentation.

• eureka.instance.metadata-map.apiml.apiInfo.swaggerUrl

(Optional) Specifies the HTTP or HTTPS address where the Swagger JSON document is available.Important!
Ensure that each of the values for gatewayUrl parameter are unique in the configuration. Duplicate gatewayUrl
values may cause requests to be routed to the wrong service URL.

Note: The endpoint /api-doc returns the API service Swagger JSON. This endpoint is introduced by the
@EnableMfaasInfo annotation and is utilized by the API Catalog.

e. Swagger Api-Doc Parameters

Configures API Version Header Information, specifically the InfoObject section, and adjusts Swagger
documentation that your API service returns. Use the following format:

api-info:
 apiVersionProperties:
 v1:
 title: Your API title for swagger JSON which is displayed in API
 Catalog / service / API Information

https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://swagger.io/specification/#infoObject

 | Extending | 171

 description: Your API description for swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers
 # apiPattern: /v1/.* # alternative to basePackage for exposing
 endpoints which match the regex pattern to swagger JSON

The following parameters describe the function of the specific version of an API. This information is included in
the swagger JSON and displayed in the API Catalog:

• v1

Specifies the major version of your service API: v1, v2, etc.
• title

Specifies the title of your service API.
• description

Specifies the high-level function description of your service API.
• version

Specifies the actual version of the API in semantic format.
• basePackage

Specifies the package where the API is located. This option only exposes endpoints that are defined in a
specified java package. The parameters basePackage and apiPattern are mutually exclusive. Specify
only one of them and remove or comment out the second one.

• apiPattern

This option exposes any endpoints that match a specified regular expression. The parameters basePackage
and apiPattern are mutually exclusive. Specify just one of them and remove or comment out the second
one.

Tip: You have three options to make your endpoints discoverable and exposed: basePackage,
apiPattern, or none (if you do not specify a parameter). If basePackage or apiPattern are not
defined, all endpoints in the Spring Boot app are exposed.

Setup keystore with the service certificate

To register with the API Mediation Layer, a service is required to have a certificate that is trusted by API Mediation
Layer.

Follow these steps:

1. Follow instructions at Generating certificate for a new service on localhost

When a service is running on localhost, the command can have the following format:

<api-layer-repository>/scripts/apiml_cm.sh --action new-service --service-
alias localhost --service-ext SAN=dns:localhost.localdomain,dns:localhost
 --service-keystore keystore/localhost.keystore.p12 --service-truststore
 keystore/localhost.truststore.p12 --service-dname "CN=Sample REST API
 Service, OU=Mainframe, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-

https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost

 | Extending | 172

password password --service-validity 365 --local-ca-filename <api-layer-
repository>/keystore/local_ca/localca

Alternatively, for the purpose of local development, copy or use the <api-layer-repository>/
keystore/localhost.truststore.p12 in your service without generating a new certificate.

2. Update the configuration of your service application.yml to contain the HTTPS configuration by adding the
following code:

server:
 ssl:
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password
eureka:
 instance:
 nonSecurePortEnabled: false
 securePortEnabled: true

Note: You need to define both keystore and truststore even if your server is not using HTTPS port.

Externalize API ML configuration parameters

The following list summarizes the API ML parameters that are set by the customer system administrator:

• mfaas.discovery.enabled: ${environment.discoveryEnabled:true}

• mfaas.discovery.locations: ${environment.discoveryLocations}

• mfaas.discovery.serviceID: ${environment.serviceId}

• mfaas.discovery.info.serviceTitle: ${environment.serviceTitle}

• mfaas.discovery.info.description: ${environment.serviceDescription}

• mfaas.service.hostname: ${environment.hostname}

• mfaas.service.ipAddress: ${environment.ipAddress}

• mfaas.server.port: ${environment.port}

Tip: Spring Boot applications are configured in the application.yml and bootstrap.yml files that
are located in the USS file system. However, system administrators prefer to provide configuration through the
mainframe sequential data set (or PDS member). To override Java values, use Spring Boot with an external YML file,
environment variables, and Java System properties. For Zowe API Mediation Layer applications, we recommend that
you use Java System properties.

Java System properties are defined using -D options for Java. Java System properties can override any configuration.
Those properties that are likely to change are defined as ${environment.variableName}:

IJO="$IJO -Denvironment.discoveryEnabled=.."
IJO="$IJO -Denvironment.discoveryLocations=.."

IJO="$IJO -Denvironment.serviceId=.."
IJO="$IJO -Denvironment.serviceTitle=.."
IJO="$IJO -Denvironment.serviceDescription=.."
IJO="$IJO -Denvironment.hostname=.."
IJO="$IJO -Denvironment.ipAddress=.."
IJO="$IJO -Denvironment.port=.."

 | Extending | 173

The discoveryLocations (public URL of the discovery service) value is found in the API Meditation Layer
configuration, in the *.PARMLIB(MASxPRM) member and assigned to the MFS_EUREKA variable.

Example:

MFS_EUREKA="http://eureka:password@141.202.65.33:10011/eureka/")

Test your service

To test that your API instance is working and is discoverable, use the following validation tests:

Validate that your API instance is still working

Follow these steps:

1. Disable discovery by setting discoveryEnabled=false in your API service instance configuration.
2. Run your tests to check that they are working as before.

Validate that your API instance is discoverable

Follow these steps:

1. Point your configuration of API instance to use the following Discovery Service:

http://eureka:password@localhost:10011/eureka

2. Start up the API service instance.
3. Check that your API service instance and each of its endpoints are displayed in the API Catalog

https://localhost:10010/ui/v1/caapicatalog/

4. Check that you can access your API service endpoints through the Gateway.

Example:

https://localhost:10010/api/v1/

5. Check that you can still access your API service endpoints directly outside of the Gateway.

Review the configuration examples of the discoverable client

Refer to the Discoverable Client API Sample Service in the API ML git repository.

Java REST APIs service without Spring Boot

As an API developer, use this guide to onboard a Java REST API service that is built without Spring Boot with the
Zowe™ API Mediation Layer. This article outlines a step-by-step process to onboard a Java REST API application
with the API Mediation Layer. More detail about each of these steps is described later in this article.

Follow these steps:

1. Get enablers from the Artifactory on page 174

• Gradle guide on page 174
• Maven guide on page 174

2. (Optional) Add Swagger API documentation to your project on page 175
3. Add endpoints to your API for API Mediation Layer integration on page 176
4. Add configuration for Discovery client on page 177
5. Add a context listener on page 181

a. Add a context listener class on page 181
b. Register a context listener on page 182

6. Run your service on page 183
7. (Optional) Validate discovery of the API service by the Discovery Service on page 183

https://github.com/zowe/api-layer

 | Extending | 174

Notes:

• This onboarding procedure uses the Spring framework for implementation of a REST API service, and describes
how to generate Swagger API documentation using a Springfox library.

• If you use another framework that is based on a Servlet API, you can use ServletContextListener that is
described later in this article.

• If you use a framework that does not have a ServletContextListener class, see the Add a context listener
on page 181 section in this article for details about how to register and unregister your service with the API
Mediation Layer.

Prerequisites

• Ensure that your REST API service that is written in Java.
• Ensure that your service has an endpoint that generates Swagger documentation.

Get enablers from the Artifactory

The first step to onboard a Java REST API into the Zowe ecosystem is to get enabler annotations from the
Artifactory. Enablers prepare your service for discovery in the API Mediation Layer and for the retrieval of Swagger
documentation.

You can use either Gradle or Maven build automation systems.

Gradle guide

Use the following procedure if you use Gradle as your build automation system.

Follow these steps:

1. Create a gradle.properties file in the root of your project.
2. In the gradle.properties file, set the following URL of the repository. Use the values provided in the following

code block for user credentials to access the Artifactory:

Repository URL for getting the enabler-java artifact
artifactoryMavenRepo=https://zowe.jfrog.io/zowe/libs-release

This file specifies the URL of the repository of the Artifactory. The enabler-java artifacts are downloaded from
this repository.

3. Add the following Gradle code block to the build.gradle file:

ext.mavenRepository = {
 maven {
 url artifactoryMavenSnapshotRepo
 }
}

repositories mavenRepositories

The ext object declares the mavenRepository property. This property is used as the project repository.
4. In the same build.gradle file, add the following code to the dependencies code block to add the enabler-java

artifact as a dependency of your project:

compile(group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-java',
 version: '1.1.2')

5. In your project directory, run the gradle build command to build your project.

Maven guide

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

 | Extending | 175

1. Add the following xml tags within the newly created pom.xml file:

<repositories>
 <repository>
 <id>libs-release</id>
 <name>libs-release</name>
 <url>https://zowe.jfrog.io/zowe/libs-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
</repositories>

This file specifies the URL of the repository of the Artifactory where you download the enabler-java artifacts.
2. In the same pom.xml file, copy the following xml tags to add the enabler-java artifact as a dependency of your

project:

<dependency>
 <groupId>com.ca.mfaas.sdk</groupId>
 <artifactId>mfaas-integration-enabler-java</artifactId>
 <version>1.1.2</version>
</dependency>

3. Create a settings.xml file and copy the following xml code block which defines the credentials for the
Artifactory:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>libs-release</id>
 </server>
</servers>
</settings>

4. Copy the settings.xml file inside the ${user.home}/.m2/ directory.
5. In the directory of your project, run the mvn package command to build the project.

(Optional) Add Swagger API documentation to your project

If your application already has Swagger API documentation enabled, skip this step. Use the following procedure if
your application does not have Swagger API documentation.

Follow these steps:

1. Add a Springfox Swagger dependency.

• For Gradle add the following dependency in build.gradle:

compile "io.springfox:springfox-swagger2:2.8.0"

• For Maven add the following dependency in pom.xml:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.8.0</version>
</dependency>

 | Extending | 176

2. Add a Spring configuration class to your project:

package com.ca.mfaas.hellospring.configuration;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import
 org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.service.ApiInfo;
import springfox.documentation.service.Contact;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

import java.util.ArrayList;

@Configuration
@EnableSwagger2
@EnableWebMvc
public class SwaggerConfiguration extends WebMvcConfigurerAdapter {
 @Bean
 public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any())
 .build()
 .apiInfo(new ApiInfo(
 "Spring REST API",
 "Example of REST API",
 "1.0.0",
 null,
 null,
 null,
 null,
 new ArrayList<>()
));
 }
}

3. Customize this configuration according to your specifications. For more information about customization
properties, see Springfox documentation.

Add endpoints to your API for API Mediation Layer integration

To integrate your service with the API Mediation Layer, add the following endpoints to your application:

• Swagger documentation endpoint

The endpoint for the Swagger documentation.
• Health endpoint

The endpoint used for health checks by the Discovery Service.
• Info endpoint

The endpoint to get information about the service.

The following java code is an example of these endpoints added to the Spring Controller:

Example:

package com.ca.mfaas.hellospring.controller;

https://springfox.github.io/springfox/docs/snapshot/#configuring-springfox

 | Extending | 177

import com.ca.mfaas.eurekaservice.model.*;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ResponseBody;
import springfox.documentation.annotations.ApiIgnore;

@Controller
@ApiIgnore
public class MfaasController {

 @GetMapping("/api-doc")
 public String apiDoc() {
 return "forward:/v2/api-docs";
 }

 @GetMapping("/application/health")
 public @ResponseBody Health getHealth() {
 return new Health("UP");
 }

 @GetMapping("/application/info")
 public @ResponseBody ResponseEntity<EmptyJsonResponse>
 getDiscoveryInfo() {
 HttpHeaders headers = new HttpHeaders();
 headers.add("Content-Type", "application/json");
 return new ResponseEntity(new EmptyJsonResponse(), headers,
 HttpStatus.OK);
 }
}

Add configuration for Discovery client

After you add API Mediation Layer integration endpoints, you are ready to add service configuration for Discovery
client.

Follow these steps:

1. Create the file service-configuration.yml in your resources directory.
2. Add the following configuration to your service-configuration.yml:

serviceId: hellospring
title: HelloWorld Spring REST API
description: POC for exposing a Spring REST API
baseUrl: http://localhost:10020/hellospring
homePageRelativeUrl:
statusPageRelativeUrl: /application/info
healthCheckRelativeUrl: /application/health
discoveryServiceUrls:
 - http://eureka:password@localhost:10011/eureka
routes:
 - gatewayUrl: api/v1
 serviceUrl: /hellospring/api/v1
apiInfo:
 - apiId: ${mfaas.discovery.serviceId}
 gatewayUrl: api/v1
 swaggerUrl: ${mfaas.server.scheme}://${mfaas.service.hostname}:
${mfaas.server.port}${mfaas.server.contextPath}/api-doc
 documentationUrl: https://docs.zowe.org
catalogUiTile:
 id: helloworld-spring
 title: HelloWorld Spring REST API

 | Extending | 178

 description: Proof of Concept application to demonstrate exposing a
 REST API in the MFaaS ecosystem
 version: 1.0.0

3. Customize your configuration parameters to correspond with your API service specifications.

The following list describes the configuration parameters:

• serviceId

Specifies the service instance identifier that is registered in the API Mediation Layer installation. The service
ID is used in the URL for routing to the API service through the gateway. The service ID uniquely identifies

 | Extending | 179

instances of a microservice in the API Mediation Layer. The system administrator at the customer site defines
this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

• The same service ID should be set only for multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API
Gateway appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/endpoint1/...

• If a customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/endpoint1/...

• title

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API Catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of the title. Use a title that describes the
service instance so that the end user knows the specific purpose of the service instance.

• description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1".

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.
• baseUrl

Specifies the URL to your service to the REST resource. It will be the prefix for the following URLs:

• homePageRelativeUrl
• statusPageRelativeUrl
• healthCheckRelativeUrl.

Examples:

• http://host:port/servicename for HTTP service
• https://host:port/servicename for HTTPS service

• homePageRelativeUrl

Specifies the relative path to the home page of your service. The path should start with /. If your service has
no home page, leave this parameter blank.

Examples:

• homePageRelativeUrl: The service has no home page
• homePageRelativeUrl: / The service has home page with URL ${baseUrl}/

 | Extending | 180

• statusPageRelativeUrl

Specifies the relative path to the status page of your service. This is the endpoint that you defined in the
MfaasController controller in the getDiscoveryInfo method. Start this path with /.

Example:

• statusPageRelativeUrl: /application/info the result URL will be ${baseUrl}/
application/info

• healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service. This is the endpoint that you defined in
the MfaasController controller in the getHealth method. Start this URL with /.

Example:

• healthCheckRelativeUrl: /application/health. This results in the URL: ${baseUrl}/
application/health

• discoveryServiceUrls

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

• http://eureka:password@141.202.65.33:10311/eureka/

• routedServices

The routing rules between the gateway service and your service.

• routedServices.gatewayUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

• routedServices.serviceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

• apiInfo.apiId

Specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The API
ID can be used to locate the same APIs that are provided by different services. The creator of the API defines

 | Extending | 181

this ID. The API ID needs to be a string of up to 64 characters that uses lowercase alphanumeric characters and
a dot: .. We recommend that you use your organization as the prefix.

• apiInfo.gatewayUrl

The base path at the API Gateway where the API is available. Ensure that this is the same path as the
gatewayUrl value in the routes sections.

• apiInfo.swaggerUrl

(Optional) Specifies the HTTP or HTTPS address where the Swagger JSON document is available.
• apiInfo.documentationUrl

(Optional) Link to external documentation, if needed. The link to the external documentation can be included
along with the Swagger documentation.

• catalogUiTile.id

Specifies the unique identifier for the API services product family. This is the grouping value used by the API
Mediation Layer to group multiple API services together into "tiles". Each unique identifier represents a single
API Catalog UI dashboard tile. Specify a value that does not interfere with API services from other products.

• catalogUiTile.title

Specifies the title of the API services product family. This value is displayed in the API catalog UI dashboard
as the tile title.

• catalogUiTile.description

Specifies the detailed description of the API services product family. This value is displayed in the API catalog
UI dashboard as the tile description.

• catalogUiTile.version

Specifies the semantic version of this API Catalog tile. Increase the number of the version when you introduce
new changes to the product family details of the API services including the title and description.

Add a context listener

The context listener invokes the apiMediationClient.register(config) method to register the
application with the API Mediation Layer when the application starts. The context listener also invokes the
apiMediationClient.unregister() method before the application shuts down to unregister the application
in API Mediation Layer.

Note: If you do not use a Java Servlet API based framework, you can still call the same methods for
apiMediationClient to register and unregister your application.

Add a context listener class

Add the following code block to add a context listener class:

package com.ca.mfaas.hellospring.listener;

import com.ca.mfaas.eurekaservice.client.ApiMediationClient;
import com.ca.mfaas.eurekaservice.client.config.ApiMediationServiceConfig;
import com.ca.mfaas.eurekaservice.client.impl.ApiMediationClientImpl;
import
 com.ca.mfaas.eurekaservice.client.util.ApiMediationServiceConfigReader;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class ApiDiscoveryListener implements ServletContextListener {
 private ApiMediationClient apiMediationClient;

 @Override
 public void contextInitialized(ServletContextEvent sce) {
 apiMediationClient = new ApiMediationClientImpl();

 | Extending | 182

 String configurationFile = "/service-configuration.yml";
 ApiMediationServiceConfig config = new
 ApiMediationServiceConfigReader(configurationFile).readConfiguration();
 apiMediationClient.register(config);
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {
 apiMediationClient.unregister();
 }
}

Register a context listener

Register a context listener to start Discovery client. Add the following code block to the deployment descriptor
web.xml to register a context listener:

<listener>
 <listener-class>com.ca.mfaas.hellospring.listener.ApiDiscoveryListener</
listener-class>
</listener>

Setup key store with the service certificate

All API services require a certificate that is trusted by API Mediation Layer in order to register with it.

Follow these steps:

1. Follow instructions at Generating certificate for a new service on localhost

If the service runs on localhost, the command uses the following format:

<api-layer-repository>/scripts/apiml_cm.sh --action new-service --service-
alias localhost --service-ext SAN=dns:localhost.localdomain,dns:localhost
 --service-keystore keystore/localhost.keystore.p12 --service-truststore
 keystore/localhost.truststore.p12 --service-dname "CN=Sample REST API
 Service, OU=Mainframe, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-
password password --service-validity 365 --local-ca-filename <api-layer-
repository>/keystore/local_ca/localca

Alternatively, copy or use the <api-layer-repository>/keystore/localhost.truststore.p12
in your service without generating a new certificate, for local development.

2. Update the configuration of your service service-configuration.yml to contain the HTTPS
configuration by adding the following code:

 ssl:
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password
 eureka:
 instance:
 nonSecurePortEnabled: false
 securePortEnabled: true

Note: You need to define both key store and trust store even if your server is not using HTTPS port.

https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost

 | Extending | 183

Run your service

After you add all configurations and controllers, you are ready to run your service in the API Mediation Layer
ecosystem.

Follow these steps:

1. Run the following services to onboard your application:

• Gateway Service
• Discovery Service
• API Catalog Service

Tip: For more information about how to run the API Mediation Layer locally,

see Running the API Mediation Layer on Local Machine.
2. Run your Java application.

Tip: Wait for the Discovery Service to discover your service. This process may take a few minutes.
3. Go to the following URL to reach the API Catalog through the Gateway (port 10010):

https://localhost:10010/ui/v1/apicatalog/

You successfully onboarded your Java application with the API Mediation Layer if your service is running and you
can access the API documentation.

(Optional) Validate discovery of the API service by the Discovery Service

If your service is not visible in the API Catalog, you can check if your service is discovered by the Discovery Service.

Follow these steps:

1. Go to http://localhost:10011.
2. Enter eureka as a username and password as a password.
3. Check if your application appears in the Discovery Service UI.

If your service appears in the Discovery Service UI but is not visible in the API Catalog, check to ensure that your
configuration settings are correct.

Java Jersey REST APIs

As an API developer, use this guide to onboard your Java Jersey REST API service into the Zowe™ API Mediation
Layer. This article outlines a step-by-step process to make your API service available in the API Mediation Layer.

The following procedure is an overview of steps to onboard a Java Jersey REST API application with the API
Mediation Layer.

Follow these steps:

1. Get enablers from the Artifactory on page 183
2. Add API ML Onboarding Configuration on page 185
3. Externalize parameters on page 193
4. Download Apache Tomcat and enable SSL on page 195
5. Run your service on page 195

Get enablers from the Artifactory

The first step to onboard a Java Jersey REST API into the Zowe ecosystem is to get enabler annotations from the
Artifactory. Enablers prepare your service for discovery and for the retrieval of Swagger documentation.

You can use either Gradle or Maven build automation systems.

Gradle guide

Use the following procedure if you use Gradle as your build automation system.

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

 | Extending | 184

Tip: To migrate from Maven to Gradle, go to your project directory and run gradle init. This converts the
Maven build to a Gradle build by generating a setting.gradle file and a build.gradle file.

Follow these steps:

1. Create a gradle.properties file in the root of your project.
2. In the gradle.properties file, set the following URL of the repository and customize the values of your credentials

to access the repository.

Repository URL for getting the enabler-jersey artifact (`integration-
enabler-java`)
artifactoryMavenRepo=https://zowe.jfrog.io/zowe/libs-release

This file specifies the URL for the repository of the Artifactory. The enabler-jersey artifact is downloaded from
this repository.

3. Add the following Gradle code block to the build.gradle file:

ext.mavenRepository = {
maven {
 url artifactoryMavenSnapshotRepo
 }
}

repositories mavenRepositories

The ext object declares the mavenRepository property. This property is used as the project repository.
4. In the same build.gradle file, add the following code to the dependencies code block to add the enabler-jersey

artifact as a dependency of your project:

 compile(group: 'com.ca.mfaas.sdk', name: 'mfaas-integration-enabler-
java', version: '1.1.0')

5. In your project directory, run the gradle build command to build your project.

Maven guide

Use the following procedure if you use Maven as your build automation system.

Tip: To migrate from Gradle to Maven, go to your project directory and run gradle install. This command
automatically generates a pom-default.xml inside the build/poms subfolder where all of the dependencies are
contained.

Follow these steps:

1. Add the following xml tags within the newly created pom.xml file:

 <repositories>
 <repository>
 <id>libs-release</id>
 <name>libs-release</name>
 <url>https://zowe.jfrog.io/zowe/libs-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

This file specifies the URL for the repository of the Artifactory where you download the enabler-jersey artifact.
2. In the same file, copy the following xml tags to add the enabler-jersey artifact as a dependency of your project:

 <dependency>
 <groupId>com.ca.mfaas.sdk</groupId>

 | Extending | 185

 <artifactId>mfaas-integration-enabler-java</artifactId>
 <version>1.1.0</version>
 </dependency>

3. Create a settings.xml file and copy the following xml code block which defines the credentials for the Artifactory:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
<servers>
 <server>
 <id>libs-release</id>
 </server>
</servers>
</settings>

4. Copy the settings.xml file inside ${user.home}/.m2/ directory.
5. In the directory of your project, run the mvn package command to build the project.

Add API ML Onboarding Configuration

As an API service developer, you set multiple configuration settings in your application.yml that correspond to the
API ML. These settings enable an API to be discoverable and included in the API catalog. Some of the settings
in the application.yml are internal and are set by the API service developer. Some settings are externalized and
set by the customer system administrator. Those external settings are service parameters and are in the format:
${environment.*}.

Important! Spring Boot configuration can be externalized in multiple ways. For more information see: Externalized
configuration. This Zowe onboarding documentation applies to API services that use an application.yml file for
configuration. If your service uses a different configuration option, transform the provided configuration sample to
the format that your API service uses.

Tip: For information about how to set your configuration when running a Spring Boot application under an external
servlet container (TomCat), see the following short stackoverflow article: External configuration for spring-boot
application.

Follow these steps:

1. Add the following #MFAAS configuration section in your application.yml:

 ##
 # MFAAS configuration section

 ##
 mfaas:
 discovery:
 serviceId: ${environment.serviceId}
 locations: ${environment.discoveryLocations}
 enabled: ${environment.discoveryEnabled:true}
 endpoints:
 statusPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/info
 healthPage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
application/health
 homePage: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
 info:
 serviceTitle: ${environment.serviceTitle}

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application
https://stackoverflow.com/questions/29106579/external-configuration-for-spring-boot-application

 | Extending | 186

 description: ${environment.serviceDescription}
 # swaggerLocation:
 resource_location_of_your_static_swagger_doc.json
 fetchRegistry: false
 region: default
 service:
 hostname: ${environment.hostname}
 ipAddress: ${environment.ipAddress}
 catalog-ui-tile:
 id: yourProductFamilyId
 title: Your API service product family title in the API catalog
 dashboard tile
 description: Your API service product family description in the
 API catalog dashboard tile
 version: 1.0.0
 server:
 scheme: http
 port: ${environment.port}
 contextPath: /yourServiceUrlPrefix

 eureka:
 instance:
 appname: ${mfaas.discovery.serviceId}
 hostname: ${mfaas.service.hostname}
 statusPageUrlPath: ${mfaas.discovery.endpoints.statusPage}
 healthCheckUrl: ${mfaas.discovery.endpoints.healthPage}
 homePageUrl: ${mfaas.discovery.endpoints.homePage}
 metadata-map:
 routed-services:
 api_v1:
 gateway-url: "api/v1"
 service-url: ${mfaas.server.contextPath}
 apiml:
 apiInfo:
 - apiId: ${mfaas.discovery.serviceId}
 gatewayUrl: api/v1
 swaggerUrl: ${mfaas.server.scheme}://
${mfaas.service.hostname}:${mfaas.server.port}${mfaas.server.contextPath}/
api-doc
 documentationUrl: https://www.zowe.org
 mfaas:
 api-info:
 apiVersionProperties:
 v1:
 title: Your API title for swagger JSON which
 is displayed in API Catalog / service / API Information
 description: Your API description for
 swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers
 # apiPattern: /v1/.* # alternative to
 basePackage for exposing endpoints which match the regex pattern to
 swagger JSON
 discovery:
 catalogUiTile:
 id: ${mfaas.catalog-ui-tile.id}
 title: ${mfaas.catalog-ui-tile.title}
 description: ${mfaas.catalog-ui-
tile.description}
 version: ${mfaas.catalog-ui-tile.version}
 enableApiDoc:
 ${mfaas.discovery.info.enableApiDoc:true}
 service:

 | Extending | 187

 title: ${mfaas.discovery.info.serviceTitle}
 description: ${mfaas.discovery.info.description}
 client:
 enabled: ${mfaas.discovery.enabled}
 healthcheck:
 enabled: true
 serviceUrl:
 defaultZone: ${mfaas.discovery.locations}
 fetchRegistry: ${mfaas.discovery.fetchRegistry}
 region: ${mfaas.discovery.region}

 ##
 # Application configuration section

 ##
 server:
 # address: ${mfaas.service.ipAddress}
 port: ${mfaas.server.port}
 servlet:
 contextPath: ${mfaas.server.contextPath}

 spring:
 application:
 name: ${mfaas.discovery.serviceId}

In order to run your application locally, you need to define variables used under the environment group.

##
Local configuration section
##
environment:
 serviceId: Your service id
 serviceTitle: Your service title
 serviceDescription: Your service description
 discoveryEnabled: true
 hostname: localhost
 port: Your service port
 discoveryLocations: https://localhost:10011/eureka/
 ipAddress: 127.0.0.1

Important: Add this configuration also to the application.yml used for testing. Failure to add this
configuration to the application.yml will cause your tests to fail.

 | Extending | 188

2. Change the MFaaS parameters to correspond with your API service specifications. Most of these internal
parameters contain "your service" text.

Note: ${mfaas.*} variables are used throughout the application.yml sample to reduce the number of
required changes.

Tip: When existing parameters set by the system administrator are already present in your configuration file (for
example, hostname, address, contextPath, and port), we recommend that you replace them with
the corresponding MFaaS properties.

a. Discovery Parameters

• mfaas.discovery.serviceId

Specifies the service instance identifier to register in the API ML installation. The service ID is used in the
URL for routing to the API service through the gateway. The service ID uniquely identifies instances of a
microservice in the API ML. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API Gateway considers the services to be clones. An
incoming API request can be routed to either of them.

• The same service ID should be set for only multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.
• The service ID must match the spring.application.name parameter.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API
Gateway appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/endpoint1/...

• If the customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/endpoint1/...

• mfaas.discovery.locations

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this
parameter.

Example:

http://eureka:password@141.202.65.33:10311/eureka/

• mfaas.discovery.enabled

Specifies whether the API service instance is to be discovered in the API ML. The system administrator at the
customer site defines this parameter. Set this parameter to true if the API ML is installed and configured.
Otherwise, you can set this parameter to false to exclude an API service instances from the API ML.

• mfaas.discovery.fetchRegistry

Specifies whether the API service is to receive regular update notifications from the discovery service. Under
most circumstances, you can accept the default value of false for the parameter.

• mfaas.discovery.region

Specifies the geographical region. This parameter is required by the Discovery client. Under most
circumstances you can accept the value default for the parameter.

 | Extending | 189

b. Service and Server Parameters

• mfaas.service.hostname

Specifies the hostname of the system where the API service instance runs. This parameter is externalized and
is set by the customer system administrator. The administrator ensures the hostname can be resolved by DSN
to the IP address that is accessible by applications running on their z/OS systems.

• mfaas.service.ipAddress

Specifies the local IP address of the system where the API service instance runs. This IP address may or may
not be a public IP address. This parameter is externalized and set by the customer system administrator.

• mfaas.server.scheme

Specifies whether the API service is using the HTTPS protocol. This value can be set to https or http
depending on whether your service is using SSL.

• mfaas.server.port

Specifies the port that is used by the API service instance. This parameter is externalized and set by the
customer system administrator.

• mfaas.server.contextPath

Specifies the prefix that is used within your API service URL path.

Examples:

• If your API service does not use an extra prefix in the URL (for example, http://host:port/
endpoint1/), set this value to /.

• If your API service uses an extra URL prefix set the parameter to that prefix value. For the URL:
http://host:port/filemaster/endpoint1/, set this parameter to /filemaster.

• In both examples, the API service URL appears as the following URL when routed through the Gateway:

http://gateway:port/serviceId/endpoint1/

c. API Catalog Parameters

These parameters are used to populate the API Catalog. The API Catalog contains information about every
registered API service. The Catalog also groups related APIs. Each API group has its own name and description.

 | Extending | 190

Catalog groups are constructed in real-time based on information that is provided by the API services. Each group
is displayed as a tile in the API Catalog UI dashboard.

• mfaas.catalog-ui-tile.id

Specifies the unique identifier for the API services product family. This is the grouping value used by the API
ML to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog
UI dashboard tile. Specify a value that does not interfere with API services from other products.

• mfaas.catalog-ui-tile.title

Specifies the title of the API services product family. This value is displayed in the API Catalog UI dashboard
as the tile title

• mfaas.catalog-ui-tile.description

Specifies the detailed description of the API services product family. This value is displayed in the API
Catalog UI dashboard as the tile description

• mfaas.catalog-ui-tile.version

Specifies the semantic version of this API Catalog tile. Increase the version when you introduce new changes
to the API services product family details (title and description).

• mfaas.discovery.info.serviceTitle

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API Catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
• mfaas.discovery.info.description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1". This value is
displayed in the API Catalog when a specific API service instance is selected. This parameter is externalized
and set by the customer system administrator.

Tip: We recommend that you provide a good default value or give good naming examples to the customers.
Describe the service so that the end user knows the function of the service.

• mfaas.discovery.info.swaggerLocation

Specifies the location of a static swagger document. The JSON document contained in this file is displayed
instead of the automatically generated API documentation. The JSON file must contain a valid OpenAPI 2.x
Specification document. This value is optional and commented out by default.

Note: Specifying a swaggerLocation value disables the automated JSON API documentation generation
with the SpringFox library. By disabling auto-generation, you need to keep the contents of the manual swagger

 | Extending | 191

definition consistent with your endpoints. We recommend to use auto-generation to prevent incorrect endpoint
definitions in the static swagger documentation.

d. Metadata Parameters

The routing rules can be modified with parameters in the metadata configuration code block.

Note: If your REST API does not conform to Zowe API Mediation layer REST API Building codes, configure
routing to transform your actual endpoints (serviceUrl) to gatewayUrl format. For more information see: REST
API Building Codes

• eureka.instance.metadata-map.routed-services.<prefix>

Specifies a name for routing rules group. This parameter is only for logical grouping of further parameters.
You can specify an arbitrary value but it is a good development practice to mention the group purpose in the
name.

Examples:

api_v1
api_v2

• eureka.instance.metadata-map.routed-services.<prefix>.gatewayUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gateway-url parameter sets the target endpoint on the gateway.

• metadata-map.routed-services.<prefix>.serviceUrl

Both gateway-url and service-url parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The service-url parameter points to the target endpoint on the gateway.

• eureka.instance.metadata-map.apiml.apiInfo.apiId

Specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The API
ID can be used to locate the same APIs that are provided by different services. The creator of the API defines
this ID. The API ID needs to be a string of up to 64 characters that uses lowercase alphanumeric characters and
a dot: .. We recommend that you use your organization as the prefix.

• eureka.instance.metadata-map.apiml.apiInfo.gatewayUrl

The base path at the API gateway where the API is available. Ensure that it is the same path as the gatewayUrl
value in the routes sections.

• eureka.instance.metadata-map.apiml.apiInfo.documentationUrl

(Optional) Link to external documentation, if needed. The link to the external documentation can be included
along with the Swagger documentation.

• eureka.instance.metadata-map.apiml.apiInfo.swaggerUrl

(Optional) Specifies the HTTP or HTTPS address where the Swagger JSON document is available.Important!
Ensure that each of the values for gatewayUrl parameter are unique in the configuration. Duplicate gatewayUrl
values may cause requests to be routed to the wrong service URL.

Note: The endpoint /api-doc returns the API service Swagger JSON. This endpoint is introduced by the
@EnableMfaasInfo annotation and is utilized by the API Catalog.

e. Swagger Api-Doc Parameters

Configures API Version Header Information, specifically the InfoObject section, and adjusts Swagger
documentation that your API service returns. Use the following format:

api-info:
 apiVersionProperties:
 v1:
 title: Your API title for swagger JSON which is displayed in API
 Catalog / service / API Information

https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://docops.ca.com/display/IWM/Guidelines+for+Building+a+New+API
https://swagger.io/specification/#infoObject

 | Extending | 192

 description: Your API description for swagger JSON
 version: 1.0.0
 basePackage:
 your.service.base.package.for.swagger.annotated.controllers
 # apiPattern: /v1/.* # alternative to basePackage for exposing
 endpoints which match the regex pattern to swagger JSON

The following parameters describe the function of the specific version of an API. This information is included in
the swagger JSON and displayed in the API Catalog:

• v1

Specifies the major version of your service API: v1, v2, etc.
• title

Specifies the title of your service API.
• description

Specifies the high-level function description of your service API.
• version

Specifies the actual version of the API in semantic format.
• basePackage

Specifies the package where the API is located. This option only exposes endpoints that are defined in a
specified java package. The parameters basePackage and apiPattern are mutually exclusive. Specify
only one of them and remove or comment out the second one.

• apiPattern

This option exposes any endpoints that match a specified regular expression. The parameters basePackage
and apiPattern are mutually exclusive. Specify just one of them and remove or comment out the second
one.

Tip: You have three options to make your endpoints discoverable and exposed: basePackage,
apiPattern, or none (if you do not specify a parameter). If basePackage or apiPattern are not
defined, all endpoints in the Spring Boot app are exposed.

Setup keystore with the service certificate

To register with the API Mediation Layer, a service is required to have a certificate that is trusted by API Mediation
Layer.

Follow these steps:

1. Follow instructions at Generating certificate for a new service on localhost

When a service is running on localhost, the command can have the following format:

<api-layer-repository>/scripts/apiml_cm.sh --action new-service --service-
alias localhost --service-ext SAN=dns:localhost.localdomain,dns:localhost
 --service-keystore keystore/localhost.keystore.p12 --service-truststore
 keystore/localhost.truststore.p12 --service-dname "CN=Sample REST API
 Service, OU=Mainframe, O=Zowe, L=Prague, S=Prague, C=Czechia" --service-

https://github.com/zowe/api-layer/tree/master/keystore#generating-certificate-for-a-new-service-on-localhost

 | Extending | 193

password password --service-validity 365 --local-ca-filename <api-layer-
repository>/keystore/local_ca/localca

Alternatively, for the purpose of local development, copy or use the <api-layer-repository>/
keystore/localhost.truststore.p12 in your service without generating a new certificate.

2. Update the configuration of your service application.yml to contain the HTTPS configuration by adding the
following code:

server:
 ssl:
 protocol: TLSv1.2
 ciphers:
 TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 keyAlias: localhost
 keyPassword: password
 keyStore: keystore/localhost.keystore.p12
 keyStoreType: PKCS12
 keyStorePassword: password
 trustStore: keystore/localhost.truststore.p12
 trustStoreType: PKCS12
 trustStorePassword: password
eureka:
 instance:
 nonSecurePortEnabled: false
 securePortEnabled: true

Note: You need to define both keystore and truststore even if your server is not using HTTPS port.

Externalize parameters

In order to externalize parameters, you have to create a ServletContextListener. To create your own
ServletContextListener, register a ServletContextListener and enable it to read all the properties
defined inside the .yml file.

Follow these steps:

1. Define parameters that you want to externalize in a .yml file. Ensure that this file is placed in the WEB-INF
folder located in the module of your service. Check the ApiMediationServiceConfig.java class inside
com.ca.mfaas.eurekaservice.client.config package in the integration-enabler-java to
see the mapped parameters and make sure that the yml file follows the correct structure. The following example
shows the structure of the 'yml' file:

Example:

 serviceId:
 eureka:
 hostname:
 ipAddress:
 port:
 title:
 description:
 defaultZone:
 baseUrl:
 homePageRelativeUrl:
 statusPageRelativeUrl:
 healthCheckRelativeUrl:
 discoveryServiceUrls:

 ssl:
 verifySslCertificatesOfServices: true
 protocol: TLSv1.2
 keyAlias: localhost
 keyPassword: password

 | Extending | 194

 keyStore: ../keystore/localhost/localhost.keystore.p12
 keyStorePassword: password
 keyStoreType: PKCS12
 trustStore: ../keystore/localhost/localhost.truststore.p12
 trustStorePassword: password
 trustStoreType: PKCS12
 routes:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 - gatewayUrl:
 serviceUrl:
 apiInfo:
 - apiId:
 gatewayUrl:
 swaggerUrl:
 documentationUrl:
 catalogUiTile:
 id:
 title:
 description:
 version:

2. Before the web application is started (Tomcat), create a ServletContextListener to run the defined code.

Example:

 package com.ca.hwsjersey.listener;

 import com.ca.mfaas.eurekaservice.client.ApiMediationClient;
 import
 com.ca.mfaas.eurekaservice.client.config.ApiMediationServiceConfig;
 import
 com.ca.mfaas.eurekaservice.client.impl.ApiMediationClientImpl;
 import
 com.ca.mfaas.eurekaservice.client.util.ApiMediationServiceConfigReader;

 import javax.servlet.ServletContextEvent;
 import javax.servlet.ServletContextListener;

 public class ApiDiscoveryListener implements
 ServletContextListener {
 private ApiMediationClient apiMediationClient;

 @Override
 public void contextInitialized(ServletContextEvent sce) {
 apiMediationClient = new ApiMediationClientImpl();
 String configurationFile = "/service-
configuration.yml";
 ApiMediationServiceConfig config = new
 ApiMediationServiceConfigReader(configurationFile).readConfiguration();
 apiMediationClient.register(config);
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {
 apiMediationClient.unregister();
 }
 }

 | Extending | 195

3. Register the listener. Use one of the following two options:

• Add the @WebListener annotation to the servlet.
• Reference the listener by adding the following code block to the deployment descriptor web.xml.

Example:

<listener>
 <listener-class>your.class.package.path</listener-class>
</listener>

Download Apache Tomcat and enable SSL

To run Helloworld Jersey, requires the installation of Apache Tomcat. As the service uses HTTPS, configure Tomcat
to use the SSL/TLS protocol.

Follow these steps:

1. Download Apache Tomcat 8.0.39 and install it.
2. Build Helloworld Jersey through IntelliJ or by running gradlew helloworld-jersey:build in the

terminal.
3. Enable HTTPS for Apache Tomcat with the following steps:

a) Go to the apache-tomcat-8.0.39-windows-x64\conf directory.

Note: The full path depends on where you decided to install Tomcat.

b) Open the server.xml file with a text editor as Administrator and add the following xml block: xml
<Connector port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" keystoreFile="{your-project-
directory}\api-layer\keystore\localhost\localhost.keystore.p12"
keystorePass="password" /> Ensure to comment the HTTP connector which uses the same port. c)
Navigate to the WEB-INF/ located in helloworld-jersey module and add the following xml block to the
web.xml file. This should be added right below the <servlet-mapping> tag:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protected resource</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Run your service

After you externalize the parameters to make them readable through Tomcat and enable SSL, you are ready to run
your service in the APIM Ecosystem.

Note: The following procedure uses localhost testing.

Follow these steps:

 | Extending | 196

1. Run the following services to onboard your application:

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation
Layer on Local Machine.

• Gateway Service
• Discovery Service
• API Catalog Service

2. Run gradlew tomcatRun with these additional parameters: -
Djavax.net.ssl.trustStore="<your-project-directory>\api-
layer\keystore\localhost\localhost.truststore.p12" -
Djavax.net.ssl.trustStorePassword="password". If you need some more information about SSL
configuration status while deploying, use this parameter -Djavax.net.debug=SSL.

Tip: Wait for the services to be ready. This process may take a few minutes.
3. Navigate to the following URL:

https://localhost:10011

Enter eureka as a username and password as a password and check if the service is registered to the discovery
service.

Go to the following URL to reach the API Catalog through the Gateway (port 10010) and check if the API
documentation of the service is retrieved:

https://localhost:10010/ui/v1/apicatalog/#/dashboard

You successfully onboarded your Java Jersey application if see your service running and can access the API
documentation.

REST APIs without code changes required

As a user of Zowe API Mediation Layer, onboard a REST API service with the Zowe API Mediation Layer without
changing the code of the API service. The following procedure is an overview of steps to onboard an API service
through the API Gateway in the API Mediation Layer.

Follow these steps:

1. Identify the API that you want to expose on page 196
2. Route your API on page 197
3. Define your service and API in YAML format on page 197
4. Configuration parameters on page 198
5. Add and validate the definition in the API Mediation Layer running on your machine on page 201
6. Add a definition in the API Mediation Layer in the Zowe runtime on page 202
7. (Optional) Check the log of the API Mediation Layer on page 202
8. (Optional) Reload the services definition after the update when the API Mediation Layer is already started on page

202

Identify the API that you want to expose

Onboard an API service through the API Gateway without making code changes.

Tip: For more information about the structure of APIs and which APIs to expose in the Zowe API Mediation Layer,
see Onboarding Overview on page 158.

Follow these steps:

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

 | Extending | 197

1. Identify the following parameters of your API service:

• Hostname
• Port
• (Optional) base path where the service is available. This URL is called base URL of the service.

Example:

In the sample service described earlier, the URL of the service is: http://localhost:8080.
2. Identify all APIs that this service provides that you want to expose through the API Gateway.

Example:

In the sample service, this REST API is the one available at the path /v2 relative to base URL of the service. This
API is version 2 of the Pet Store API.

3. Choose the service ID of your service. The service ID identifies the service in the API Gateway. The service ID is
an alphanumeric string in lowercase ASCII.

Example:

In the sample service, the service ID is petstore.
4. Decide which URL to use to make this API available in the API Gateway. This URL is refered to as the gateway

URL and is composed of the API type and the major version.

Example:

In the sample service, we provide a REST API. The first segment is /api. To indicate that this is version 2, the
second segment is /v2.

Route your API

After you identify the APIs you want to expose, define the routing of your API. Routing is the process of sending
requests from the API gateway to a specific API service. Route your API by using the same format as in the following
petstore example.

Note: The API Gateway differentiates major versions of an API.

Example:

To access version 2 of the petstore API use the following gateway URL:

https://gateway-host:port/api/v2/petstore

The base URL of the version 2 of the petstore API is:

http://localhost:8080/v2

The API Gateway routes REST API requests from the gateway URL https://gateway:port/api/v2/
petstore to the service http://localhost:8080/v2. This method provides access to the service in the API
Gateway through the gateway URL.

Note: This method enables you to access the service through a stable URL and move the service to another machine
without changing the gateway URL. Accessing a service through the API Gateway also enables you to have multiple
instances of the service running on different machines to achieve high-availability.

Define your service and API in YAML format

Define your service and API in YAML format in the same way as presented in the following sample petstore
service example.

Example:

To define your service in YAML format, provide the following definition in a YAML file as in the following sample
petstore service:

services:
 - serviceId: petstore

 | Extending | 198

 catalogUiTileId: static
 title: Petstore Sample Service
 description: This is a sample server Petstore service
 instanceBaseUrls:
 - http://localhost:8080
 routes:
 - gatewayUrl: api/v2
 serviceRelativeUrl: /v2
 apiInfo:
 - apiId: io.swagger.petstore
 gatewayUrl: api/v2
 swaggerUrl: http://localhost:8080/v2/swagger.json
 documentationUrl: https://petstore.swagger.io/
 version: 2.0.0

catalogUiTiles:
 static:
 title: Static API services
 description: Services which demonstrate how to make an API service
 discoverable in the APIML ecosystem using YAML definitions

In this example, a suitable name for the file is petstore.yml.

Notes:

• The filename does not need to follow specific naming conventions but it requires the .yml extension.
• The file can contain one or more services defined under the services: node.
• Each service has a service ID. In this example, the service ID is petstore. The service can have one or more

instances. In this case, only one instance http://localhost:8080 is used.
• A service can provide multiple APIs that are routed by the API Gateway. In this case, requests with the relative

base path api/v2 at the API Gateway (full gateway URL: https://gateway:port/api/v2/...) are
routed to the relative base path /v2 at the full URL of the service (http://localhost:8080/v2/...).

Tips:

• There are more examples of API definitions at this link.
• For more details about how to use YAML format, see this link

Configuration parameters

The following list describes the configuration parameters:

https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

 | Extending | 199

• serviceId

Specifies the service instance identifier that is registered in the API Mediation Layer installation. The service ID is
used in the URL for routing to the API service through the gateway. The service ID uniquely identifies the service
in the API Mediation Layer. The system administrator at the customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

• When two API services use the same service ID, the API gateway considers the services to be clones (two
instances for the same service). An incoming API request can be routed to either of them.

• The same service ID should be set only for multiple API service instances for API scalability.
• The service ID value must contain only lowercase alphanumeric characters.
• The service ID cannot contain more than 40 characters.
• The service ID is linked to security resources. Changes to the service ID require an update of security

resources.

Examples:

• If the customer system administrator sets the service ID to sysviewlpr1, the API URL in the API Gateway
appears as the following URL:

https://gateway:port/api/v1/sysviewlpr1/...

• If customer system administrator sets the service ID to vantageprod1, the API URL in the API Gateway
appears as the following URL:

http://gateway:port/api/v1/vantageprod1/...
• title

Specifies the human readable name of the API service instance (for example, "Endevor Prod" or "Sysview
LPAR1"). This value is displayed in the API catalog when a specific API service instance is selected. This
parameter is externalized and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of the title. Use a title that describes the service
instance so that the end user knows the specific purpose of the service instance.

• description

Specifies a short description of the API service.

Example: "CA Endevor SCM - Production Instance" or "CA SYSVIEW running on LPAR1".

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is
externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.
• instanceBaseUrls

Specifies a list of base URLs to your service to the REST resource. It will be the prefix for the following URLs:

• homePageRelativeUrl
• statusPageRelativeUrl
• healthCheckRelativeUrl

Examples:

• - http://host:port/filemasterplus for an HTTP service
• - https://host:port/endevor for an HTTPS service

You can provide one URL if your service has one instance. If your service provides multiple instances for the
high-availability then you can provide URLs to these instances.

- https://host1:port1/endevor
 https://host2:port2/endevor

 | Extending | 200

• homePageRelativeUrl

Specifies the relative path to the homepage of your service. The path should start with /. If your service has no
homepage, omit this parameter.

Examples:

• homePageRelativeUrl: / The service has homepage with URL ${baseUrl}/
• homePageRelativeUrl: /ui/ The service has homepage with URL ${baseUrl}/ui/
• homePageRelativeUrl: The service has homepage with URL ${baseUrl}

• statusPageRelativeUrl

Specifies the relative path to the status page of your service. Start this path with /. If you service has not a status
page, omit this parameter.

Example:

• statusPageRelativeUrl: /application/info the result URL will be ${baseUrl}/
application/info

• healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service. Start this URL with /. If your service does
not have a health check endpoint, omit this parameter.

Example:

• healthCheckRelativeUrl: /application/health. This results in the URL: ${baseUrl}/
application/health

• routes

The routing rules between the gateway service and your service.

• routes.gatewayUrl

Both gatewayUrl and serviceUrl parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The gatewayUrl parameter sets the target endpoint on the gateway.

• routes.serviceUrl

Both gatewayUrl and serviceUrl parameters specify how the API service endpoints are mapped to the API
gateway endpoints. The serviceUrl parameter points to the target endpoint on the gateway.

• apiInfo

This section defines APIs that are provided by the service. Currently, only one API is supported.
• apiInfo.apiId

Specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The API ID
can be used to locate the same APIs that are provided by different services. The creator of the API defines this ID.
The API ID needs to be a string of up to 64 characters that uses lowercase alphanumeric characters and a dot: ..
We recommend that you use your organization as the prefix.

Examples:

• org.zowe.file

• com.ca.sysview

• com.ibm.zosmf

• apiInfo.gatewayUrl

The base path at the API gateway where the API is available. Ensure that this path is the same as the gatewayUrl
value in the routes sections.

• apiInfo.swaggerUrl

(Optional) Specifies the HTTP or HTTPS address where the Swagger JSON document is available.

 | Extending | 201

• apiInfo.documentationUrl

(Optional) Specifies a URL to a website where external documentation is provided. This can be used when
swaggerUrl is not provided.

• apiInfo.version

(Optional) Specifies the actual version of the API in semantic versioning format. This can be used when
swaggerUrl is not provided.

• catalogUiTileId

Specifies the unique identifier for the API services group. This is the grouping value used by the API Mediation
Layer to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog
UI dashboard tile. Specify the value based on the ID of the defined tile.

• catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that has its tile ID as a key. A tile can be
used by multiple services.

catalogUiTiles:
 tile1:
 title: Tile 1
 description: This is the first tile with ID tile1
 tile2:
 title: Tile 2
 description: This is the second tile with ID tile2

• catalogUiTile.{tileId}.title

Specifies the title of the API services product family. This value is displayed in the API catalog UI dashboard as
the tile title.

• catalogUiTile.{tileId}.description

Specifies the detailed description of the API Catalog UI dashboard tile. This value is displayed in the API catalog
UI dashboard as the tile description.

Add and validate the definition in the API Mediation Layer running on your machine

After you define the service in YAML format, you are ready to add your service definition to the API Mediation
Layer ecosystem.

The following procedure describes how to add your service to the API Mediation Layer on your local machine.

Follow these steps:

1. Copy or move your YAML file to the config/local/api-defs directory in the directory with API
Mediation layer.

2. Start the API Mediation Layer services.

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation
Layer on Local Machine.

3. Run your Java application.

Tip: Wait for the services to be ready. This process may take a few minutes.

https://semver.org/
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md

 | Extending | 202

4. Go to the following URL to reach the API Gateway (port 10010) and see the paths that are routed by the API
Gateway:

https://localhost:10010/application/routes

The following line should appear:

/api/v2/petstore/**: "petstore"

This line indicates that requests to relative gateway paths that start with /api/v2/petstore/ are routed to the
service with the service ID petstore.

You successfully defined your Java application if your service is running and you can access the service
endpoints. The following example is the service endpoint for the sample application:

https://localhost:10010/api/v2/petstore/pets/1

Add a definition in the API Mediation Layer in the Zowe runtime

After you define and validate the service in YAML format, you are ready to add your service definition to the API
Mediation Layer running as part of the Zowe runtime installation.

Follow these steps:

1. Locate the Zowe user directory. The Zowe user directory is chosen during Zowe configuration. The initial location
of the directory is in the zowe-install.yaml file in the variable install:userDir.

Note: We use the ${zoweUserDir} symbol in following instructions.
2. Copy your YAML file to the ${zoweUserDir}/api-mediation/api-defs directory.

Note: The ${zoweUserDir}/api-mediation/api-defs directory is created the first time that Zowe
starts, so if you have not started Zowe yet this directory might be missing.

3. Run your application.
4. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the update when

the API Mediation Layer is already started on page 202.
5. Go to the following URL to reach the API Gateway (default port 7554) and see the paths that are routed by the

API Gateway: https://${zoweHostname}:${gatewayHttpsPort}/application/routes

The following line should appear:

/api/v2/petstore/**: "petstore"

This line indicates that requests to the relative gateway paths that start with /api/v2/petstore/ are routed to
the service with service ID petstore.

You successfully defined your Java application if your service is running and you can access its
endpoints. The endpoint displayed for the sample application is: https://l${zoweHostname}:
${gatewayHttpsPort}/api/v2/petstore/pets/1

(Optional) Check the log of the API Mediation Layer

The API Mediation Layer prints the following messages to its log when the API definitions are processed:

Scanning directory with static services definition: config/local/api-defs
Static API definition file: /Users/plape03/workspace/api-layer/config/local/
api-defs/petstore.yml
Adding static instance STATIC-localhost:petstore:8080 for service ID
 petstore mapped to URL http://localhost:8080

(Optional) Reload the services definition after the update when the API Mediation Layer is already
started

The following procedure enables you to refresh the API definitions after you change the definitions when the API
Mediation Layer is already running.

 | Extending | 203

Follow these steps:

1. Use a REST API client to issue a POST request to the Discovery Service (port 10011):

http://localhost:10011/discovery/api/v1/staticApi

The Discovery Service requires authentication by a client certificate. If the API Mediation Layer is running on
your local machine, the certificate is stored at keystore/localhost/localhost.pem.

This example uses the HTTPie command-line HTTP client:

http --cert=keystore/localhost/localhost.pem --verify=keystore/local_ca/
localca.cer -j POST https://localhost:10011/discovery/api/v1/staticApi

2. Check if your updated definition is effective.

Notes:

• It can take up to 30 seconds for the API Gateway to pick up the new routing.

API Mediation Layer Message Service Component

The API ML Message Service component unifies and stores REST API error messages and log messages in a single
file. The Message Service component enables users to mitigate the problem of message definition redundancy which
helps to optimize the development process.

• Message Definition on page 203
• Creating a message on page 204
• Mapping a message on page 204
• API ML Logger on page 205

Message Definition

API ML uses a customizable infrastructure to format both REST API error messages and log messages. yaml files
make it possible to centralize both API error messages and log messages. Messages have the following definitions:

• Message key - a unique ID in the form of a dot-delimited string that describes the reason for the message. The
key enables the UI or the console to show a meaningful and localized message.

Tips:

• We recommend using the format org.zowe.sample.apiservice.{TYPE}.greeting.empty to
define the message key. {TYPE} can be the api or log keyword.

• Use the message key and not the message number. The message number makes the code less readable, and
increases the possibility of errors when renumbering values inside the number.

• Message number - a typical mainframe message ID (excluding the severity code)
• Message type - There are two Massage types:

• REST API error messages: ERROR
• Log messages: ERROR, WARNING, INFO, DEBUG, or TRACE

• Message text - a description of the issue

The following example shows the message definition.

Example:

messages:
 - key: org.zowe.sample.apiservice.{TYPE}.greeting.empty
 number: ZWEASA001
 type: ERROR
 text: "The provided '%s' name is empty."

https://httpie.org

 | Extending | 204

Creating a message

Use the following classes when you create a message:

• com.ca.mfaas.message.core.MessageService - lets you create a message from a file.
• com.ca.mfaas.message.yaml.YamlMessageService -

implements com.ca.mfaas.message.core.MessageService so that
com.ca.mfaas.message.yaml.YamlMessageService can read message information from a yaml
file, and create a message with message parameters.

Use the following process to create a message.

Follow these steps:

1. Load messages from the yaml file.

Example:

MessageService messageService = new YamlMessageService();
messageService.loadMessages("/api-messages.yml");
messageService.loadMessages("/log-messages.yml");

2. Use the Message createMessage(String key, Object... parameters); method to create a
message.

Example:

Message message =
 messageService.createMessage("org.zowe.sample.apiservice.
{TYPE}.greeting.empty", "test");

Mapping a message

You can map the Message either to a REST API response or to a log message.

When you map a REST API response, use the following methods:

• mapToView - returns a UI model as a list of API Message, and can be used for Rest API error messages
• mapToApiMessage - returns a UI model as a single API Message

The following example is a result of using the mapToView method.

Example:

{
"messages": [
 {
 "messageKey": "org.zowe.sample.apiservice.{TYPE}.greeting.empty",
 "messageType": "ERROR",
 "messageNumber": "ZWEASA001",
 "messageContent": "The provided 'test' name is empty."
 }
]
}

The following example is the result of using the mapToApiMessage method.

Example:

{
 "messageKey": "org.zowe.sample.apiservice.{TYPE}.greeting.empty",
 "messageType": "ERROR",
 "messageNumber": "ZWEASA001",
 "messageContent": "The provided 'test' name is empty."

 | Extending | 205

}

API ML Logger

The com.ca.mfaas.message.log.ApimLogger component controls messages through the Message Service
component.

The following example uses the log message definition in a yaml file.

Example:

messages:
 - key: org.zowe.sample.apiservice.log.greeting.empty
 number: ZWEASA001
 type: DEBUG
 text: "The provided '%s' name is empty."

When you map a log message, use mapToLogMessage to return a log message as text. The following example is
the output of the mapToLogMessage.

Example:

ZWEASA001D The provided ‘test’ name is empty. {43abb594-3415-4ed5-
a0b5-23e306a91124}

Use the ApimlLogger to log messages which are defined in the yaml file.

Example:

package com.ca.mfaas.client.configuration;

import com.ca.mfaas.message.core.MessageService;
import com.ca.mfaas.message.core.MessageType;
import com.ca.mfaas.message.log.ApimlLogger;

public class SampleClass {

 private final ApimlLogger logger;

 public SampleClass(MessageService messageService) {
 logger = ApimlLogger.of(SampleClass.class, messageService);
 }

 public void process() {
 logger.log(“org.zowe.sample.apiservice.log.greeting.empty”, “test”);

 }

}

The following example shows the output of a successful ApimlLogger usage.

Example:

DEBUG (c.c.m.c.c.SampleClass) ZWEASA001D The provided 'test' name is empty.
 {43abb594-3415-4ed5-a0b5-23e306a91124}

 | Extending | 206

Developing for Zowe CLI

Developing for Zowe CLI

You can extend Zowe™ CLI by developing plug-ins and contributing code to the base Zowe CLI or existing plug-ins.

How can I contribute?

You can contribute to Zowe CLI in the following ways:

1. Add new commands, options, or other improvements to the base CLI.
2. Develop a plug-in that users can install to Zowe CLI.

You might want to contribute to Zowe CLI to accomplish the following:

• Provide new scriptable functionality for yourself, your organization, or to a broader community.
• Make use of Zowe CLI infrastructure (profiles and programmatic APIs).
• Participate in the Zowe CLI community space.

Getting started

If you want to start working with the code immediately, check out the Zowe CLI core repository and the contribution
guidelines. The zowe-cli-sample-plugin GitHub repository is a sample plug-in that adheres to the guidelines for
contributing to Zowe CLI projects.

Tutorials

Follow these tutorials to get started working with the sample plug-in:

1. Setting up your development environment on page 207 - Clone the project and prepare your local
environment.

2. Installing the sample plug-in on page 208 - Install the sample plug-in to Zowe CLI and run as-is.
3. Extending a plug-in on page 210 - Extend the sample plug-in with a new by creating a programmatic API,

definition, and handler.
4. Developing a new plug-in on page 213 - Create a new CLI plug-in that uses Zowe CLI programmatic APIs

and a diff package to compare two data sets.
5. Implementing profiles in a plug-in on page 218 - Implement user profiles with the plug-in.

Plug-in Development Overview

At a high level, a plug-in must have imperative-framework configuration (sample here). This configuration is
discovered by imperative-framework through the package.json imperative key.

A Zowe CLI plug-in will minimally contain the following:

1. Programmatic API - Node.js programmatic APIs to be called by your handler or other Node.js applications.
2. Command definition - The syntax definition for your command.
3. Handler implementation - To invoke your programmatic API to display information in the format that you

defined in the definition.

The following guidelines and documentation will assist you during development:

Imperative CLI Framework Documentation

Imperative CLI Framework documentation is a key source of information to learn about the features of Imperative
CLI Framework (the code framework that you use to build plug-ins for Zowe CLI). Refer to these supplementary
documents during development to learn about specific features such as:

• Auto-generated help
• JSON responses
• User profiles
• Logging, progress bars, experimental commands, and more!

https://github.com/zowe/zowe-cli
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/master/blob/CONTRIBUTING.md
https://github.com/zowe/zowe-cli-sample-plugin
https://github.com/zowe/zowe-cli-sample-plugin/src/imperative.ts
https://github.com/zowe/zowe-cli-sample-plugin/package.json
https://github.com/zowe/imperative/wiki

 | Extending | 207

Contribution Guidelines

The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CLI plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining automated tests,
developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly:

For more information about ... See:

General guidelines that apply to contributing to Zowe
CLI and Plug-ins

Contribution Guidelines

Conventions and best practices for creating packages and
plug-ins for Zowe CLI

Package and Plug-in Guidelines

Guidelines for running tests on Zowe CLI Testing Guidelines

Guidelines for running tests on the plug-ins that you
build

Plug-in Testing Guidelines

Versioning conventions for Zowe CLI and Plug-ins Versioning Guidelines

Setting up your development environment

Before you follow the development tutorials for creating a Zowe™ CLI plug-in, follow these steps to set up your
environment.

Prequisites

Methods to install Zowe CLI on page 99.

Initial setup

To create your development space, you will clone and build zowe-cli-sample-plugin from source.

Before you clone the repository, create a local development folder named zowe-tutorial. You will clone and
build all projects in this folder.

Branches

There are two branches in the repository that correspond to different Zowe CLI versions. You can develop two
branches of your plug-in so that users can install your plug-in into either @latest or @lts-incremental CLI.
Developing for both versions will let you take advantage of new core features quickly and expose your plug-in to a
wider range of users.

The lts-incremental branch of Sample Plug-in is compatible with the @lts-incremental version of core
CLI (Zowe Stable release). The master branch of Sample Plug-in is compatible with @latest version of core CLI
(Zowe Active Development release).

For more information about the versioning scheme, see Maintaner Versioning in the Zowe CLI repository.

Clone zowe-cli-sample-plugin and build from source

Clone the repository into your development folder to match the following structure:

zowe-tutorial
zowe-cli-sample-plugin

Follow these steps:

1. cd to your zowe-tutorial folder.
2. git clone https://github.com/zowe/zowe-cli-sample-plugin

3. cd to your zowe-cli-sample-plugin folder.
4. git checkout lts-incremental

https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md
https://github.com/zowe/zowe-cli-sample-plugin
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

 | Extending | 208

5. npm install

6. npm run build

(Optional) Run the automated tests

We recommend running automated tests on all code changes. Follow these steps:

1. cd to the __tests__/__resources__/properties folder.
2. Copy example_properties.yaml to custom_properties.yaml.
3. Edit the properties within custom_properties.yaml to contain valid system information for your site.
4. cd to your zowe-cli-sample-plugin folder
5. npm run test

Next steps

After you complete your setup, follow the Installing the sample plug-in on page 208 tutorial to install this sample
plug-in to Zowe CLI.

Installing the sample plug-in

Before you begin, Setting up your development environment on page 207 your local environment to install a plug-
in.

Overview

This tutorial covers installing and running this bundled Zowe™ CLI plugin as-is (without modification), which will
display your current directory contents.

The plug-in adds a command to the CLI that lists the contents of a directory on your computer.

Installing the sample plug-in to Zowe CLI

To begin, cd into your zowe-tutorial folder.

Issue the following commands to install the sample plug-in to Zowe CLI:

zowe plugins install ./zowe-cli-sample-plugin

Viewing the installed plug-in

Issue zowe --help in the command line to return information for the installed zowe-cli-sample command
group:

 | Extending | 209

Figure 1: Installed Sample Plugin

Using the installed plug-in

To use the plug-in functionality, issue: zowe zowe-cli-sample list directory-contents:

 | Extending | 210

Figure 2: Sample Plugin Output

Testing the installed plug-in

To run automated tests against the plug-in, cd into your zowe-tutorial/zowe-cli-sample-plugin folder.

Issue the following command:

• npm run test

Next steps

You successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in on page 210 tutorial to learn
about developing new commands for this plug-in.

Extending a plug-in

Before you begin, be sure to complete the Installing the sample plug-in on page 208 tutorial.

Overview

This tutorial demonstrates how to extend the plug-in that is bundled with this sample by:

1. Creating a new programmatic API
2. Creating a new command definition
3. Creating a new handler

We'll do this by using @brightside/imperative infrastructure to surface REST API data on our Zowe™ CLI
plug-in.

Specifically, we're going to show data from this URI by Typicode. Typicode serves sample REST JSON data for
testing purposes.

At the end of this tutorial, you will be able to use a new command from the Zowe CLI interface: zowe zowe-cli-
sample list typicode-todos

Completed source for this tutorial can be found on the typicode-todos branch of the zowe-cli-sample-plugin
repository.

https://jsonplaceholder.typicode.com/todos
https://jsonplaceholder.typicode.com/

 | Extending | 211

Creating a Typescript interface for the Typicode response data

First, we'll create a Typescript interface to map the response data from a server.

Within zowe-cli-sample-plugin/src/api, create a folder named doc to contain our interface (sometimes
referred to as a "document" or "doc"). Within the doc folder, create a file named ITodo.ts.

The ITodo.ts file will contain the following:

export interface ITodo {
 userId: number;
 id: number;
 title: string;
 completed: boolean;
}

Creating a programmatic API

Next, we'll create a Node.js API that our command handler uses. This API can also be used in any Node.js
application, because these Node.js APIs make use of REST APIs, Node.js APIs, other NPM packages, or custom
logic to provide higher level functions than are served by any single API.

Adjacent to the existing file named zowe-cli-sample-plugin/src/api/Files.ts, create a file
Typicode.ts.

Typicode.tsshould contain the following:

import { ITodo } from "./doc/ITodo";
import { RestClient, AbstractSession, ImperativeExpect, Logger } from
 "@brightside/imperative";

export class Typicode {

 public static readonly TODO_URI = "/todos";

 public static getTodos(session: AbstractSession): Promise<ITodo[]> {
 Logger.getAppLogger().trace("Typicode.getTodos() called");
 return RestClient.getExpectJSON<ITodo[]>(session,
 Typicode.TODO_URI);
 }

 public static getTodo(session: AbstractSession, id: number):
 Promise<ITodo> {
 Logger.getAppLogger().trace("Typicode.getTodos() called with id " +
 id);
 ImperativeExpect.toNotBeNullOrUndefined(id, "id must be provided");
 const resource = Typicode.TODO_URI + "/" + id;
 return RestClient.getExpectJSON<ITodo>(session, resource);
 }
}

The Typicode class provides two programmatic APIs, getTodos and getTodo, to get an array of ITodo
objects or a specific ITodo respectively. The Node.js APIs use @brightside/imperative infrastructure to
provide logging, parameter validation, and to call a REST API. See the Imperative CLI Framework documentation for
more information.

Exporting interface and programmatic API for other Node.js applications

Update zowe-cli-sample-plugin/src/index.ts to contain the following:

export * from "./api/doc/ITodo";
export * from "./api/Typicode";

https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli-sample-plugin/src/index.ts

 | Extending | 212

A sample invocation of your API might look similar to the following, if it were used by a separate, standalone Node.js
application:

import { Typicode } from "@brightside/zowe-cli-sample-plugin";
import { Session, Imperative } from "@brightside/imperative";
import { inspect } from "util";

const session = new Session({ hostname: "jsonplaceholder.typicode.com"});
(async () => {
 const firstTodo = await Typicode.getTodo(session, 1);
 Imperative.console.debug("First todo was: " + inspect(firstTodo));
})();

Checkpoint

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. At this point in this
tutorial, you have a programmatic API that will be used by your handler or another Node.js application. Next you'll
define the command syntax for the command that will use your programmatic Node.js APIs.

Defining command syntax

Within Zowe CLI, the full command that we want to create is zowe zowe-cli-sample list typicode-
todos. Navigate to zowe-cli-sample-plugin/src/cli/list and create a folder typicode-todos.
Within this folder, create TypicodeTodos.definition.ts. Its content should be as follows:

import { ICommandDefinition } from "@brightside/imperative";
export const TypicodeTodosDefinition: ICommandDefinition = {
 name: "typicode-todos",
 aliases: ["td"],
 summary: "Lists typicode todos",
 description: "List typicode REST sample data",
 type: "command",
 handler: __dirname + "/TypicodeTodos.handler",
 options: [
 {
 name: "id",
 description: "The todo to list",
 type: "number"
 }
]
};

This describes the syntax of your command.

Defining command handler

Also within the typicode-todos folder, create TypicodeTodos.handler.ts. Add the following code to
the new file:

import { ICommandHandler, IHandlerParameters, TextUtils, Session } from
 "@brightside/imperative";
import { Typicode } from "../../../api/Typicode";
export default class TypicodeTodosHandler implements ICommandHandler {

 public static readonly TYPICODE_HOST = "jsonplaceholder.typicode.com";
 public async process(params: IHandlerParameters): Promise<void> {

 const session = new Session({ hostname:
 TypicodeTodosHandler.TYPICODE_HOST});
 if (params.arguments.id) {
 const todo = await Typicode.getTodo(session,
 params.arguments.id);
 params.response.data.setObj(todo);

 | Extending | 213

 params.response.console.log(TextUtils.prettyJson(todo));
 } else {
 const todos = await Typicode.getTodos(session);
 params.response.data.setObj(todos);
 params.response.console.log(TextUtils.prettyJson(todos));
 }
 }
}

The if statement checks if a user provides an --id flag. If yes, we call getTodo. Otherwise, we call getTodos.
If the Typicode API throws an error, the @brightside/imperative infrastructure will automatically surface
this.

Defining command to list group

Within the file zowe-cli-sample-plugin/src/cli/list/List.definition.ts, add the following
code below other import statements near the top of the file:

import { TypicodeTodosDefinition } from "./typicode-todos/
TypicodeTodos.definition";

Then add TypicodeTodosDefinition to the children array. For example:

children: [DirectoryContentsDefinition, TypicodeTodosDefinition]

Checkpoint

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. You now have a
handler, definition, and your command has been defined to the list group of the command.

Using the installed plug-in

Issue the command: zowe zowe-cli-sample list typicode-todos

Refer to zowe zowe-cli-sample list typicode-todos --help for more information about your
command and to see how text in the command definition is presented to the end user. You can also see how to use
your optional --id flag:

Summary

You extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a command
definition with a handler. For an official plugin, you would also add JSDoc to your code and create automated tests.

Next steps

Try the Developing a new plug-in on page 213 tutorial next to create a new plug-in for Zowe CLI.

Developing a new plug-in

Before you begin this tutorial, make sure that you completed the Extending a plug-in on page 210 tutorial.

http://usejsdoc.org/

 | Extending | 214

Overview

This tutorial demonstrates how to create a brand new Zowe™ CLI plug-in that uses Zowe CLI Node.js programmatic
APIs.

At the end of this tutorial, you will have created a data set diff utility plug-in for Zowe CLI, from which you can pipe
your plugin's output to a third-party utility for a side-by-side diff of data set member contents.

Completed source for this tutorial can be found on the develop-a-plugin branch of the zowe-cli-sample-plugin
repository.

Cloning the sample plug-in source

Clone the sample repo, delete the irrelevant source, and create a brand new plug-in. Follow these steps:

1. cd into your zowe-tutorial folder
2. git clone https://github.com/zowe/zowe-cli-sample-plugin files-util

3. cd files-util

4. Delete the .git (hidden) folder.
5. Delete all content within the src/api, src/cli, and docs folders.
6. Delete all content within the __tests__/__system__/api, __tests__/__system__/cli,

__tests__/api, and __tests__/cli folders
7. git init

8. git add .

9. git commit -m "initial"

Changing package.json

Use a unique npm name for your plugin. Change package.json name field as follows:

 "name": "@brightside/files-util",

Issue the command npm install against the local repository.

Adjusting Imperative CLI Framework configuration

Change imperative.ts to contain the following:

import { IImperativeConfig } from "@brightside/imperative";

const config: IImperativeConfig = {
 commandModuleGlobs: ["**/cli/*/*.definition!(.d).*s"],
 rootCommandDescription: "Files utilty plugin for Zowe CLI",
 envVariablePrefix: "FILES_UTIL_PLUGIN",

 | Extending | 215

 defaultHome: "~/.files_util_plugin",
 productDisplayName: "Files Util Plugin",
 name: "files-util"
};

export = config;

Here we adjusted the description and other fields in the imperative JSON configuration to be relevant to this
plug-in.

Adding third-party packages

We'll use the following packages to create a programmatic API:

• npm install --save diff

• npm install -D @types/diff

Creating a Node.js programmatic API

In files-util/src/api, create a file named DataSetDiff.ts. The content of DataSetDiff.ts should
be the following:

import { AbstractSession } from "@brightside/imperative";
import { Download, IDownloadOptions, IZosFilesResponse } from "@brightside/
core";
import * as diff from "diff";
import { readFileSync } from "fs";

export class DataSetDiff {

 public static async diff(session: AbstractSession, oldDataSet: string,
 newDataSet: string) {

 let error;
 let response: IZosFilesResponse;

 const options: IDownloadOptions = {
 extension: "dat",
 };

 try {
 response = await Download.dataSet(session, oldDataSet, options);
 } catch (err) {
 error = "oldDataSet: " + err;
 throw error;
 }

 try {
 response = await Download.dataSet(session, newDataSet, options);
 } catch (err) {
 error = "newDataSet: " + err;
 throw error;
 }

 const regex = /\.|\(/gi; // Replace . and (with /
 const regex2 = /\)/gi; // Replace) with .

 // convert the old data set name to use as a path/file
 let file = oldDataSet.replace(regex, "/");
 file = file.replace(regex2, ".") + "dat";
 // Load the downloaded contents of 'oldDataSet'
 const oldContent = readFileSync(`${file}`).toString();

 // convert the new data set name to use as a path/file

 | Extending | 216

 file = newDataSet.replace(regex, "/");
 file = file.replace(regex2, ".") + "dat";
 // Load the downloaded contents of 'oldDataSet'
 const newContent = readFileSync(`${file}`).toString();

 return diff.createTwoFilesPatch(oldDataSet, newDataSet, oldContent,
 newContent, "Old", "New");
 }
}

Exporting your API

In files-util/src, change index.ts to contain the following:

export * from "./api/DataSetDiff";

Checkpoint

At this point, you should be able to rebuild the plug-in without errors via npm run build. You included third
party dependencies, created a programmatic API, and customized this new plug-in project. Next, you'll define the
command to invoke your programmatic API.

Defining commands

In files-util/src/cli, create a folder named diff. Within the diff folder, create a file
Diff.definition.ts. Its content should be as follows:

import { ICommandDefinition } from "@brightside/imperative";
import { DataSetsDefinition } from "./data-sets/DataSets.definition";
const IssueDefinition: ICommandDefinition = {
 name: "diff",
 summary: "Diff two data sets content",
 description: "Uses open source diff packages to diff two data sets
 content",
 type: "group",
 children: [DataSetsDefinition]
};

export = IssueDefinition;

Also within the diff folder, create a folder named data-sets. Within the data-sets folder create
DataSets.definition.ts and DataSets.handler.ts.

DataSets.definition.ts should contain:

import { ICommandDefinition } from "@brightside/imperative";

export const DataSetsDefinition: ICommandDefinition = {
 name: "data-sets",
 aliases: ["ds"],
 summary: "data sets to diff",
 description: "diff the first data set with the second",
 type: "command",
 handler: __dirname + "/DataSets.handler",
 positionals: [
 {
 name: "oldDataSet",
 description: "The old data set",
 type: "string"
 },
 {
 name: "newDataSet",
 description: "The new data set",

 | Extending | 217

 type: "string"
 }
],
 profile: {
 required: ["zosmf"]
 }
};

DataSets.handler.ts should contain the following:

import { ICommandHandler, IHandlerParameters, TextUtils, Session } from
 "@brightside/imperative";
import { DataSetDiff } from "../../../api/DataSetDiff";

export default class DataSetsDiffHandler implements ICommandHandler {
 public async process(params: IHandlerParameters): Promise<void> {

 const profile = params.profiles.get("zosmf");
 const session = new Session({
 type: "basic",
 hostname: profile.host,
 port: profile.port,
 user: profile.user,
 password: profile.pass,
 base64EncodedAuth: profile.auth,
 rejectUnauthorized: profile.rejectUnauthorized,
 });
 const resp = await DataSetDiff.diff(session,
 params.arguments.oldDataSet, params.arguments.newDataSet);
 params.response.console.log(resp);
 }
}

Trying your command

Be sure to build your plug-in via npm run build.

Install your plug-in into Zowe CLI via zowe plugins install.

Issue the following command. Replace the data set names with valid mainframe data set names on your system:

The raw diff output is displayed as a command response:

 | Extending | 218

Bringing together new tools!

The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for combining
different developer tools for new and interesting uses.

diff2html is a free tool to generate HTML side-by-side diffs to help see actual differences in diff output.

Install the diff2html CLI via npm install -g diff2html-cli. Then, pipe your Zowe CL plugin's output
into diff2html to generate diff HTML and launch a web browser that contains the content in the screen shot at the
Overview on page 214.

• zowe files-util diff data-sets "kelda16.work.jcl(iefbr14)"
"kelda16.work.jcl(iefbr15)" | diff2html -i stdin

Next steps

Try the Implementing profiles in a plug-in on page 218 tutorial to learn about using profiles with your plug-in.

Implementing profiles in a plug-in

You can use this profile template to create a profile for your product.

The profile definition is placed in the imperative.ts file.

someproduct will be the profile name that you might require on various commands to have credentials loaded
from a secure credential manager and retain host/port information (so that you can easily swap to different servers)
from the CLI).

By default, if your plug-in is installed into Zowe™ CLI that contains a profile definition like this, commands will
automatically be created under zowe profiles ... to create, validate, set default, list, etc... for your profile.

profiles: [
 {
 type: "someproduct",
 schema: {
 type: "object",
 title: "Configuration profile for SOME PRODUCT",
 description: "Configuration profile for SOME PRODUCT ",
 properties: {
 host: {
 type: "string",
 optionDefinition: {
 type: "string",
 name: "host",
 alias:["H"],
 required: true,
 description: "Host name of your SOME PRODUCT REST API server"
 }
 },
 port: {
 type: "number",
 optionDefinition: {
 type: "number",
 name: "port",
 alias:["P"],
 required: true,
 description: "Port number of your SOME PRODUCT REST API
 server"
 }
 },
 user: {
 type: "string",
 optionDefinition: {
 type: "string",

https://diff2html.xyz/

 | Extending | 219

 name: "user",
 alias:["u"],
 required: true,
 description: "User name to authenticate to your SOME PRODUCT
 REST API server"
 },
 secure: true
 },
 password: {
 type: "string",
 optionDefinition: {
 type: "string",
 name: "password",
 alias:["p"],
 required: true,
 description: "Password to authenticate to your SOME PRODUCT
 REST API server"
 },
 secure: true
 },
 },
 required: ["host", "port", "user", "password"],
 },
 createProfileExamples: [
 {
 options: "spprofile --host zos123 --port 1234 --user ibmuser --
password myp4ss",
 description: "Create a SOME PRODUCT profile named 'spprofile' to
 connect to SOME PRODUCT at host zos123 and port 1234"
 }
]
 }
]

Next steps

If you completed all previous tutorials, you now understand the basics of extending and developing plug-ins for
Zowe CLI. Next, we recommend reviewing the project Contribution Guidelines on page 207 and Imperative CLI
Framework Documentation on page 206 to learn more.

Developing for Zowe Application Framework

Overview

You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An application
plug-in is an installable set of files that present resources in a web-based user interface, as a set of RESTful services,
or in a web-based user interface and as a set of RESTful services.

Read the following topics to get started with extending the Zowe Application Framework.

How Zowe Application Framework works

Read the following topics to learn how Zowe Application Framework works:

• Creating application plug-ins on page 221
• Plug-ins definition and structure on page 222
• Dataservices on page 225
• Zowe Desktop and window management on page 235
• Configuration Dataservice on page 238
• URI Broker on page 243

 | Extending | 220

• Application-to-application communication on page 245
• Error reporting UI on page 250
• Logging utility on page 252

Tutorials

Follow these tutorials to get started working with the sample application plug-in:

1. Tutorial: Stand up a local version of the Example Zowe Application Server on page 256

The zlux-app-server repository is an example of a server built upon the application framework. Within the
repository, you will find a collection of build, deploy, and run scripts and configuration files that will help you to
configure a simple Zowe Application Server with a few applications included.

2. Tutorial: User Browser Workshop App on page 260

This tutorial contains code snippets and descriptions that you can combine to build a complete application.

The following tutorials are available in Github.

• Internationalization in Angular Templates in Zowe Application Server

:::tip Github Sample Repo: sample-angular-app (Internationalization) :::
• App to app communication

:::tip Github Sample Repo : sample-angular-app (App to app communication) :::
• Using the Widgets Library

:::tip Github Sample Repo: sample-angular-app (Widgets) :::
• Configuring user preferences (configuration dataservice)

:::tip Github Sample Repo: sample-angular-app (configuration dataservice) :::

Samples

Zowe allows extensions to be written in any UI framework through the use of an Iframe, or Angular and React
natively. In this section, code samples of various use-cases will be provided with install instructions.

::: warning Troubleshooting Suggestions: If you are running into issues, try these suggestions:

• Restart the Zowe Server/ VM.
• Double check that the name in the plugins folder matches your identifier in pluginsDefinition.json

located in the Zowe root.
• After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to the "network" tab

to see what errors you are getting.
• Check each file with cat <filename> to be sure it wasn't corrupted while uploading. If files were corrupted,

try uploading using a different method like SCP or SFTP. :::

Sample Iframe App

:::tip Github Sample Repo: sample-iframe-app :::

Sample Angular App

:::tip Github Sample Repo: sample-angular-app :::

Sample React App

:::tip Github Sample Repo: sample-react-app :::

User Browser Workshop Starter App

:::tip Github Sample Repo: workshop-starter-app :::

This sample is included as the first part of a tutorial detailing communication between separate Zowe apps.

It should be installed on your system before starting the Tutorial: User Browser Workshop App on page
260

https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md
https://github.com/zowe/sample-iframe-app
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/workshop-starter-app

 | Extending | 221

The App's scenario is that it has been opened to submit a task report to a set of users who can handle the task. In this
case, it is a bug report. We want to find engineers who can fix this bug, but this App does not contain a directory
listing for engineers in the company, so we need to communicate with some App that does provide this information.
In this tutorial, you must build an App which is called by this App in order to list engineers, is able to be filtered by
the office that they work from, and is able to submit a list of engineers which would be able to handle the task.

After installing this app on your system, follow directions in the Tutorial: User Browser Workshop App on page
260 to enable app-to-app communication.

Creating application plug-ins

An application plug-in is an installable set of files that present resources in a web-based user interface, as a set of
RESTful services, or in a web-based user interface and as a set of RESTful services.

Before you build an application plug-in, you must set the UNIX environment variables that support the plug-in
environment.

Setting the environment variables for plug-in development

To set up the environment, the node must be accessible on the PATH. To determine if the node is already on the
PATH, issue the following command from the command line:

node --version

If the version is returned, the node is already on the PATH.

If nothing is returned from the command, you can set the PATH using the NODE_HOME variable. The
NODE_HOME variable must be set to the directory of the node install. You can use the export command to set the
directory. For example:

export NODE_HOME=node_installation_directory

Using this directory, the node will be included on the PATH in nodeCluster.sh. (nodeCluster.sh is located
in zlux-app-server/bin).

Using the sample application plug-in

You can experiment with the sample application plug-in called sample-app that is provided.

To build the sample application plug-in, node and npm must be included in the PATH. You can use the npm run
build or npm start command to build the sample application plug-in. These commands are configured in
package.json.

Note:

• If you change the source code for the sample application, you must rebuild it.
• If you want to modify sample-app, you must run npm install in the Zowe™ Desktop and the sample-

app/webClient. Then, you can run npm run build in sample-app/webClient.
• Ensure that you set the MVD_DESKTOP_DIR system variable to the Zowe Desktop plug-in location. For example:

<ZLUX_CAP>/zlux-app-manager/virtual-desktop.

1. Add an item to sample-app. The following figure shows an excerpt from app.component.ts:

 export class AppComponent {
 items = ['a', 'b', 'c', 'd']
 title = 'app';
 helloText: string;
 serverResponseMessage: string;

2. Save the changes to app.component.ts.

 | Extending | 222

3. Issue one of the following commands:

• To rebuild the application plug-in, issue the following command:

 npm run build

• To rebuild the application plug-in and wait for additional changes to app.component.ts, issue the
following command:

 npm start

4. Reload the web page.
5. If you make changes to the sample application source code, follow these steps to rebuild the application:

a. Navigate to the sample-app subdirectory where you made the source code changes.
b. Issue the following command:

 npm run build

c. Reload the web page.

Plug-ins definition and structure

The Zowe™ Application Server (zlux-server-framework) enables extensiblity with application plug-ins.
Application plug-ins are a subcategory of the unit of extensibility in the server called a plug-in.

The files that define a plug-in are located in the pluginsDir directory.

Application plug-in filesystem structure

An application plug-in can be loaded from a filesystem that is accessible to the Zowe Application Server, or it can be
loaded dynamically at runtime. When accessed from a filesystem, there are important considerations for the developer
and the user as to where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application plug-in directory contains the following files and directories.

pluginDefinition.json

This file describes an application plug-in to the Zowe Application Server. (A plug-in is the unit of extensibility for the
Zowe Application Server. An application plug-in is a plug-in of the type "Application", the most common and visible
type of plug-in.) A definition file informs the server whether the application plug-in has server-side dataservices,
client-side web content, or both.

Dev and source content

Aside from demonstration or open source application plug-ins, the following directories should not be visible on a
deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application plug-in has router-type dataservices, they are interpreted by the Zowe Application Server by
attaching them as ExpressJS routers. It is recommended that you write application plug-ins using Typescript, because
it facilitates well-structured code. Use of Typescript results in build steps because the pre-transpilation Typescript
content is not to be consumed by NodeJS. Therefore, keep server-side source code in the nodeServer directory. At
runtime, the server loads router dataservices from the lib directory.

webClient

When an application plug-in has the webContent attribute in its definition, the server serves static content for a
client. To optimize loading of the application plug-in to the user, use Typescript to write the application plug-in and
then package it using Webpack. Use of Typescript and Webpack result in build steps because the pre-transpilation

 | Extending | 223

Typescript and the pre-webpack content are not to be consumed by the browser. Therefore, separate the source code
from the served content by placing source code in the webClient directory.

Runtime content

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the Zowe Application Server. If the JS
files that are loaded from the lib directory require NodeJS modules, which are not provided by the server base (the
modules zlux-server-framework requires are added to NODE_PATH at runtime), then you must include these
modules in lib/node_modules for local directory lookup or ensure that they are found on the NODE_PATH
environment variable. nodeServer/node_modules is not automatically accessed at runtime because it is a dev
and build directory.

web

The web directory is where the server serves static content for an application plug-in that includes the webContent
attribute in its definition. Typically, this directory contains the output of a webpack build. Anything you place in this
directory can be accessed by a client, so only include content that is intended to be consumed by clients.

Packaging applications as compressed files

Application plug-in files can be served to browsers as compressed files in brotli (.br) or gzip (.gz) format. The file
must be below the application's /web directory, and the browser must support the compression method. If there
are multiple compressed files in the /web directory, the Zowe Application Server and browser perform runtime
negotiation to decide which file to use.

Location of plug-in files

The files that define a plug-in are located in the plugins directory.

pluginsDir directory

At startup, the server reads from the plugins directory. The server loads the valid plug-ins that are found by the
information that is provided in the JSON files.

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to locate
a plug-in on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-app-server/bin/
nodeServer.sh) at which a pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a plug-in, which must match what is in the
pluginDefinition.json file.

Plug-in definition file

pluginDefinition.json is a file that describes a plug-in. Each plug-in requires this file, because it defines
how the server will register and use the backend of an application plug-in (called a plug-in in the terminology of the
proxy server). The attributes in each file are dependent upon the pluginType attribute. Consider the following
pluginDefinition.json file from sample-app:

{
 "identifier": "com.rs.mvd.myplugin",
 "apiVersion": "1.0",
 "pluginVersion": "1.0",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "helloWorldTitle",
 "pluginShortNameDefault": "Hello World",
 "imageSrc": "assets/icon.png"

 | Extending | 224

 },
 "descriptionKey": "MyPluginDescription",
 "descriptionDefault": "Base MVD plugin template",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 400,
 "height": 300
 }
 },
 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",
 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]
}

Plug-in attributes

There are two categories of attributes: General and Application.

General attributes

identifier

Every application plug-in must have a unique string ID that associates it with a URL space on the server.

apiVersion

The version number for the pluginDefinition scheme and application plug-in or dataservice requirements. The default
is 1.0.0.

pluginVersion

The version number of the individual plug-in.

pluginType

A string that specifies the type of plug-in. The type of plug-in determines the other attributes that are valid in the
definition.

• application: Defines the plug-in as an application plug-in. Application plug-ins are composed of a collection
of web content for presentation in the Zowe web component (such as the Zowe Desktop), or a collection of
dataservices (REST and websocket), or both.

• library: Defines the plug-in as a library that serves static content at a known URL space.
• node authentication: Authentication and Authorization handlers for the Zowe Application Server.

Application attributes

When a plug-in is of pluginType application, the following attributes are valid:

webContent

An object that defines several attributes about the content that is shown in a web UI.

dataServices

An array of objects that describe REST or websocket dataservices.

configurationData

An object that describes the resource structure that the application plug-in uses for storing user, group, and server
data.

 | Extending | 225

Application web content attributes

An application that has the webContent attribute defined provides content that is displayed in a Zowe web UI.

The following attributes determine some of this behavior:

framework

States the type of web framework that is used, which determines the other attributes that are valid in webContent.

• angular2: Defines the application as having an Angular (2+) web framework component. This is the standard for
a "native" framework Zowe application.

• iframe: Defines the application as being external to the native Zowe web application environment, but instead
embedded in an iframe wrapper.

launchDefinition

An object that details several attributes for presenting the application in a web UI.

• pluginShortNameDefault: A string that gives a name to the application when i18n is not present. When i18n is
present, i18n is applied by using the pluginShortNameKey.

• descriptionDefault: A longer string that specifies a description of the application within a UI. The description is
seen when i18n is not present. When i18n is present, i18n is applied by using the descriptionKey.

• imageSrc: The relative path (from /web) to a small image file that represents the application icon.

defaultWindowStyle

An object that details the placement of a default window for the application in a web UI.

• width: The default width of the application plug-in window, in pixels.
• height: The default height of the application plug-in window, in pixels.

IFrame application web content

In addition to the general web content attributes, when the framework of an application is "iframe", you must specify
the page that is being embedded in the iframe. To do so, incude the attribute startingPage within webContent.
startingPage is relative to the application's /web directory.

Specify startingPage as a relative path rather than an absolute path because the pluginDefinition.json file is
intended to be read-only, and therefore would not work well when the hostname of a page changes.

Within an IFrame, the application plug-in still has access to the globals that are used by Zowe for application-to-
application communication; simply access window.parent.ZoweZLUX.

Dataservices

Dataservices are dynamic backend components of Zowe™ plug-in applications. You can add them to your
applications to make the application do more than receive static content from the proxy server. Each dataservice
defines a URL space that the server can use to run extensible code from the application. Dataservices are mainly
intended to create REST APIs and WebSocket channels.

Defining dataservices

You define dataservices in the application's pluginDefinition.json file. Each application requires a
definition file to specify how the server registers and uses the application's backend. You can see an example of a
pluginDefinition.json file in the top directory of the sample app repositories.

In the definition file is a top level attribute called dataServices, for example:

 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",

 | Extending | 226

 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]

To define your dataservice, create a set of keys and values for your dataservice in the dataservices array. The
following values are valid:

type

Specify one of the following values:

• router: Router dataservices run under the proxy server and use ExpressJS Routers for attaching actions to URLs
and methods.

• service: Service dataservices run under ZSS and utilize the API of ZSS dataservices for attaching actions to URLs
and methods.

• java-war: See the topic Defining Java dataservices below.

name

The name of the service. Names must be unique within each pluginDefinition.json file. The name is used to
reference the dataservice during logging and to construct the URL space that the dataservice occupies.

serviceLookupMethod

Specify external unless otherwise instructed.

fileName

The name of the file that is the entry point for construction of the dataservice, relative to the application's /lib
directory. For example, for the sample-app the fileName value is "helloWorld.js" - without a path. So its
typescript code is transpiled to JavaScript files that are placed directly into the /lib directory.

routerFactory (Optional)

When you use a router dataservice, the dataservice is included in the proxy server through a require() statement.
If the dataservice's exports are defined such that the router is provided through a factory of a specific name, you must
state the name of the exported factory using this attribute.

dependenciesIncluded

Specify true for anything in the pluginDefinition.json file. Only specify false when you are adding
dataservices to the server dynamically.

Defining Java dataservices

In addition to other types of dataservice, you can use Java (also called java-war) dataservices in your applications.
Java dataservices are powered by Java Servlets.

To use a Java dataservice you must meet the prerequisites, define the dataservice in your plug-in definition, and
define the Java Application Server library to the Zowe Application Server.

Prerequisites

• Install a Java Application Server library. In this release, Tomcat is the only supported library.
• Make sure your plug-in's compiled Java program is in the application's /lib directory, in either a .war archive

file or a directory extracted from a .war archive file. Extracting your file is recommended for faster start-up time.

Defining Java dataservices

To define the dataservice in the pluginDefinition.json file, specify the type as java-war, for example:

"dataServices": [
 {
 "type": "java-war",
 "name": "javaservlet",

 | Extending | 227

 "filename": "javaservlet.war",
 "dependenciesIncluded": true,
 "initializerLookupMethod": "external",
 "version": "1.0.0"
 }
],

To access the service at runtime, the plug-in can use the Zowe dataservice URL standard: /ZLUX/plugins/
[PLUGINID]/services/[SERVICENAME]/[VERSIONNUMBER]

Using the example above, a request to get users might be: /ZLUX/plugins/[PLUGINID]/services/
javaservlet/1.0.0/users

Note: If you extracted your servlet contents from a .war file to a directory, the directory must have the same name
as the file would have had. Using the example above, javaservlet.war must be extracted to a directory named
\javaservlet.

Defining Java Application Server libraries

In the zlux-app-server/zluxserver.json file, use the example below to specify Java Application Server
library parameters:

"languages": {
 "java": {
 "runtimes": {
 "name": {
 "home": "<java_runtime_root_path>"
 }
 }
 "war": {
 "defaultGrouping": "<value>"
 "pluginGrouping": []
 "javaAppServer": {
 "type": "tomcat",
 "path": "../../zlux-server-framework/lib/java/apache-tomcat",
 "config": "../deploy/instance/ZLUX/serverConfig/tomcat.xml",
 "https": {
 "key": "../deploy/product/ZLUX/serverConfig/zlux.keystore.key",
 "certificate": "../deploy/product/ZLUX/serverConfig/
zlux.keystore.cer"
 }
 }
 },
 "portRange": [8545,8600]
 }
 }

Specify the following parameters in the languages.java object:

• runtimes (object) - The name and location of a Java runtime that can be used by one or more services. Used to
load a Tomcat instance.

• name (object) - The name of the runtime.

• home (string) - The path to the runtime root. Must include /bin and /lib directories.
• ports (array<number>)(Optional) - An array of port numbers that can be used by instances of Java Application

Servers or microservices. Must contain as many ports as distinct servers that will be spawned, which is defined
by other configuration values within languages.java. Either ports or portRange is required, but
portRange has a higher priority.

• portRange (array<number>)(Optional) - An array of length 2, which contains a start number and end
number to define a range of ports to be used by instances of application servers or microservices. You will need
as many ports as distinct servers that will be spawned, which is defined by other configuration values within
languages.java. Either ports or portRange is required, but portRange has a higher priority.

 | Extending | 228

• war (object) - Defines how the Zowe Application Server should handle java-war dataservices.

• defaultGrouping (string)(Optional) - Defines how services should be grouped into instances of Java
Application Servers. Valid values: appserver or microservice. Default: appserver. appserver
means 1 server instance for all services. microservice means one server instance per service.

• pluginGrouping (array<object>)(Optional) - Defines groups of plug-ins to have their java-war services
put within a single Java Application Server instance.

• plugins (Array<string>) - Lists the plugins by identifier which should be put into this group. Plug-
ins with no java-war services are skipped. Being in a group excludes a plugin from being handled by
defaultGrouping.

• runtime (string)(Optional) - States the runtime to be used by the Tomcat server instance, as defined in
languages.java.runtimes.

• javaAppServer (object) - Java Application Server properties.

• type (string) - Type of server. In this release, tomcat is the only valid value.
• path (string) - Path of the server root, relative to zlux-app-server/lib. Must include /bin and /

lib directories.
• config (string) - Path of the server configuration file, relative to zlux-app-server/lib.
• https (object) - HTTPS parameters.

• key (string) - Path of a private key, relative to zlux-app-server/lib.
• certificate (string) - Path of an HTTPS certificate, relative to zlux-app-server/lib.

Java dataservice logging

The Zowe Application Server creates the Java Application Server instances required for the java-war dataservices,
so it logs the stdout and stderr streams for those processes in its log file. Java Application Server logging is not
managed by Zowe at this time.

Java dataservice limitations

Using Java dataservices with a Zowe Application Server installed on a Windows computer, the source and Java
dataservice code must be located on the same storage volume.

To create multiple instances of Tomcat on non-Windows computers, the Zowe Application Server establishes
symbolic links to the service logic. On Windows computers, symbolic links require administrative privilege, so the
server establishes junctions instead. Junctions only work when the source and destination reside on the same volume.

Using dataservices with RBAC

If your administrator configures the Zowe Application Framework to use role-based access control (RBAC), then
when you create a dataservice you must consider the length of its paths.

To control access to dataservices, administrators can enable RBAC, then use a z/OS security product such as RACF
to map roles and authorities to a System Authorization Facility (SAF) profile. For information on RBAC, see
Applying role-based access control to dataservices on page 110.

SAF profiles have the following format:

<product>.<instance id>.SVC.<pluginid_with_underscores>.<service>.<HTTP
method>.<dataservice path with forward slashes '/' replaced by periods '.'>

For example, to access this dataservice endpoint:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Users must have READ access to the following profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

Profiles cannot contain more than 246 characters. If the path section of an endpoint URL makes the profile name
exceed limit, the path is trimmed to only include elements that do not exceed the limit. For example, imagine that
each path section in this endpoint URL contains 64 characters:

 | Extending | 229

/ZLUX/plugins/org.zowe.zossystem.subsystems/services/data/_current/aa..a/
bb..b/cc..c/dd..d

So aa..a is 64 "a" characters, bb..b is 64 "b" characters, and so on. The URL could then map to the following
example profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_ZOSSYSTEM_SUBSYSTEMS.DATA.GET.AA..A.BB..B

The profile ends at the BB..B section because adding CC..C would put it over 246 characters. So in this example,
all dataservice endpoints with paths that start with AA..A.BB..B are controlled by this one profile.

To avoid this issue, we recommend that you maintain relatively short endpoint URL paths.

Dataservice APIs

Dataservice APIs can be categorized as Router-based or ZSS-based, and either WebSocket or not.

Router-based dataservices

Each Router dataservice can safely import Express, express-ws, and bluebird without requiring the modules to be
present, because these modules exist in the proxy server's directory and the NODE_MODULES environment variable
can include this directory.

HTTP/REST Router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For
more information, see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root '/' path, as
the paths specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pluginDefinition
specification for routerFactory above, or by the module constructor.

An example is available in sample-app/nodeServer/ts/helloWorld.ts

WebSocket Router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for WebSockets is not significantly different.

Here, the express-ws package is used, which adds WebSockets through the ws package to ExpressJS.
The two changes between a WebSocket-based router and a normal router are that the method is 'ws', as in
router.ws(<url>,<callback>), and the callback provides the WebSocket on which you must define event
listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for
WebSocket router dataservices is primarily provided in these packages.

An example is available in zlux-server-framework/plugins/terminal-proxy/lib/
terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions of its
surroundings and the functions that are helpful. The following items are present in the Context object:

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within a plug-in.

makeSublogger

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://www.npmjs.com

 | Extending | 230

A function to create a Zowe Logger with a new name, which is appended to the unique name of the dataservice.

addBodyParseMiddleware

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

• pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.
• server: An object that contains information about the server's configuration such as:

• app: Information about the product, which includes the productCode (for example: ZLUX).
• user: Configuration information of the server, such as the port on which it is listening.

Documenting dataservices

It is recommended that you document your RESTful application dataservices in OpenAPI (Swagger) specification
documents. The Zowe Application Server hosts Swagger files for users to view at runtime.

To document a dataservice, take the following steps:

1. Create a .yaml or .json file that describes the dataservice in valid Swagger 2.0 format. Zowe validates the file
at runtime.

2. Name the file with the same name as the dataservice. Optionally, you can include the dataservice version number
in the format: <name>_<number>. For example, a Swagger file for a dataservice named user must be named
either users.yaml or users_1.1.0.yaml.

3. Place the Swagger file in the /doc/swagger directory below your application plug-in directory, for example:

/zlux-server-framework/plugins/<servicename>/doc/swagger/
<servicename_1.1.0>.yaml

At runtime, the Zowe Application Server does the following:

• Dynamically substitutes known values in the files, such as the hostname and whether the endpoint is accessible
using HTTP or HTTPS.

• Builds documentation for each dataservice and for each application plug-in, in the following locations:

• Dataservice documentation: /ZLUX/plugins/<app_name>/catalogs/swagger/servicename
• Application plug-in documentation: /ZLUX/plugins/<app_name>/catalogs/swagger

• In application plug-in documentation, displays only stubs for undocumented dataservices, stating that the
dataservice exists but showing no details. Undocumented dataservices include non-REST dataservices such as
WebSocket services.

Internationalizing applications

You can internationalize Zowe™ application plug-ins using Angular and React frameworks. Internationalized
applications display in translated languages and include structures for ongoing translation updates.

The steps below use the Zowe Sample Angular Application and Zowe Sample React Application as examples. Your
applications might have slightly different requirements, for example the React Sample Application requires the react-
i18next library, but your application might require a different React library.

For detailed information on Angular or React, see their documentation. For detailed information on specific
internationalization libraries, see their documentation. You can also reference the Sample Angular Application
internationalization tutorial, and watch a video on how to internationalize your Angular application.

After you internationalize your application, you can view it by following steps in Changing the desktop language on
page 140.

https://swagger.io/specification/v2/
https://github.com/zowe/sample-angular-app/
https://github.com/zowe/sample-react-app
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://www.youtube.com/watch?v=kkCC2u1NQy4&feature=youtu.be

 | Extending | 231

Internationalizing Angular applications

Zowe applications that use the Angular framework depend on .xlf formatted files to store static translated content
and .json files to store dynamic translated content. These files must be in the application's web/assets/i18n
folder at runtime. Each translated language will have its own file.

To internationalize an application, you must install Angular-compatible internationalization libraries. Be aware that
libraries can be better suited to either static or dynamic HTML elements. The examples in this task use the ngx-
i18nsupport library for static content and angular-l10n for dynamic content.

To internationalize Zowe Angular applications, take the following steps:

1. To install internationalization libraries, use the npm command, for example:

npm install --save-dev ngx-i18nsupport
npm install --save-dev angular-l10n

Note --save-dev commits the library to the application's required libraries list for future use.
2. To support the CLI tools and to control output, create a webClient/tsconfig.i18n.json typescript file

and add the following content:

 {
 "extends": "../../zlux-app-manager/virtual-desktop/plugin-config/
tsconfig.ngx-i18n.json",

 "include": [
 "./src"
],

 "compilerOptions": {
 "outDir": "./src/assets/i18n",
 "skipLibCheck": true
 }
}

For example, see this file in the Sample Angular Application.
3. In the static elements in your HTML files, tag translatable content with the i18n attribute within an Angular

template, for example:

<div>
 <p i18n="welcome message@@welcome">Welcome</p>
</div>

The attribute should include a message ID, for example the @@welcome above.
4. To configure static translation builds, take the following steps:

a. In the webClient/package.json script, add the following line:

"i18n": "ng-xi18n -p tsconfig.i18n.json --i18nFormat=xlf --
outFile=messages.xlf && xliffmerge -p xliffmerge.json",

b. In the in webClient directory, create a xliffmerge.json file, add the following content, and specify the
codes for each language you will translate in the languages parameter:

{
 "xliffmergeOptions": {
 "srcDir": "src/assets/i18n",
 "genDir": "src/assets/i18n",
 "i18nFile": "messages.xlf",
 "i18nBaseFile": "messages",
 "i18nFormat": "xlf",

https://github.com/zowe/sample-angular-app/blob/master/webClient/tsconfig.i18n.json

 | Extending | 232

 "encoding": "UTF-8",
 "defaultLanguage": "en",
 "languages": ["fr","ru"],
 "useSourceAsTarget": true
 }
}

When you run the i18n script, it reads this file and generates a messages.[lang].xlf file in the src/
assets/i18n directory for each language specified in the languages parameter. Each file contains the
untranslated text from the i18n-tagged HTML elements.

5. Run the following command to run the i18n script and extract i18n tagged HTML elements to .xlf files:

npm run i18n

Note If you change static translated content, you must run the npm run build command to build the
application, and then re-run the npm run i18n command to extract the tagged content again.

6. In each .xlf file, replace target element strings with translated versions of the source element strings. For
example:

<source>App Request Test</source>
<target>Test de Demande à l'App</target>

7. Run the following command to rebuild the application:

npm run build

When you Changing the desktop language on page 140 to one of the application's translated languages, the
application displays the translated strings.

8. For dynamic translated content, follow these steps:

a. Import and utilize angular-l10n objects within an Angular component, for example:

import { LocaleService, TranslationService, Language } from 'angular-
l10n';
Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css'],
 providers: [HelloService]
})

export class AppComponent {
 @Language() lang: string;

 public myDynamicMessage:string = '';

 constructor(
 public locale: LocaleService,
 public translation: TranslationService) { }

 sayHello() {
 this.myDynamicMessage = `
${this.translation.translate('my_message')}`;
 });
 }
}

b. In the related Angular template, you can implement myDynamicMessage as an ordinary substitutable string,
for example:

<div>

 | Extending | 233

 <textarea class="response" placeholder="Response" i18n-
placeholder="@@myStaticPlaceholder" >{{myDynamicMessage}}</textarea>
</div>

9. Create logic to copy the translation files to the web/assets directory during the webpack process, for example
in the sample application, the following JavaScript in the copy-webpack-plugin file copies the files:

 var config = {
 'entry': [
 path.resolve(__dirname, './src/plugin.ts')
],
 'output': {
 'path': path.resolve(__dirname, '../web'),
 'filename': 'main.js',
 },
'plugins': [
 new CopyWebpackPlugin([
 {
 from: path.resolve(__dirname, './src/assets'),
 to: path.resolve('../web/assets')
 }
])
]
};

Note: Do not edit files in the web/assets/i18n directory. They are overwritten by each build.

Internationalizing React applications

To internationalize Zowe applications using the React framework, take the following steps:

Note: These examples use the recommended react-i18next library, which does not differentiate between dynamic and
static content, and unlike the Angular steps above does not require a separate build process.

1. To install the React library, run the following command:

npm install --save-dev react-i18next

2. In the directory that contains your index.js file, create an i18n.js file and add the translated content, for
example:

import i18n from "i18next";
import { initReactI18next } from "react-i18next";

// the translations
// (tip move them in a JSON file and import them)
const resources = {
 en: {
 translation: {
 "Welcome to React": "Welcome to React and react-i18next"
 }
 }
};

i18n
 .use(initReactI18next) // passes i18n down to react-i18next
 .init({
 resources,
 lng: "en",

 keySeparator: false, // we do not use keys in form messages.welcome

 interpolation: {
 escapeValue: false // react already safes from xss
 }

 | Extending | 234

 });

export default i18n;

3. Import the i18n file from the previous step into index.js file so that you can use it elsewhere, for example:

import React, { Component } from "react";
import ReactDOM from "react-dom";
import './i18n';
import App from './App';

// append app to dom
ReactDOM.render(
 <App />,
 document.getElementById("root")
);

4. To internationalize a component, include the useTranslation hook and reference it to substitute translation
keys with their translated values. For example:

import React from 'react';

 // the hook
import { useTranslation } from 'react-i18next';

function MyComponent () {
 const { t, i18n } = useTranslation(); // use
 return <h1>{t('Welcome to React')}</h1>
}

Internationalizing application desktop titles

To display the translated application name and description in the Desktop, take the following steps:

1. For each language, create a pluginDefinition.i18n.<lang_code>.json file. For example, for
German create a pluginDefinition.i18n.de.json file.

2. Place the .json files in the web/assets/i18n directory.
3. Translate the pluginShortNameKey and descriptionKey values in the application's

pluginDefinition.json file. For example, for the file below you would translate the values
"sampleangular" and "sampleangulardescription":

{
 "identifier": "org.zowe.zlux.sample.angular",
 "apiVersion": "1.0.0",
 "pluginVersion": "1.1.0",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "sampleangular",
 "pluginShortNameDefault": "Angular Sample",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "sampleangulardescription",
 "descriptionDefault": "Sample App Showcasing Angular Adapter",

4. Add the translated values to the translation file. For example, the German translation file example,
pluginDefinition.i18n.de.json, would look like this:

{
 "sampleangular": "Beispiel Angular",
 "sampleangulardescription": "Beispiel Angular Anwendung"

 | Extending | 235

}

5. Create logic to copy the translation files to the web/assets directory during the webpack process. For example,
in the Sample Angular Application the following JavaScript in the webClient/webpack.config.js file
copies files to the web/assets directory:

var config = {
 'entry': [
 path.resolve(__dirname, './src/plugin.ts')
],
 'output': {
 'path': path.resolve(__dirname, '../web'),
 'filename': 'main.js',
 },
 'plugins': [
 new CopyWebpackPlugin([
 {
 from: path.resolve(__dirname, './src/assets'),
 to: path.resolve('../web/assets')
 }
])
]
};

Zowe Desktop and window management

The Zowe™ Desktop is a web component of Zowe, which is an implementation of MVDWindowManagement, the
interface that is used to create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in.
Application plug-ins are plug-ins of the type "application", and therefore the Zowe Desktop operates around a
collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window
management, such as application-to-application communication, Logging, URI lookup, and Auth are not described
here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application. The GET call returns
a JSON list of all application plug-ins that are on the server, which can be accessed by the user. Application plug-ins
can be composed of dataservices, web content, or both. Application plug-ins that have web content are presented in
the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon
with a description. The icon that is used, and the description that is presented are based on the application plug-in's
PluginDefinition's webContent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager.
Use the Plugin Manager to determine whether a plug-in is present before you act upon the existence of that plug-in.
When the Zowe Desktop is running, you can access the Plugin Manager through ZoweZLUX.PluginManager

The following are the functions you can use on the Plugin Manager:

• getPlugin(pluginID: string)

• Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object (DesktopPluginDefinition)
that is associated with it, if found.

https://github.com/zowe/sample-angular-app/blob/master/webClient/webpack.config.js

 | Extending | 236

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager.
The Application Manager can facilitate communication between application plug-ins, but formal application-to-
application communication should be performed by calls to the Dispatcher. The Application Manager is not normally
directly accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:

Function Description

spawnApplication(plugin:
DesktopPluginDefinition,
launchMetadata: any):
Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window Manager,
with or without context on what actions it should
perform after creation.

killApplication(plugin:ZLUX.Plugin,
appId:MVDHosting.InstanceId): void;

Removes an application instance from the Window
Manager.

showApplicationWindow(plugin:
DesktopPluginDefinitionImpl): void;

Makes an open application instance visible within the
Window Manager.

isApplicationRunning(plugin:
DesktopPluginDefinitionImpl): boolean;

Determines if any instances of the application are open in
the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is started
and presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance
of an application plug-in's web content within Zowe is given context and can listen on events about the Viewport
and Window it exists within, regardless of whether the Window Manager implementation utilizes these constructs
visually. It is possible to create a Window Manager that only displays one application plug-in at a time, or to have a
drawer-and-panel UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its framework
type. The following are valid framework types:

• "angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework
objects are given through @injectables and imports.

• "iframe": The web content can be written using any framework, but is included through an iframe tag. Application
plug-ins within an iframe can access framework objects through parent.RocketMVD and callbacks.

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the UI (they
do not present Chrome as a Window does). Each instance of an application plug-in is associated with a viewport,
and operations to act upon a particular application plug-in instance should be done by specifying a viewport for an
application plug-in, to differentiate which instance is the target of an action. Actions performed against viewports
should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

Function Description

createViewport(providers:
ResolvedReflectiveProvider[]):
MVDHosting.ViewportId;

Creates a viewport into which an application plug-in's
webcontent can be embedded.

registerViewport(viewportId:
MVDHosting.ViewportId, instanceId:
MVDHosting.InstanceId): void;

Registers a previously created viewport to an application
plug-in instance.

 | Extending | 237

Function Description

destroyViewport(viewportId:
MVDHosting.ViewportId): void;

Removes a viewport from the Window Manager.

getApplicationInstanceId(viewportId:
MVDHosting.ViewportId):
MVDHosting.InstanceId | null;

Returns the ID of an application plug-in's instance from
within a viewport within the Window Manager.

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs.
iframe application plug-ins indirectly benefit from some of these hooks due to the wrapper acting upon them, but
Angular application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

@Inject(Angular2InjectionTokens.PLUGIN_DEFINITION) private pluginDefinition:
 ZLUX.ContainerPluginDefinition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to gain
context about the application plug-in. It can also be used by the application plug-in with other application plug-in
framework objects to perform a contextual action.

Logger

@Inject(Angular2InjectionTokens.LOGGER) private logger: ZLUX.ComponentLogger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

@Inject(Angular2InjectionTokens.LAUNCH_METADATA) private launchMetadata: any

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default
view.

Viewport Events

@Inject(Angular2InjectionTokens.VIEWPORT_EVENTS) private viewportEvents:
 Angular2PluginViewportEvents

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Window Events

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

 | Extending | 238

Event Description

restored: Subject<void> Fires when the Window is restored from a minimized
state.

moved: Subject<{top: number, left:
number}>

Fires when the Window is moved.

resized: Subject<{width: number,
height: number}>

Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

Window Actions

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void Closes the Window of the application plug-in instance.

maximize(): void Maximizes the Window of the application plug-in
instance.

minimize(): void Minimizes the Window of the application plug-in
instance.

restore(): void Restores the Window of the application plug-in instance
from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number,
left: number, width: number, height:
number}): void

Sets the position of the Window on the page and the size
of the window.

spawnContextMenu(xPos: number, yPos:
number, items: ContextMenuItem[]):
void

Opens a context menu on the application plug-in
instance, which uses the Context Menu framework.

registerCloseHandler(handler: () =>
Promise<void>): void

Registers a handler, which is called when the Window
and application plug-in instance are closed.

Configuration Dataservice

The Configuration Dataservice is an essential component of the Zowe™ Application Framework, which acts as a
JSON resource storage service, and is accessible externally by REST API and internally to the server by dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges
within a Zowe ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration
Dataservice works with data for plug-ins. Every resource that is stored in the Configuration Service is stored for a
particular plug-in, and valid resources to be accessed are determined by the definition of each plug-in in how it uses
the Configuration Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-
in lists the valid resources, and the administrators can set permissions for the users who can view or modify these
resources.

 | Extending | 239

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the
Dataservice is to facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes
that encompass the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access privilege to update
within that Scope.

Scope is one of the following:

Product

Configuration defaults that come with the product. Cannot be modified.

Site

Data that can be used between multiple instances of the Zowe Application Server.

Instance

Data within an individual Zowe Application Server.

Group

Data that is shared between multiple users in a group.(Pending)

User

Data for an individual user.(Pending)

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User
and Group scope queries will be rejected if not logged in due to the requirement to pull resources from a specific
user. Because of this, User and Group scopes will not be functional until the Security Framework is merged into the
mainline.

Where Product is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the
authentication of the session. This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is to use the
REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance,
then the data in Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might
have only been the settings they saved within their own User scope (if the broader scopes do not have data for the
resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action
will be rejected because of the preferences set by the administrator to disallow changes to the Instance scope by
ordinary users.

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired
operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin ID>/<Scope>/<resource>/
<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

 | Extending | 240

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the query
parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources too.

Listing (boolean)

When performing a GET against a resource with content subresources, listing=true will provide the names of
the subresources rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

• This returns JSON with the attribute "content" being a JSON resource that is the entire configuration that was
requested. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

The parts of the URL are:

• Plugin: org.openmainframe.zowe.codeeditor
• Scope: user
• Resource: sessions
• Subresource: default
• Element = tabs

The response body is a JSON config:

{
 "_objectType" : "com.rs.config.resource",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "contents" : {
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"
 }
]
 }
}

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

 | Extending | 241

This returns JSON with the attribute content being a JSON object that has each attribute being another JSON
object, which is a single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation policies,
depending on the user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

Body:

{
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"
 }, {
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".emacs",
 "filePath" : "/u/tsspg/.emacs"
 }
]
}

Response:

{
 "_objectType" : "com.rs.config.resourceUpdate",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "result" : "Replaced item."
}

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

Deletes a single file in a leaf resource.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

• Deletes all files in a leaf resource.
• Does not delete the directory on disk.

 | Extending | 242

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might
be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User, such
as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different.
Compare the following two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope, the user is
checked to see if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/
<resource>

Gets the content for the given group, if the user is authorized.

Application API

Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope:
string, resourcePath:string, resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information,
is simply to "consume" it. It "asks" for configurations using the User scope, and allows the configuration service to
decide which configuration information to retrieve and how to aggregate it. (See below on how the configuration
service evaluates what to return for this type of request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin,
resourcePath:string, resourceName:string): string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored
within the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the deploy directory of a Zowe installation, each plug-in might optionally have an _internal directory.
An example of such a path is:

deploy/instance/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

• services/<servicename>: Configuration resources for the specific service.
• plugin: Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context
Object.

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource
structure to make use of the Configuration Dataservice. The resource structure definition is included in the plug-in's
pluginDefinition.json file.

 | Extending | 243

For each resource and subresource, you can define an aggregationPolicy to control how the data of a broader
scope alters the resource data that is returned to a user when requesting a resource from a narrower Scope.

For example:

 "configurationData": { //is a direct attribute of the pluginDefinition
 JSON
 "resources": { //always required
 "preferences": {
 "locationType": "relative", //this is the only option for now, but
 later absolute paths may be accepted
 "aggregationPolicy": "override" //override and none for now, but
 more in the future
 },
 "sessions": { //the name at this level represents the name
 used within a URL, such as /plugins/com.rs.configjs/services/data/
org.openmainframe.zowe.codeeditor/user/sessions
 "aggregationPolicy": "none",
 "subResources": {
 "sessionName": {
 "variable": true, //if variable=true is present, the resource
 must be the only one in that group but the name of the resource is
 substituted for the name given in the REST request, so it represents more
 than one
 "aggregationPolicy": "none"
 }
 }
 }
 }
 }

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes
together when a user requests a resource. If the user requests a resource from the User scope, the data from the User
scope might replace or be merged with the data from a broader scope such as Instance, to make a combined resource
object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as
the attribute aggregationPolicy within a resource.

The following policies are currently implemented:

• NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there
are no user-saved settings for the query, in which case the dataservice attempts to send data that is found at a
broader scope.

• OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level
found, and joins the resource's properties from narrower scopes, overriding broader attributes with narrower ones,
when found.

URI Broker

The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe™

Application Server by constructing URIs that use the context from the calling application plug-in.

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible
through iframe. This is because it is attached to a global when within the Zowe Desktop. For more information, see
Zowe Desktop and window management on page 235. Access the URI Broker through one of two locations:

Natively:

 | Extending | 244

window.ZoweZLUX.uriBroker

In an iframe:

window.parent.ZoweZLUX.uriBroker

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to
call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices on page 225.

HTTP Dataservice URI

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string):
string

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string):
string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the
Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string,
resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string,
resourcePath:string, resourceName?:string): string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be accessed
through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure on page 222.

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you
must access on that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

 | Extending | 245

Server queries

A client can find different information about a server's configuration or the configuration as seen by the current user
by accessing specific APIs.

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as "Application"
or "all".

Application-to-application communication

Zowe™ application plug-ins can opt-in to various application framework abilities, such as the ability to have a
Logger, use of a URI builder utility, and more. One ability that is unique to a Zowe environment with multiple
application plug-ins is the ability for one application plug-in to communicate with another. The application
framework provides constructs that facilitate this ability. The constructs are: the Dispatcher, Actions, Recognizers,
Registry, and the features that utilize them such as the framework's Context menu.

1. Why use application-to-application communication? on page 245
2. Actions on page 245
3. Recognizers on page 247
4. Dispatcher on page 249

Why use application-to-application communication?

When working with a computer, people often use multiple applications to accomplish a task, for example checking a
dashboard before using a detailed program or checking email before opening a bank statement in a browser. In many
environments, the relationship between one program and another is not well defined (you might open one program
to learn of a situation, which you solve by opening another program and typing or pasting in content). Or perhaps
a hyperlink is provided or an attachment, which opens a program using a lookup table of which the program is the
default for handling a certain file extension. The application framework attempts to solve this problem by creating
structured messages that can be sent from one application plug-in to another. An application plug-in has a context of
the information that it contains. You can use this context to invoke an action on another application plug-in that is
better suited to handle some of the information discovered in the first application plug-in. Well-structured messages
facilitate knowing what application plug-in is "right" to handle a situation, and explain in detail what that application
plug-in should do. This way, rather than finding out that the attachment with the extension ".dat" was not meant for
a text editor, but instead for an email client, one application plug-in might instead be able to invoke an action on an
application plug-in, which can handle opening of an email for the purpose of forwarding to others (a more specific
task than can be explained with filename extensions).

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the application
framework, the unit of application-to-application communication is an Action. The typescript definition of an Action
is as follows:

export class Action implements ZLUX.Action {
 id: string; // id of action itself.
 i18nNameKey: string; // future proofing for I18N
 defaultName: string; // default name for display purposes, w/o I18N
 description: string;
 targetMode: ActionTargetMode;
 type: ActionType; // "launch", "message"
 targetPluginID: string;
 primaryArgument: any;

 constructor(id: string,
 defaultName: string,
 targetMode: ActionTargetMode,

 | Extending | 246

 type: ActionType,
 targetPluginID: string,
 primaryArgument:any) {
 this.id = id;
 this.defaultName = defaultName;
 // proper name for ID/type
 this.targetPluginID = targetPluginID;
 this.targetMode = targetMode;
 this.type = type;
 this.primaryArgument = primaryArgument;
 }

 getDefaultName():string {
 return this.defaultName;
 }
}

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a specific
target to receive the data. The Action is dispatched to the target in one of several modes, for example: to target a
specific instance of an application plug-in, an instance, or to create a new instance. The Action can be less detailed
than a message. It can be a request to minimize, maximize, close, launch, and more. Finally, all of this information is
related to a unique ID and localization string such that it can be managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application
plug-in you are targeting. You can instruct the framework how to target the application plug-in with a target mode
from the ActionTargetMode enum:

export enum ActionTargetMode {
 PluginCreate, // require pluginType
 PluginFindUniqueOrCreate, // required AppInstance/ID
 PluginFindAnyOrCreate, // plugin type
 //TODO PluginFindAnyOrFail
 System, // something that is always present
}

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action.
The behavior can be quite different, from simple messaging to requesting that an application plug-in be minimized.
The types are defined by an enum:

export enum ActionType { // not all actions are meaningful for all
 target modes
 Launch, // essentially do nothing after target mode
 Focus, // bring to fore, but nothing else
 Route, // sub-navigate or "route" in target
 Message, // "onMessage" style event to plugin
 Method, // Method call on instance, more strongly
 typed
 Minimize,
 Maximize,
 Close, // may need to call a "close handler"
}

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

 | Extending | 247

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string,
defaultName: string, targetMode: ActionTargetMode, type: ActionType,
targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "actions": [
 {
 "id":"org.zowe.explorer.openmember",
 "defaultName":"Edit PDS in MVS Explorer",
 "type":"Launch",
 "targetMode":"PluginCreate",
 "targetId":"org.zowe.explorer",
 "arg": {
 "type": "edit_pds",
 "pds": {
 "op": "deref",
 "source": "event",
 "path": [
 "full_path"
]
 }
 }
 }
]
}

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging
window if you have no one to message. Recognizers are objects within the application framework that use the context
that the application plug-in provides to determine if there is a condition for which it makes sense to execute an
Action. Each recognizer has statements about what condition to recognize, and upon that statement being met, which
Action can be executed at that time. The invocation of the Action is not handled by the Recognizer; it simply detects
that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

export class RecognitionRule {
 predicate:RecognitionClause;
 actionID:string;

 constructor(predicate:RecognitionClause, actionID:string){
 this.predicate = predicate;
 this.actionID = actionID;
 }
}

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The following
operations are supported:

export enum RecognitionOp {
 AND,
 OR,
 NOT,
 PROPERTY_EQ,

 | Extending | 248

 SOURCE_PLUGIN_TYPE, // syntactic sugar
 MIME_TYPE, // ditto
}

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers
saved on the system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause,
actionID:string):void

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "recognizers": [
 {
 "id":"<actionID>",
 "clause": {
 <clause>
 }
 }
]
}

clause can take on one of two shapes:

"prop": ["<keyString>", <"valueString">]

Or,

"op": "<op enum as string>",
"args": [
 {<clause>}
]

Where this one can again, have subclauses.

Recognizer example

Recognizers can be simple or complex. The following is an example to illustrate the mechanism:

{
 "recognizers":[
 {
 "id":"org.zowe.explorer.openmember",
 "clause": {
 "op": "AND",
 "args": [
 {"prop":["sourcePluginID","com.rs.mvd.tn3270"]},{"prop":
["screenID","ISRUDSM"]}
]
 }
 }
]
}

 | Extending | 249

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember
Action when the TN3270 Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing PDS
members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object
at runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime. You can register
Actions and Recognizers on it, and later, invoke an Action through it. The dispatcher handles how the Action's effects
should be carried out, acting in combination with the Window Manager and application plug-ins to provide a channel
of communication.

Registry

The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object
at runtime. It contains information about which application plug-ins are present in the environment, and the abilities
of each application plug-in. This is important to application-to-application communication, because a target might not
be a specific application plug-in, but rather an application plug-in of a specific category, or with a specific featureset,
capable of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and Recognizers
that are saved on the system. Actions and Recognizers are loaded at login, and then later, through a form of
automation or by a user action, Recognizers can be polled to determine if there is an Action that can be executed.
All of this is handled by the Dispatcher, but the description of the behavior lies in the Action and Recognizer that
are used. In the Action and Recognizer descriptions above, there are two JSON definitions: One is a Recognizer that
recognizes when the Terminal application plug-in is in a certain state, and another is an Action that instructs the MVS
Explorer to load a PDS member for editing. When you put the two together, a practical application is that you can
launch the MVS Explorer to edit a PDS member that you have selected within the Terminal application plug-in.

Configuring IFrame communication

The Zowe Application Framework provides the following shared resource functions through a ZoweZLUX object:
pluginManager, uriBroker, dispatcher, logger, registry, notificationManager, and
globalization

Like REACT and Angular apps, IFrame apps can use the ZoweZLUX object to communicate with the framework
and other apps. To enable communication in an IFrame app, you must add the following javascript to your app, for
example in your index.html file:

<script>
 if(exports){
 var ZoweZLUX_tempExports = exports;
 }
 var exports = {"__esModule": true};

</script>
<script type="text/javascript" src="../../../../../lib/
org.zowe.zlux.logger/0.9.0/logger.js"></script>
<script type="text/javascript" src="../../../org.zowe.zlux.bootstrap/web/
iframe-adapter.js"></script>

logger.js is the javascript version of logger.ts and is capable of the same functions, including access
to the Logger and ComponentLogger classes. The Logger class determines the behavior of all the
ComponentLoggers created from it. ComponentLoggers are what the user implements to perform logging.

Iframe-adapter.js is designed to mimic the ZoweZLUX object that is available to apps within the virtual-
desktop, and serves as the middle-man for communication between IFrame apps and the Zowe desktop.

You can see an implementation of this functionality in the sample IFrame app.

https://github.com/zowe/zlux-platform/blob/master/interface/src/index.d.ts#L720
https://github.com/zowe/sample-iframe-app

 | Extending | 250

The version of ZoweZLUX adapted for IFrame apps is not complete and only implements the functions needed
to allow the Sample IFrame App to function. The notificationManager, logger, globalization,
dispatcher, windowActions, windowEvents, and viewportEvents are fully implemented. The
pluginManager and uriBroker are only partially implemented. The registry is not implemented.

Unlike REACT and Angular apps, in IFrame apps the ZoweZLUX and initialization objects communicate with Zowe
using the browser's onmessage and postmessage APIs. That means that communication operations are asynchronous,
and you must account for this in your app, for example by using Promise objects and await or then functions.

Error reporting UI

The zLUX Widgets repository contains shared widget-like components of the Zowe™ Desktop, including Button,
Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across all applications,
use, reuse, and customize existing widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an
error occurs from misconfigured user settings. A user might request an action or command that requires certain
prerequisites, for example: a proper ZSS-Server configuration. If the program or method fails, the program should
notify the user through the UI about the error and how to fix it. For the purposes of this discussion, we will use the
Workflow application plug-in in the zlux-workflow repository.

ZluxPopupManagerService

The ZluxPopupManagerService is a standard popup widget that can, through its reportError() method,
be used to display errors with attributes that specify the title or error code, severity, text, whether it should block the
user from proceeding, whether it should output to the logger, and other options you want to add to the error dialog.
ZluxPopupManagerService uses both ZluxErrorSeverity and ErrorReportStruct.

`export declare class ZluxPopupManagerService {`

 eventsSubject: any;
 listeners: any;
 events: any;
 logger: any;
 constructor();
 setLogger(logger: any): void;
 on(name: any, listener: any): void;
 broadcast(name: any, ...args: any[]): void;
 processButtons(buttons: any[]): any[];
 block(): void;
 unblock(): void;
 getLoggerSeverity(severity: ZluxErrorSeverity): any;
 reportError(severity: ZluxErrorSeverity, title: string, text: string,
 options?: any): Rx.Observable<any>;
`}`

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following types: error,
warning, and information. Each type has its own visual style. To accurately indicate the type of issue to the user, the
error or pop-up should be classified accordingly.

`export declare enum ZluxErrorSeverity {`

 ERROR = "error",
 WARNING = "warning",
 INFO = "info",
`}`

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

 | Extending | 251

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of reportError()
together.

`export interface ErrorReportStruct {`

 severity: string;
 modal: boolean;
 text: string;
 title: string;
 buttons: string[];
`}`

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using additional
services with your error prompt, import those too (for example, LoggerService to print to the logger or
GlobalVeilService to create a visible semi-transparent gray veil over the program and pause background
tasks). Here, widgets is imported from node_modules\@zlux\ so you must ensure zLUX widgets is used in your
package-lock.json or package.json and you have run npm install.

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the Workflow
application plug-in under \zlux-workflow\src\app\app\zosmf-server-config.component.ts is
a ZosmfServerConfigComponent class with the pop-up manager service variable. To automatically report the
error to the console, you must set a logger.

`export class ZosmfServerConfigComponent {`

 constructor(
 private popupManager: ZluxPopupManagerService,)
 { popupManager.setLogger(logger); } //Optional
`}`

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method.
The following example describes an instance of the reload() method in Workflow that catches an error when the
program attempts to retrieve a configuration from a configService and set it to the program's this.config.
This method fails when the user has a faulty zss-Server configuration and the error is caught and then sent to the class'
popupManager variable from the constructor above.

`reload(): void {`

 this.globalVeilService.showVeil();
 this.configService
 .getConfig()
 .then(config => (this.config = config))
 .then(_ => setTimeout(() => this.test(), 0))
 .then(_ => this.globalVeilService.hideVeil())
 .catch(err => {
 this.globalVeilService.hideVeil()
 let errorTitle: string = "Error";
 let errorMessage: string = "Server configuration not found. Please
 check your zss server.";
 const options = {
 blocking: true
 };

 | Extending | 252

 this.popupManager.reportError(ZluxErrorSeverity.ERROR,
 errorTitle.toString()+": "+err.status.toString(), errorMessage
+"\n"+err.toString(), options);
 });
`}`

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all types of
errors that might occur from that method. The specifics of the error are then generated dynamically and are printed
with the err.toString(), which contains the more specific information that is used to pinpoint the problem.
The this.popupManager.report() method triggers the error prompt to display. The error severity is set
with ZluxErrorSeverity.ERROR and the err.status.toString() describes the status of the error
(often classified by a code, for example: 404). The optional parameters in options specify that this error will
block the user from interacting with the application plug-in until the error is closed or it until goes away on its own.
globalVeilService is optional and is used to create a gray veil on the outside of the program when the error
is caused. You must import globalVeilService separately (see the zlux-workflow repository for more
information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do
this.popupManager.report() without adding the component to your template, the error will not be
displayed. Navigate to your component's .html file. On the Workflow application plug-in, this file will be in
\zlux-workflow\src\app\app\zosmf-server-config.component.html and the only item left is to
add the popup manager component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If you
want the error dialog to overlap other UI elements, place it at the end of the .html file. You can also create custom
styling through a CSS template, and add it within the scope of your application plug-in.

Logging utility

The zlux-shared repository provides a logging utility for use by dataservices and web content for an application
plug-in.

Logging objects

The logging utility is based on the following objects:

• Component Loggers: Objects that log messages for an individual component of the environment, such as a REST
API for an application plug-in or to log user access.

• Destinations: Objects that are called when a component logger requests a message to be logged. Destinations
determine how something is logged, for example, to a file or to a console, and what formatting is applied.

 | Extending | 253

• Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe™ application plug-ins have unique identifiers, both dataservices and an application plug-in's web
content are provided with a component logger that knows this unique ID such that messages that are logged can be
prefixed with the ID. With the association of logging to IDs, you can control verbosity of logs by setting log verbosity
by ID.

Accessing logger objects
Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to: global.COM_RS_COMMON_LOGGER

Web

Browsers use window as the global object, so the logger is attached to: window.COM_RS_COMMON_LOGGER

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the
application plug-in framework to create these loggers for you. An application plug-in's component logger is presented
to dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic Dataservices on page 225.

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management on page 235.

Using log message IDs

To make technical support for your application easier, create IDs for common log messages and use substitution to
generate them. When you use IDs, people fielding support calls can identify and solve problems more quickly. IDs
are particularly helpful if your application is translated, because it avoids users having to explain problems using
language that the tech support person might not understand.

To use log message IDs, take the following steps:

1. Depending on how your application is structured, create message files in the following locations:

• Web log messages: \src\assets\i18n\log\messages_{language}.json
• App server log messages: \lib\assets\i18n\log\messages_{language}.json

2. In the files, create ID-message pairs using the following format:

{ "id1": "value1", "id2": "value2" [...] }

Where "id#" is the message ID and "value#" is the text. For example:

{ "A001": "Application created.", "A002": "Application deleted." [...] }

 | Extending | 254

3. Reference the IDs in your code, for example:

this.log.info("A0001")

Which compiles to:

DATE TIME:TIME:TIME.TIME <ZWED:> username INFO (org.zowe.app.name,:) A0001
 - Application created.

Or in another supported language, such as Russian:

DATE TIME:TIME:TIME.TIME <ZWED:> username INFO (org.zowe.app.name,:) A0001
 - ########## #######.

Logger API

The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComponentLogger function Returns an existing
logger of this name, or
creates a new component
logger if no logger of the
specified name exists -
Automatically done by
the application framework
for dataservices and web
content

componentIDString

setLogLevelForComponentNamefunction Sets the verbosity of an
existing component logger

componentIDString,
logLevel

Component Logger API

The following constants and functions are available to each component logger.

Attribute Type Description Arguments

SEVERE const Is a const for logLevel

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

FINE const Is a const for logLevel

FINER const Is a const for logLevel

FINEST const Is a const for logLevel

log function Used to write a log,
specifying the log level

logLevel,
messageString

severe function Used to write a SEVERE
log.

messageString

warn function Used to write a WARNING
log.

messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

 | Extending | 255

Attribute Type Description Arguments

makeSublogger function Creates a new component
logger with an ID appended
by the string given

componentNameSuffix

Log Levels

An enum, LogLevel, exists for specifying the verbosity level of a logger. The mapping is:

Level Number

SEVERE 0

WARNING 1

INFO 2

FINE 3

FINER 4

FINEST 5

Note: The default log level for a logger is INFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity a log message should be visible. You
can configure the server or client to show more or less verbose messages by using the core logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging
information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set default
verbosity for, such that you can easily turn logging on or off.

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute logLevel, which
takes key-value pairs where the key is a regex pattern for component IDs, and the value is an integer for the log
levels.

For example:

"logLevel": {
 "com.rs.configjs.data.access": 2,
 //the string given is a regex pattern string, so .* at the end here will
 cover that service and its subloggers.
 "com.rs.myplugin.myservice.*": 4
 //
 // '_' char reserved, and '_' at beginning reserved for server. Just as
 we reserve
 // '_internal' for plugin config data for config service.
 // _unp = universal node proxy core logging
 //"_unp.dsauth": 2
 },

For more information about the server configuration file, see Zowe Application Framework configuration on page
103.

 | Extending | 256

Tutorial: Stand up a local version of the Example Zowe Application Server

The zlux-app-server repository is an example of a server built upon the application framework. Within the
repository, you will find a collection of build, deploy, and run scripts and configuration files that will help you to
configure a simple Zowe™ Application Server with a few applications included.

Server layout

At the core of the application infrastructure backend is an extensible server, written for nodeJS and utilizing
expressJS for routing. It handles the backend components of an application, and can serve as a proxy for requests
from applications to additional servers, as needed. One such proxy destination is the ZSS, the Zowe Application
Framework backend component for Z Secure Services, a so called agent for the Zowe Application Server. If you
want to set up a Zowe Application Framework installation, contact Rocket to obtain the ZSS binary to use in the
installation process.

ZSS and Zowe Application Server overlap

The Zowe Application Server and ZSS utilize the same deployment and Application/Plugin structure, and share some
configuration parameters. It is possible to run ZSS and the Zowe Application Server from the same system, in which
case you would be running under z/OS USS. This configuration requires that IBM's version of nodeJS is installed
beforehand.

Another way to set up Zowe Application Framework is to have the Zowe Application Server running under LUW,
while keeping ZSS under USS. This is the configuration scenario presented below. In this scenario, you must clone
these github repositories to two different systems, and they will require compatible configurations. If this is your
initial setup, it is fine to have identical configuration files and /plugins folders to get started.

First-time Installation and Use

Getting started with the server requires the following steps:

1. (Optional) Install git for z/OS
2. Acquire the source code
3. Acquire external components
4. Set the server configuration
5. Build application plug-ins
6. Deploy server configuration files
7. Run the server
8. Connect in a browser!

Follow each step and you will be on your way to your first Zowe Application Server instance.

0. (Optional) Install git for z/OS

Because all of the code is on github, yet ZSS must run on z/OS and the Zowe Application Server can optionally run
on z/OS as well, having git on z/OS is the most convenient way to work with the source code. The alternative would
be to utilize FTP or another method to transfer contents to z/OS. If you'd like to go this route, you can find git for z/
OS free of charge here: http://www.rocketsoftware.com/product-categories/mainframe/git-for-zos

1. Acquire the source code

To get started, first clone (or download) the code necessary to build zss and the zss cross memory server. If using git,
the following commands should be used on z/OS:

git clone --recursive git@github.com:zowe/zss.git

Afterwards, clone (or download) the github capstone repository, https://github.com/zowe/zlux As we'll be configuring
ZSS on z/OS's USS, and the zLUX App Server on a LUW host, you'll need to put the contents on both systems. If
using git, the following commands should be used:

git clone --recursive git@github.com:zowe/zlux.git
cd zlux

https://github.com/zowe/zlux

 | Extending | 257

git submodule foreach "git checkout master"

By default the trivial authentication backend is enabled which always returns successful unless authentication
information provided is in an incorrect format. To use ZSS as an authentication backend, clone (or download) the
zss-auth plugin code into the zlux directory:

git clone git@github.com:zowe/zss-auth.git

To bring Apps to zLUX App server, you need to clone (or download) corresponding repositories into zlux. For
example, clone (or download) the following to get sample apps source code:

git clone git@github.com:zowe/sample-angular-app.git
git clone git@github.com:zowe/sample-react-app.git
git clone git@github.com:zowe/sample-iframe-app.git

At this point, you'll have the latest code from each repository on your system. Continue from within zlux-app-server.

2. Acquire external components

Applications and external servers can require contents that are not in the Zowe github repositories. In the case of the
zlux-app-server, there is a a ZSS binary component which cannot be found in the repositories. To obtain the
ZSS binary component, contact the Zowe project.

After you obtain the ZSS binary component, you should receive zssServer. This must be placed within zlux-build/
externals/Rocket, on the z/OS host. For example:

mkdir externals
mkdir externals/Rocket

//(on z/OS only)
mv zssServer externals/Rocket

3. Set the server configuration

Read the Configuration wiki page for a detailed explanation of the primary items that you will want to configure for
your first server.

In short, ensure that within the config/zluxserver.json file, node.http.port or node.https.port and the other
HTTPS parameters are set to your liking on the LUW host, and that zssPort is set on the z/OS host.

Before you continue, if you intend to use the terminal, at this time (temporarily) it must be pre-configured to know
the destination host. Edit ../tn3270-ng2/_defaultTN3270.json to set host and port to a valid TN3270 server telnet host
and port and then save the file. Edit ../vt-ng2/_defaultVT.json to set host and port to a valid ssh host and port and then
save the file.

4. Build application plug-ins

Prerequisites:

• NPM is used when building application plug-ins. The version of NPM needed for the build to succeed should be at
least 5.4. You can update NPM by executing npm install -g npm.

• You must have ant and ant-contrib installed.

Application plug-ins can contain server and web components. The web components must be built, as webpack
is involved in optimized packaging. Server components are also likely to need building if they require external
dependencies from NPM, use native code, or are written in typescript.

This example server only needs transpilation and packaging of web components, and therefore we do not need any
special build steps for the host running ZSS.

https://github.com/zowe/zlux/wiki/Configuration-for-zLUX-App-Server-&-ZSS

 | Extending | 258

Instead, on the host that runs the Zowe Application Server, run the script that will automatically build all included
application plug-ins. Simply,

//Windows
build.bat

//Otherwise
build.sh

This will take some time to complete.

5. Deploy server configuration files

If you are running the Zowe Application Server separate from ZSS, ensure the ZSS installation configuration is
deployed. You can accomplish this through:

ant deploy

On the other hand, if you are running ZSS and the Zowe Application Server on the same host, build.sh and build.bat
execute deploy and therefore this task was accomplished in Step 4.

However, if you need to change the server configuration files or if you want to add more application plug-ins
to be included at startup, you must update the deploy content to reflect this. Simply running deploy.bat or
deploy.sh will accomplish this, but files such as zluxserver.json are only read at startup, so a reload of the
Zowe Application Server and ZSS would be required.

6. Run the server

At this point, all server files have been configured and the application plug-ins built, so ZSS and the Zowe
Application Server are ready to run. First, from the z/OS system, start ZSS.

cd ../zlux-app-server/bin
./zssServer.sh

If the zssServer server did not start, two common sources of error are:

1. The zssPort chosen is already occupied. To fix this, edit config/zluxserver.json to choose a new one, and re-run
build/deploy.sh to make the change take effect.

2. The zssServer binary does not have the APF bit set. Because this server is meant for secure services, it is required.
To fix this, execute extattr +a zssServer. Note that you might need to alter the execute permissions
of zssServer.sh in the event that the previous command is not satisfactory (for example: chmod +x
zssServer.sh)

Second, from the system with the Zowe Application Server, start it with a few parameters to hook it to ZSS.

cd ../zlux-app-server/bin

// Windows:
nodeCluster.bat <parameters>

// Others:
nodeCluster.sh <parameters>

Valid parameters for nodeCluster are as follows:

• -h: Specifies the hostname where ZSS can be found. Use as -h \<hostname\>
• -P: Specifies the port where ZSS can be found. Use as -P \<port\>. This overrides zssPort from the

configuration file.
• -p: Specifies the HTTP port to be used by the Zowe Application Server. Use as -p <port>. This overrides

node.http.port from the configuration file.

 | Extending | 259

• -s: Specifies the HTTPS port to be used by the Zowe Application Server. Use as -s <port>. This overrides
node.https.port from the configuration file.

• --noChild: If specified, tells the server to ignore and skip spawning of child processes defined as
node.childProcesses in the configuration file.

In the example where we run ZSS on a host named mainframe.zowe.com, running on zssPort = 19997, the Zowe
Application Server running on Windows could be started with the following:

nodeCluster.bat -h mainframe.zowe.com -P 19997 -p 19998

After which we would be able to connect to the Zowe Application Server at port 19998.

NOTE: the parameter parsing is provided by argumentParser.js, which allows for a few variations of input,
depending on preference. For example, the following are all valid ways to specify the ZSS host:

• -h myhost.com
• -h=myhost.com
• --hostServer myhost.com
• --hostServer=myhost.com

When the Zowe Application Server has started, one of the last messages you will see as bootstrapping completes is
that the server is listening on the HTTP/s port. At this time, you should be able to use the server.

7. Connect in a browser

Now that ZSS and the Zowe Application Server are both started, you can access this instance by pointing your web
browser to the Zowe Application Server. In this example, the address you will want to go to first is the location of the
window management application: the Zowe Desktop. The URL is:

http(s)://<zLUX App Server>:<node.http(s).port>/ZLUX/plugins/
org.zowe.zlux.bootstrap/web/index.html

Once here, a Login window opens with a few example application plug-ins in the taskbar at the bottom of the
window. To try the application plug-ins to see how they interact with the framework, can login with your mainframe
credentials.

• tn3270-ng2: This application communicates with the Zowe Application Server to enable a TN3270 connection in
the browser.

• z/OS Subsystems: This application shows various z/OS subsystems installed on the host the ZSS runs on. This is
accomplished through discovery of these services by the application's portion running in the ZSS context.

• sample-angular-app: A simple app that show how a zLUX application frontend (here, Angular) component can
communicate with an App backend (REST) component.

• sample-react-app: Similar to the Angular application, but using React instead to show how you have the flexibility
to use a framework of your choice.

• sample-iframe-app: Similar in functionality to the Angular and React sample application, but presented by means
of inclusion of an iframe, to show that pre-existing pages can be included.

Deploy example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 install.
 "rootDir":"../deploy",
 "productDir":"../deploy/product",
 "siteDir":"../deploy/site",
 "instanceDir":"../deploy/instance",
 "groupsDir":"../deploy/instance/groups",
 "usersDir":"../deploy/instance/users"

Application plug-in configuration

This section does not cover dynamic runtime inclusion of application plug-ins, but rather application plug-ins that
are defined in advance. In the configuration file, a directory can be specified which contains JSON files that tell the

https://github.com/zowe/zlux-proxy-server/blob/master/js/argumentParser.js

 | Extending | 260

server what application plug-in to include and where to find it on disk. The backend of these application plug-ins use
the Server's Plugin structure, so much of the server-side references to application plug-ins use the term "Plugin".

To include application plug-ins, be sure to define the location of the Plugins directory in the configuration file,
through the top-level attribute pluginsDir

NOTE: In this repository, the directory for these JSON files is /plugins. To separate configuration files from
runtime files, the zlux-app-server repository copies the contents of this folder into /deploy/instance/
ZLUX/plugins. So, the example configuration file uses the latter directory.

Plugins directory example

// All paths relative to zlux-app-server/js or zlux-app-server/bin
// In real installations, these values will be configured during the
 install.
//...
 "pluginsDir":"../deploy/instance/ZLUX/plugins",

ZSS Configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the Zowe Application
Server. The attributes that are needed for ZSS, at minimum, are:rootDir, productDir, siteDir, instanceDir, groupsDir,
usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for the Zowe
Application Server, but if the Zowe Application Server and ZSS are not run from the same location, then these
directories can be different.

The zssPort attribute is specific to ZSS. This is the TCP port on which ZSS will listen to be contacted by the Zowe
Application Server. Define this port in the configuration file as a value between 1024-65535.

Connecting Zowe Application Server to ZSS

When running the Zowe Application Server, simply specify a few flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

• -h: Declares the host where ZSS can be found. Use as -h \<hostname\>
• -P: Declares the port at which ZSS is listening. Use as -P \<port\>

Tutorial: User Browser Workshop App

This tutorial contains code snippets and descriptions that you can combine to build a complete application. It builds
off the project skeleton code found at the github project repo.

By the end of this tutorial, you will:

1. Know how to create an application that displays on the Zowe™ Desktop
2. Know how to create a Dataservice which implements a simple REST API
3. Be introduced to Typescript programming
4. Be introduced to simple Angular web development
5. Have experience in working with the Zowe Application Framework
6. Become familiar with one of the Zowe Application widgets: the grid widget

:::warning Before continuing, make sure you have completed the prerequisites for this tutorial:

• Setup up the Tutorial: Stand up a local version of the Example Zowe Application Server on page 256. :::

So, let's get started!

1. Constructing an App Skeleton on page 261

• Defining your first plugin on page 261
• Constructing a Simple Angular UI on page 262
• Packaging Your Web App on page 263
• Adding Your App to the Desktop on page 264

https://github.com/zowe/workshop-user-browser-app

 | Extending | 261

2. Building your first Dataservice on page 265

• Working with ExpressJS on page 266
• Adding your Dataservice to the Plugin Definition on page 267

3. Adding your first Widget on page 268

• Adding your Dataservice to the App on page 268
• Introducing Zowe Application Server Grid on page 269

4. Adding Zowe App-to-App Communication on page 271

• Calling back to the Starter App on page 274

Constructing an App Skeleton

Download the skeleton code from the project repository. Next, move the project into the zlux source folder created
in the prerequisite tutorial.

If you look within this repository, you'll see that a few boilerplate files already exist to help you get your first
application plug-in running quickly. The structure of this repository follows the guidelines for Zowe application plug-
in filesystem layout, which you can read more about on the wiki.

Defining your first plugin

Where do you start when making an application plug-in? In the Zowe Application Framework, an application plug-
in is a plug-in of type "Application". Every plug-in is bound by their pluginDefinition.json file, which
describes its properties. Let's start by creating this file.

Create a file, pluginDefinition.json, at the root of the workshop-user-browser-app folder. The file
should contain the following:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "apiVersion": "1.0.0",
 "pluginVersion": "0.0.1",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "userBrowser",
 "pluginShortNameDefault": "User Browser",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "userBrowserDescription",
 "descriptionDefault": "Browse Employees in System",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 1300,
 "height": 500
 }
 }
}

A description of the values that are placed into this file can be found on the wiki.

Note the following attributes:

• Our application has the unique identifier of org.openmainframe.zowe.workshop-user-browser,
which can be used to refer to it when running Zowe.

https://github.com/zowe/workshop-user-browser-app
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux/wiki/Zlux-Plugin-Definition-&-Structure

 | Extending | 262

• The application has a webContent attribute, because it will have a UI component that is visible in a browser.

• The webContent section states that the application's code will conform to Zowe's Angular application
structure, due to it stating "framework": "angular2"

• The application plug-in has certain characteristics that the user will see, such as:

• The default window size (defaultWindowStyle),
• An application plug-in icon that we provided in workshop-user-browser-app/webClient/

src/assets/icon.png,
• That we should see it in the browser as an application plug-in named User Browser, the value of

pluginShortNameDefault.

Constructing a Simple Angular UI

Angular application plug-ins for Zowe are structured such that the source code exists within webClient/src/
app. In here, you can create modules, components, templates and services in any hierarchy. For the application plug-
in we are creating however, we will add three files:

• userbrowser.module.ts
• userbrowser-component.html
• userbrowser-component.ts

At first, let's just build a shell of an application plug-in that can display some simple content. Fill in each file with the
following content.

userbrowser.module.ts

import { NgModule } from '@angular/core'
import { CommonModule } from '@angular/common'
import { FormsModule, ReactiveFormsModule } from '@angular/forms'
import { HttpModule } from '@angular/http'

import { UserBrowserComponent } from './userbrowser-component'

@NgModule({
 imports: [FormsModule, ReactiveFormsModule, CommonModule],
 declarations: [UserBrowserComponent],
 exports: [UserBrowserComponent],
 entryComponents: [UserBrowserComponent]
})
export class UserBrowserModule {}

userbrowser-component.html

<div class="parent col-11" id="userbrowserPluginUI">
{{simpleText}}
</div>

<div class="userbrowser-spinner-position">
 <i class="fa fa-spinner fa-spin fa-3x" *ngIf="resultNotReady"></i>
</div>

userbrowser-component.ts

import {
 Component,
 ViewChild,
 ElementRef,
 OnInit,
 AfterViewInit,
 Inject,
 SimpleChange

 | Extending | 263

} from '@angular/core'
import { Observable } from 'rxjs/Observable'
import { Http, Response } from '@angular/http'
import 'rxjs/add/operator/catch'
import 'rxjs/add/operator/map'
import 'rxjs/add/operator/debounceTime'

import {
 Angular2InjectionTokens,
 Angular2PluginWindowActions,
 Angular2PluginWindowEvents
} from 'pluginlib/inject-resources'

@Component({
 selector: 'userbrowser',
 templateUrl: 'userbrowser-component.html',
 styleUrls: ['userbrowser-component.css']
})
export class UserBrowserComponent implements OnInit, AfterViewInit {
 private simpleText: string
 private resultNotReady: boolean = false

 constructor(
 private element: ElementRef,
 private http: Http,
 @Inject(Angular2InjectionTokens.LOGGER) private log:
 ZLUX.ComponentLogger,
 @Inject(Angular2InjectionTokens.PLUGIN_DEFINITION)
 private pluginDefinition: ZLUX.ContainerPluginDefinition,
 @Inject(Angular2InjectionTokens.WINDOW_ACTIONS)
 private windowAction: Angular2PluginWindowActions,
 @Inject(Angular2InjectionTokens.WINDOW_EVENTS)
 private windowEvents: Angular2PluginWindowEvents
) {
 this.log.info(`User Browser constructor called`)
 }

 ngOnInit(): void {
 this.simpleText = `Hello World!`
 this.log.info(`App has initialized`)
 }

 ngAfterViewInit(): void {}
}

Packaging Your Web App

At this time, we've made the source for a Zowe application plug-in that should open in the Zowe Desktop with
a greeting to the planet. Before we're ready to use it however, we must transpile the typescript and package the
application plug-in. This will require a few build tools first. We'll make an NPM package in order to facilitate this.

Let's create a package.json file within workshop-user-browser-app/webClient. While a
package.json can be created through other means such as npm init and packages can be added through
commands such as npm install --save-dev typescript@2.9.0, we'll opt to save time by just pasting
these contents in:

{
 "name": "workshop-user-browser",
 "version": "0.0.1",
 "scripts": {
 "start": "webpack --progress --colors --watch",
 "build": "webpack --progress --colors",
 "lint": "tslint -c tslint.json \"src/**/*.ts\""

mailto:typescript@2.9.0

 | Extending | 264

 },
 "private": true,
 "dependencies": {},
 "devDependencies": {
 "@angular/animations": "~6.0.9",
 "@angular/common": "~6.0.9",
 "@angular/compiler": "~6.0.9",
 "@angular/core": "~6.0.9",
 "@angular/forms": "~6.0.9",
 "@angular/http": "~6.0.9",
 "@angular/platform-browser": "~6.0.9",
 "@angular/platform-browser-dynamic": "~6.0.9",
 "@angular/router": "~6.0.9",
 "@zlux/grid": "git+https://github.com/zowe/zlux-grid.git",
 "@zlux/widgets": "git+https://github.com/zowe/zlux-widgets.git",
 "angular2-template-loader": "~0.6.2",
 "copy-webpack-plugin": "~4.5.2",
 "core-js": "~2.5.7",
 "css-loader": "~1.0.0",
 "exports-loader": "~0.7.0",
 "file-loader": "~1.1.11",
 "html-loader": "~0.5.5",
 "rxjs": "~6.2.2",
 "rxjs-compat": "~6.2.2",
 "source-map-loader": "~0.2.3",
 "ts-loader": "~4.4.2",
 "tslint": "~5.10.0",
 "typescript": "~2.9.0",
 "webpack": "~4.0.0",
 "webpack-cli": "~3.0.0",
 "webpack-config": "~7.5.0",
 "zone.js": "~0.8.26"
 }
}

Now we are ready to build.

Let's set up our system to automatically perform these steps every time we make updates to the application plug-in.

1. Open a command prompt to workshop-user-browser-app/webClient.
2. Set the environment variable MVD_DESKTOP_DIR to the location of zlux-app-manager/virtual-desktop. For

example, set MVD_DESKTOP_DIR=../../zlux-app-manager/virtual-desktop. This is needed
whenever building individual application web code due to the core configuration files being located in virtual-
desktop.

3. Execute npm install.
4. Execute npm run-script start.

After the first execution of the transpilation and packaging concludes, you should have workshop-user-
browser-app/web populated with files that can be served by the Zowe Application Server.

Adding Your App to the Desktop

At this point, your workshop-user-browser-app folder contains files for an application plug-in that could be added to
a Zowe instance. We will add this to our own Zowe instance. First, ensure that the Zowe Application Server is not
running. Then, navigate to the instance's root folder, /zlux-app-server.

Within, you'll see a folder, plugins. Take a look at one of the files in the folder. You can see that these are JSON
files with the attributes identifier and pluginLocation. These files are what we call Plugin Locators, since they point
to a plug-in to be included into the server.

 | Extending | 265

Let's make one ourselves. Make a file /zlux-example-server/plugins/
org.openmainframe.zowe.workshop-user-browser.json, with the following contents:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "pluginLocation": "../../workshop-user-browser-app"
}

When the server runs, it will check for these types of files in its pluginsDir, a location known to the server
through its specification in the server configuration file. In our case, this is /zlux-app-server/deploy/
instance/ZLUX/plugins/.

You could place the JSON directly into that location, but the recommended way to place content into the deploy area
is through running the server deployment process. Simply:

1. Open up a (second) command prompt to zlux-build
2. ant deploy

Now you're ready to run the server and see your application plug-in.

1. cd /zlux-example-server/bin.
2. ./nodeCluster.sh.
3. Open your browser to https://hostname:port.
4. Login with your credentials.
5. Open the application plug-in on the bottom of the page with the green 'U' icon.

Do you see the Hello World message from Constructing a Simple Angular UI on page 262. If so, you're in good
shape! Now, let's add some content to the application plug-in.

Building your first Dataservice

An application plug-in can have one or more Dataservices. A Dataservice is a REST or Websocket endpoint that can
be added to the Zowe Application Server.

To demonstrate the use of a Dataservice, we'll add one to this application plug-in. The application plug-in needs
to display a list of users, filtered by some value. Ordinarily, this sort of data would be contained within a database,
where you can get rows in bulk and filter them in some manner. Retrieval of database contents, likewise, is a task that
is easily representable through a REST API, so let's make one.

1. Create a file, workshop-user-browser-app/nodeCluster/ts/tablehandler.ts Add the
following contents:

import { Response, Request } from 'express'
import * as table from './usertable'
import { Router } from 'express-serve-static-core'

const express = require('express')
const Promise = require('bluebird')

class UserTableDataservice {
 private context: any
 private router: Router

 constructor(context: any) {
 this.context = context
 let router = express.Router()

 router.use(function noteRequest(req: Request, res: Response, next: any)
 {
 context.logger.info('Saw request, method=' + req.method)
 next()
 })

https://github.com/zowe/zlux/wiki/ZLUX-Dataservices

 | Extending | 266

 router.get('/', function(req: Request, res: Response) {
 res.status(200).json({ greeting: 'hello' })
 })

 this.router = router
 }

 getRouter(): Router {
 return this.router
 }
}

exports.tableRouter = function(context): Router {
 return new Promise(function(resolve, reject) {
 let dataservice = new UserTableDataservice(context)
 resolve(dataservice.getRouter())
 })
}

This is boilerplate for making a Dataservice. We lightly wrap ExpressJS Routers in a Promise-based structure where
we can associate a Router with a particular URL space, which we will see later. If you were to attach this to the
server, and do a GET on the root URL associated, you'd receive the {"greeting":"hello"} message.

Working with ExpressJS

Let's move beyond hello world, and access this user table.

1. Within workshop-user-browser-app/nodeCluster/ts/tablehandler.ts, add a function for
returning the rows of the user table.

const MY_VERSION = '0.0.1'
const METADATA_SCHEMA_VERSION = '1.0'
function respondWithRows(rows: Array<Array<string>>, res: Response): void {
 let rowObjects = rows.map(row => {
 return {
 firstname: row[table.columns.firstname],
 mi: row[table.columns.mi],
 lastname: row[table.columns.lastname],
 email: row[table.columns.email],
 location: row[table.columns.location],
 department: row[table.columns.department]
 }
 })

 let responseBody = {
 _docType: 'org.openmainframe.zowe.workshop-user-browser.user-table',
 _metaDataVersion: MY_VERSION,
 metadata: table.metadata,
 resultMetaDataSchemaVersion: '1.0',
 rows: rowObjects
 }
 res.status(200).json(responseBody)
}

Because we reference the usertable file through import, we are able to refer to its metadata and columns attributes
here. This respondWithRows function expects an array of rows, so we'll improve the Router to call this function
with some rows so that we can present them back to the user.

1. Update the UserTableDataservice constructor, modifying and expanding upon the Router.

 constructor(context: any){
 this.context = context;
 let router = express.Router();

 | Extending | 267

 router.use(function noteRequest(req: Request,res: Response,next: any) {
 context.logger.info('Saw request, method='+req.method);
 next();
 });
 router.get('/',function(req: Request,res: Response) {
 respondWithRows(table.rows,res);
 });

 router.get('/:filter/:filterValue',function(req: Request,res: Response)
 {
 let column = table.columns[req.params.filter];
 if (column===undefined) {
 res.status(400).json({"error":"Invalid filter specified"});
 return;
 }
 let matches = table.rows.filter(row=> row[column] ==
 req.params.filterValue);
 respondWithRows(matches,res);
 });

 this.router = router;
 }

Zowe's use of ExpressJS Routers allows you to quickly assign functions to HTTP calls such as GET, PUT, POST,
DELETE, or even websockets, and provides you with easy parsing and filtering of the HTTP requests so that there is
very little involved in making a good API for users.

This REST API now allows for two GET calls to be made: one to root /, and the other to /filter/value. The behavior
here is as is defined in ExpressJS documentation for routers, where the URL is parameterized to give us arguments
that we can feed into our function for filtering the user table rows before giving the result to respondWithRows for
sending back to the caller.

Adding your Dataservice to the Plugin Definition

Now that the Dataservice is made, add it to our Plugin's definition so that the server is aware of it, and then build it so
that the server can run it.

1. Open a (third) command prompt to workshop-user-browser-app/nodeCluster.
2. Install dependencies, npm install.
3. Invoke the NPM build process, npm run-script start.

a. If there are errors, go back to .(#building-your-first-dataservice) and make sure the files look correct.
4. Edit workshop-user-browser-app/pluginDefinition.json, adding a new attribute which declares

Dataservices.

"dataServices": [
 {
 "type": "router",
 "name": "table",
 "serviceLookupMethod": "external",
 "fileName": "tablehandler.js",
 "routerFactory": "tableRouter",
 "dependenciesIncluded": true
 "version": "1.0.0"
 }
],

Your full pluginDefinition.json should now be:

{
 "identifier": "org.openmainframe.zowe.workshop-user-browser",
 "apiVersion": "1.0.0",

https://expressjs.com/en/guide/routing.html#route-parameters

 | Extending | 268

 "pluginVersion": "0.0.1",
 "pluginType": "application",
 "dataServices": [
 {
 "type": "router",
 "name": "table",
 "serviceLookupMethod": "external",
 "fileName": "tablehandler.js",
 "routerFactory": "tableRouter",
 "dependenciesIncluded": true
 "version": "1.0.0"
 }
],
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "userBrowser",
 "pluginShortNameDefault": "User Browser",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "userBrowserDescription",
 "descriptionDefault": "Browse Employees in System",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 1300,
 "height": 500
 }
 }
}

There's a few interesting attributes about the Dataservice we have specified here. First is that it is listed as type:
router, which is because there are different types of Dataservices that can be made to suit the need. Second,
the name is table, which determines both the name seen in logs but also the URL this can be accessed at. Finally,
fileName and routerFactory point to the file within workshop-user-browser-app/lib where the code can
be invoked, and the function that returns the ExpressJS Router, respectively.

1. Adding Your App to the Desktop on page 264 (as was done when adding the application initially) to load this
new Dataservice. This is not always needed but done here for educational purposes.

2. Access https://host:port/ZLUX/plugins/org.openmainframe.zowe.workshop-user-
browser/services/table/ to see the Dataservice in action. It should return all of the rows in the user
table, as you did a GET to the root / URL that we just coded.

Adding your first Widget

Now that you can get this data from the server's new REST API, we need to make improvements to the web content
of the application plug-in to visualize this. This means not only calling this API from the application plug-in, but
presenting it in a way that is easy to read and extract information from.

Adding your Dataservice to the App

Let's make some edits to userbrowser-component.ts, replacing the UserBrowserComponent Class's ngOnInit
method with a call to get the user table, and defining ngAfterViewInit:

 ngOnInit(): void {
 this.resultNotReady = true;
 this.log.info(`Calling own dataservice to get user listing for filter=
${JSON.stringify(this.filter)}`);
 let uri = this.filter ?
 ZoweZLUX.uriBroker.pluginRESTUri(this.pluginDefinition.getBasePlugin(),
 'table', `${this.filter.type}/${this.filter.value}`) :
 ZoweZLUX.uriBroker.pluginRESTUri(this.pluginDefinition.getBasePlugin(),
 'table',null);
 setTimeout(()=> {

 | Extending | 269

 this.log.info(`Sending GET request to ${uri}`);
 this.http.get(uri).map(res=>res.json()).subscribe(
 data=>{
 this.log.info(`Successful GET, data=${JSON.stringify(data)}`);
 this.columnMetaData = data.metadata;
 this.unfilteredRows = data.rows.map(x=>Object.assign({},x));
 this.rows = this.unfilteredRows;
 this.showGrid = true;
 this.resultNotReady = false;
 },
 error=>{
 this.log.warn(`Error from GET. error=${error}`);
 this.error_msg = error;
 this.resultNotReady = false;
 }
);
 },100);
 }

 ngAfterViewInit(): void {
 // the flex table div is not on the dom at this point
 // have to calculate the height for the table by subtracting all
 // the height of all fixed items from their container
 let fixedElems =
 this.element.nativeElement.querySelectorAll('div.include-in-calculation');
 let height = 0;
 fixedElems.forEach(function (elem, i) {
 height += elem.clientHeight;
 });
 this.windowEvents.resized.subscribe(() => {
 if (this.grid) {
 this.grid.updateRowsPerPage();
 }
 });
 }

You might notice that we are referring to several instance variables that we have not declared yet. Let's add those
within the UserBrowserComponent Class too, above the constructor.

 private showGrid: boolean = false;
 private columnMetaData: any = null;
 private unfilteredRows: any = null;
 private rows: any = null;
 private selectedRows: any[];
 private query: string;
 private error_msg: any;
 private url: string;
 private filter:any;

Hopefully you are still running the command in the first command prompt, npm run-script start, which will
rebuild your web content for the application whenever you make changes. You might see some errors, which we will
resolve by adding the next portion of the application.

Introducing Zowe Application Server Grid

When ngOnInit runs, it will call out to the REST Dataservice and put the table row results into our cache, but we
haven't yet visualized this in any way. We need to improve our HTML a bit to do that, and rather than reinvent the
wheel, we have a table visualization library we can rely on: ZLUX Grid.

If you inspect package.json in the webClient folder, you'll see that we've already included @zlux/grid as a
dependency (as a link to one of the Zowe github repositories) so it should have been pulled into the node_modules
folder during the npm install operation. We just need to include it in the Angular code to make use of it. To do
so, complete these steps:

 | Extending | 270

1. Edit webClient/src/app/userbrowser.module.ts, adding import statements for the Zowe Application Server
widgets above and within the @NgModule statement:

import { ZluxGridModule } from '@zlux/grid';
import { ZluxPopupWindowModule, ZluxButtonModule } from '@zlux/widgets'
//...
@NgModule({
imports: [FormsModule, HttpModule, ReactiveFormsModule, CommonModule,
 ZluxGridModule, ZluxPopupWindowModule, ZluxButtonModule],
//...

The full file should now be:

*
 This Angular module definition will pull all of your Angular files
 together to form a coherent App
*/

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule, ReactiveFormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { ZluxGridModule } from '@zlux/grid';
import { ZluxPopupWindowModule, ZluxButtonModule } from '@zlux/widgets'

import { UserBrowserComponent } from './userbrowser-component';

@NgModule({
 imports: [FormsModule, HttpModule, ReactiveFormsModule, CommonModule,
 ZluxGridModule, ZluxPopupWindowModule, ZluxButtonModule],
 declarations: [UserBrowserComponent],
 exports: [UserBrowserComponent],
 entryComponents: [UserBrowserComponent]
})
export class UserBrowserModule { }

1. Edit userbrowser-component.html within the same folder. Previously, it was just meant for presenting a Hello
World message, so we should add some style to accommodate the zlux-grid element that we will also add to this
template through a tag.

<!-- In this HTML file, an Angular Template should be placed that will work
 together with your Angular Component to make a dynamic, modern UI -->

<div class="parent col-11" id="userbrowserPluginUI">
 <div class="fixed-height-child include-in-calculation">
 <button type="button" class="wide-button btn btn-default"
 value="Send">
 Submit Selected Users
 </button>
 </div>
 <div class="fixed-height-child height-40" *ngIf="!showGrid && !
viewConfig">
 <div class="">
 <p class="alert-danger">{{error_msg}}</p>
 </div>
 </div>
 <div class="container variable-height-child" *ngIf="showGrid">
 <zlux-grid [columns]="columnMetaData | zluxTableMetadataToColumns"
 [rows]="rows"
 [paginator]="true"
 selectionMode="multiple"
 selectionWay="checkbox"

 | Extending | 271

 [scrollableHorizontal]="true"
 (selectionChange)="onTableSelectionChange($event)"
 #grid></zlux-grid>
 </div>
 <div class="fixed-height-child include-in-calculation" style="height:
 20px; order: 3"></div>
</div>

<div class="userbrowser-spinner-position">
 <i class="fa fa-spinner fa-spin fa-3x" *ngIf="resultNotReady"></i>
</div>

Note the key functions of this template:

• There is a button which when clicked will submit selected users (from the grid). We will implement this ability
later.

• We show or hide the grid based on a variable ngIf="showGrid" so that we can wait to show the grid until
there is data to present.

• The zlux-grid tag pulls the Zowe Application Server Grid widget into our application, and it has many variables
that can be set for visualization, as well as functions and modes.

• We allow the columns, rows, and metadata to be set dynamically by using the square bracket
template syntax, and allow our code to be informed when the user selection of rows changes through
(selectionChange)="onTableSelectionChange($event)"

1. Small modification to userbrowser-component.ts to add the grid variable, and set up the aforementioned table
selection event listener, both within the UserBrowserComponent Class:

@ViewChild('grid') grid; //above the constructor

onTableSelectionChange(rows: any[]):void{
 this.selectedRows = rows;
}

The previous section, Adding your Dataservice to the App on page 268 set the variables that are fed into the Zowe
Application Server Grid widget, so at this point the application should be updated with the ability to present a list of
users in a grid.

If you are still running npm run-script start in a command prompt, it should now show that the application
has been successfully built, and that means we are ready to see the results. Reload your browser's webpage and open
the user browser application once more. Do you see the list of users in columns and rows that can be sorted and
selected? If so, great, you've built a simple yet useful application within Zowe! Let's move on to the last portion of the
application tutorial where we hook the Starter application and the User Browser application together to accomplish a
task.

Adding Zowe App-to-App Communication

Applications in Zowe can be useful and provide insight all by themselves, but a big advantage to using the Zowe
Desktop is that applications can track and share context by user interaction. By having the foreground application
request the application best suited for a task, the requested application can perform the task with context regarding the
task data and purpose and you can accomplish a complex task by simple and intuitive means.

In the case of this tutorial, we are not only trying find a list of employees in a company (as was shown in the last step
where the Grid was added and populated with the REST API), but to filter that list to find those employees who are
best suited to the task we need to accomplish. So, our user browser application needs to be enhanced with two new
abilities:

• Filter the user list to show only those users that meet the filter
• Send the subset of users selected in the list back to the application that requested a user list.

How do we do either task? Application-to-application communication! Applications can communicate with other
applications in a few ways, but can be categorized into two interaction groups:

 | Extending | 272

1. Launching an application with a context of what it should do
2. Messaging an application that is already open to a request or alert it of something

In either case, the application framework provides Actions as the objects to perform the communication. Actions
not only define what form of communication should happen, but between which applications. Actions are issued
from one application, and are fulfilled by a target application. But, because there might be more than one instance or
window of an application open, there are Target Modes:

• Open a new application window, where the message context is delivered in the form of a Launch Context
• Message a particular, or any of the currently open instances of the target application

Adding the Starter App

In order to facilitate app-to-app communication, we need another application with which to communicate. A 'starter'
application is provided which can be found on github.

As we did previously in the Adding Your App to the Desktop on page 264 section, we need to move the
application files to a location where they can be included in our zlux-app-server. We then need to add to the
plugins folder in the example server and re-deploy.

1. Clone or download the starter application under the zlux folder

• git clone https://github.com/zowe/workshop-starter-app.git

1. Navigate to starter application and build it as before.

• Install packages with cd webClient and then npm install
• Build the project using npm start

1. Next navigate to the zlux-app-server:

• create a new file under /zlux-app-server/plugins/org.openmainframe.zowe.workshop-
starter.json

• Edit the file to contain:

{
 "identifier": "org.openmainframe.zowe.workshop-starter",
 "pluginLocation": "../../workshop-starter-app"
}

1. Make sure the ./nodeCluster is stopped before running ant deploy under zlux-build
2. Restart the ./nodeCluster under zlux-app-server/bin with the appropriate parameters passed in.
3. Refresh the browser and verify that the app with a Green S is present in Zowe Application Server.

Enabling Communication

We've already done the work of setting up the application's HTML and Angular definitions, so in order to make our
application compatible with application-to-application communication, it only needs to listen for, act upon, and issue
Zowe application Actions. Let's edit the typescript component to do that. Edit the UserBrowserComponent Class's
constructor within userbrowser-component.ts to listen for the launch context:

 constructor(
 private element: ElementRef,
 private http: Http,
 @Inject(Angular2InjectionTokens.LOGGER) private log:
 ZLUX.ComponentLogger,
 @Inject(Angular2InjectionTokens.PLUGIN_DEFINITION) private
 pluginDefinition: ZLUX.ContainerPluginDefinition,
 @Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowAction:
 Angular2PluginWindowActions,
 @Inject(Angular2InjectionTokens.WINDOW_EVENTS) private windowEvents:
 Angular2PluginWindowEvents,
 //Now, if this is not null, we're provided with some context of what to
 do on launch.

https://github.com/zowe/workshop-starter-app

 | Extending | 273

 @Inject(Angular2InjectionTokens.LAUNCH_METADATA) private launchMetadata:
 any,
) {
 this.log.info(`User Browser constructor called`);

 //NOW: if provided with some startup context, act upon it... otherwise
 just load all.
 //Step: after making the grid... we add this to show that we can
 instruct an app to narrow its scope on open
 this.log.info(`Launch metadata provided=
${JSON.stringify(launchMetadata)}`);
 if (launchMetadata != null && launchMetadata.data) {
 /* The message will always be an Object, but format can be specific. The
 format we are using here is in the Starter App:
 https://github.com/zowe/workshop-starter-app/blob/master/webClient/
src/app/workshopstarter-component.ts#L177
 */
 switch (launchMetadata.data.type) {
 case 'load':
 if (launchMetadata.data.filter) {
 this.filter = launchMetadata.data.filter;
 }
 break;
 default:
 this.log.warn(`Unknown launchMetadata type`);
 }
 } else {
 this.log.info(`Skipping launching in a context due to missing or
 malformed launchMetadata object`);
 }
}

Then, add a new method on the Class, provideZLUXDispatcherCallbacks, which is a web-framework-independent
way to allow the Zowe applications to register for event listening of Actions.

 /*
 I expect a JSON here, but the format can be specific depending on the
 Action - see the Starter App to see the format that is sent for the
 Workshop:
 https://github.com/zowe/workshop-starter-app/blob/master/webClient/src/
app/workshopstarter-component.ts#L225
 */
 zluxOnMessage(eventContext: any): Promise<any> {
 return new Promise((resolve,reject)=> {
 if (!eventContext || !eventContext.data) {
 return reject('Event context missing or malformed');
 }
 switch (eventContext.data.type) {
 case 'filter':
 let filterParms = eventContext.data.parameters;
 this.log.info(`Messaged to filter table by column=
${filterParms.column}, value=${filterParms.value}`);

 for (let i = 0; i < this.columnMetaData.columnMetaData.length; i++)
 {
 if (this.columnMetaData.columnMetaData[i].columnIdentifier ==
 filterParms.column) {
 //ensure it is a valid column
 this.rows = this.unfilteredRows.filter((row)=> {
 if (row[filterParms.column]===filterParms.value) {
 return true;
 } else {
 return false;

 | Extending | 274

 }
 });
 break;
 }
 }
 resolve();
 break;
 default:
 reject('Event context missing or unknown data.type');
 };
 });
 }

 provideZLUXDispatcherCallbacks(): ZLUX.ApplicationCallbacks {
 return {
 onMessage: (eventContext: any): Promise<any> => {
 return this.zluxOnMessage(eventContext);
 }
 }
}

At this point, the application should build successfully and upon reloading the Zowe page in your browser, you
should see that if you open the Starter application (the application with the green S), that clicking the Find Users
from Lookup Directory button should open the User Browser application with a smaller, filtered list of employees
rather than the unfiltered list we see if opening the application manually.

We can also see that once this application has been opened, the Starter application's button, Filter Results to Those
Nearby, becomes enabled and we can click it to see the open User Browser application's listing become filtered even
more, this time using the browsers Geolocation API to instruct the User Browser application to filter the list to those
employees who are closest to you!

Calling back to the Starter App

We are almost finished. The application can visualize data from a REST API, and can be instructed by other
applications to filter that data according to the situation. But, to complete this tutorial, we need the application
communication to go in the other direction - inform the Starter application which employees you have chosen in the
table!

This time, we will edit provideZLUXDispatcherCallbacks to issue Actions rather than to listen for them. We need
to target the Starter application, since it is the application that expects to receive a message about which employees
should be assigned a task. If that application is given an employee listing that contains employees with the wrong job
titles, the operation will be rejected as invalid, so we can ensure that we get the correct result through a combination
of filtering and sending a subset of the filtered users back to the starter application.

Add a private instance variable to the UserBrowserComponent Class:

 private submitSelectionAction: ZLUX.Action;

Then, create the Action template within the constructor:

this.submitSelectionAction = ZoweZLUX.dispatcher.makeAction(
 'org.openmainframe.zowe.workshop-user-browser.actions.submitselections',
 'Sorts user table in App which has it',
 ZoweZLUX.dispatcher.constants.ActionTargetMode.PluginFindAnyOrCreate,
 ZoweZLUX.dispatcher.constants.ActionType.Message,
 'org.openmainframe.zowe.workshop-starter',
 { data: { op: 'deref', source: 'event', path: ['data'] } }
)

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

 | Extending | 275

So, we created an Action which targets an open window of the Starter application, and provides it with an Object with
a data attribute. We'll populate this object for the message to send to the application by getting the results from Zowe
Application Server Grid (this.selectedRows will be populated from this.onTableSelectionChange).

For the final change to this file, add a new method to the Class:

 submitSelectedUsers() {
 let plugin =
 ZoweZLUX.PluginManager.getPlugin("org.openmainframe.zowe.workshop-
starter");
 if (!plugin) {
 this.log.warn(`Cannot request Workshop Starter App... It was not in
 the current environment!`);
 return;
 }

 ZoweZLUX.dispatcher.invokeAction(this.submitSelectionAction,
 {'data':{
 'type':'loadusers',
 'value':this.selectedRows
 }}
);
}

And we'll invoke this through a button click action, which we will add into the Angular template, userbrowser-
component.html, by changing the button tag for "Submit Selected Users" to:

<button type="button" class="wide-button btn btn-
default" (click)="submitSelectedUsers()" value="Send">

Check that the application builds successfully, and if so, you've built the application for the tutorial! Try it out:

1. Open the Starter application.
2. Click the "Find Users from Lookup Directory" button.

a. You should see a filtered list of users in your user application.
3. Click the "Filter Results to Those Nearby" button on the Starter application.

a. You should now see the list be filtered further to include only one geography.
4. Select some users to send back to the Starter application.
5. Click the "Submit Selected Users" button on the User Browser application.

a. The Starter application should print a confirmation message that indicates success.

And that's it! Looking back at the beginning of this document, you should notice that we've covered all aspects of
application building - REST APIs, persistent settings storage, Creating Angular applications and using Widgets
within them, as well as having one application communicate with another. Hopefully you have learned a lot about
application building from this experience, but if you have questions or want to learn more, please reach out to those in
the Foundation so that we can assist.

Zowe Conformance Program

Introduction

Administered by the Open Mainframe Project, the Zowe™ Conformance Program aims to give users the confidence
that when they use a product, app, or distribution that leverages Zowe, they can expect a high level of common
functionality, interoperability, and user experience.

Conformance provides Independent Software Vendors (ISVs), System Integrators (SIs), and end users greater
confidence that their software will behave as expected. Just like Zowe, the Zowe Conformance Program will continue
to evolve and is being developed by committers and contributors in the Zowe community.

As vendors, you are invited to submit conformance testing results for review and approval by the Open Mainframe
Project. If your company provides software based on Zowe, you are encouraged to get certified today.

How to participate

To participate in the Zowe Conformance Program, follow the process on the Zowe Conformance Program website.
You can also find a list of products that have earned Zowe Conformant status.

https://www.openmainframeproject.org/projects/zowe/conformance

Chapter

4
Troubleshooting

Topics:

• Troubleshooting
• Troubleshooting API ML
• Zowe Application Framework
• Troubleshooting z/OS Services
• Troubleshooting Zowe CLI
• Troubleshooting Zowe through

Zowe Open Community

 | Troubleshooting | 278

Troubleshooting
To isolate and resolve Zowe™ problems, you can use the troubleshooting and support information in this section.

Topics

• Troubleshooting API ML on page 278
• Troubleshooting Zowe Application Framework on page 284
• Troubleshooting z/OS Services on page 289
• Troubleshooting Zowe CLI on page 291
• Troubleshooting Zowe through Zowe Open Community on page 296

Troubleshooting API ML
As an API Mediation Layer user, you may encounter problems with how the API ML functions. This article presents
known API ML issues and their solutions.

Enable API ML Debug Mode

Use debug mode to activate the following functions:

• Display additional debug messages for API ML
• Enable changing log level for individual code components

Important: We highly recommend that you enable debug mode only when you want to troubleshoot issues. Disable
debug mode when you are not troubleshooting. Running in debug mode while operating API ML can adversely affect
its performance and create large log files that consume a large volume of disk space.

Follow these steps:

1. Open the file <Zowe install directory>/components/api-mediation/bin/start.sh.
2. Find the API Mediation Layer service, for which you want to enable the debug mode: discovery, catalog, or

gateway.
3. Find the line that contains the LOG_LEVEL= parameter and set the value to debug:

 LOG_LEVEL=debug

4. Restart Zowe™.

You have enabled the debug mode.
5. (Optional) Reproduce a bug that causes issues and review debug messages. If you are unable to resolve the issue,

create an issue here.
6. Disable the debug mode. Find the LOG_LEVEL parameter, and change its current value to the default

LOG_LEVEL= one:

LOG_LEVEL=

7. Restart Zowe.

You have disabled the debug mode.

Change the Log Level of Individual Code Components

You can change the log level of a particular code component of the API ML internal service at run time.

Follow these steps:

1. Enable API ML Debug Mode as described in Enable API ML Debug Mode. This activates the application/loggers
endpoints in each API ML internal service (Gateway, Discovery Service, and Catalog).

https://github.com/zowe/api-layer/issues/

 | Troubleshooting | 279

2. List the available loggers of a service by issuing the GET request for the given service URL:

GET scheme://hostname:port/application/loggers

Where:

• scheme

API ML service scheme (http or https)
• hostname

API ML service hostname
• port

TCP port where API ML service listens on. The port is defined by the configuration parameter
MFS_GW_PORT for the Gateway, MFS_DS_PORT for the Discovery Service (by default, set to gateway port
+ 1), and MFS_AC_PORT for the Catalog (by default, set to gateway port + 2).

Exception: For the catalog you will able to get list the available loggers by issuing the GET request for the given
service URL:

GET [gateway-scheme]://[gateway-hostname]:[gateway-port]/api/v1/
apicatalog/application/loggers

Tip: One way to issue REST calls is to use the http command in the free HTTPie tool: https://httpie.org/.

Example:

HTTPie command:
http GET https://lpar.ca.com:10000/application/loggers

Output:
{"levels":["OFF","ERROR","WARN","INFO","DEBUG","TRACE"],
 "loggers":{
 "ROOT":{"configuredLevel":"INFO","effectiveLevel":"INFO"},
 "com":{"configuredLevel":null,"effectiveLevel":"INFO"},
 "com.ca":{"configuredLevel":null,"effectiveLevel":"INFO"},
 ...
 }
}

3. Alternatively, you extract the configuration of a specific logger using the extended GET request:

GET scheme://hostname:port/application/loggers/{name}

Where:

• {name}

is the logger name
4. Change the log level of the given component of the API ML internal service. Use the POST request for the given

service URL:

POST scheme://hostname:port/application/loggers/{name}

The POST request requires a new log level parameter value that is provided in the request body:

{

"configuredLevel": "level"

 | Troubleshooting | 280

}

Where:

• level

is the new log level: OFF, ERROR, WARN, INFO, DEBUG, TRACE

Example:

http POST https://hostname:port/application/loggers/
com.ca.mfaas.enable.model configuredLevel=WARN

Known Issues

API ML stops accepting connections after z/OS TCP/IP stack is recycled

Symptom:

When z/OS TCP/IP stack is restarted, it is possible that the internal services of API Mediation Layer (Gateway,
Catalog, and Discovery Service) stop accepting all incoming connections, go into a continuous loop, and write a
numerous error messages in the log.

Sample message:

The following message is a typical error message displayed in STDOUT:

2018-Sep-12 12:17:22.850. org.apache.tomcat.util.net.NioEndpoint -- Socket
 accept failed java.io.IOException: EDC5122I Input/output error.

.at sun.nio.ch.ServerSocketChannelImpl.accept0(Native Method) ~.na:1.8.0.

.at
 sun.nio.ch.ServerSocketChannelImpl.accept(ServerSocketChannelImpl.java:478)
 ~.na:1.8.0.
.at
 sun.nio.ch.ServerSocketChannelImpl.accept(ServerSocketChannelImpl.java:287)
 ~.na:1.8.0.
.at org.apache.tomcat.util.net.NioEndpoint
$Acceptor.run(NioEndpoint.java:455) ~.tomcat-coyote-8.5.29.jar!/:8.5.29.
.at java.lang.Thread.run(Thread.java:811) .na:2.9 (12-15-2017).

Solution:

Restart API Mediation Layer.

Tip: To prevent this issue from occurring, it is strongly recommended not to restart the TCP/IP stack while API ML
is running.

SEC0002 error when logging in to API Catalog

SEC0002 error typically appears when users fail to log in to API Catalog. The following image shows the API
Catalog login page with the SEC0002 error.

 | Troubleshooting | 281

The error is caused by failed z/OSMF authentication. To determine the reason authentication failed, open the
ZOWESVR joblog and look for a message that contains ZosmfAuthenticationProvider. The following is an
example of the message that contains ZosmfAuthenticationProvider:

2019-08-05 11:25:03.431 ERROR 5 --- .0.0-7552-exec-3.
 c.c.m.s.l.ZosmfAuthenticationProvider : Can not access z/OSMF service.
 Uri 'https://ABC12.slv.broadcom.net:1443' returned: I/O error on GET
 request for "https://ABC12.slv.broadcom.net:1443/zosmf/info": ...

Check the rest of the message, and identify the cause of the problem. The following list provides the possible reasons
and solutions for the z/OSMF authentication issue:

• Connection refused on page 281
• Missing z/OSMF host name in subject alternative names
• Invalid z/OSMF host name in subject alternative names

Connection refused

In the following message, failure to connect to API Catalog occurs when connection is refused:

Connect to ABC12.slv.broadcom.net:1443 .ABC12.slv.broadcom.net/127.0.0.1.
 failed: EDC8128I Connection refused.; nested exception is
 org.apache.http.conn.HttpHostConnectException:

The reason for the refused connection message is either invalid z/OSMF configuration or z/OSMF being unavailable.
The preceding message indicates that z/OSMF is not on the 127.0.0.1:1443 interface.

Solution:

 | Troubleshooting | 282

Configure z/OSMF

Make sure that z/OSMF is running and is on 127.0.0.1:1443 interface, and try to log in to API Catalog again. If you
get the same error message, change z/OSMF configuration.

Follow these steps:

1. Locate the z/OSMF PARMLIB member IZUPRMxx.

For example, locate IZUPRM00 member in SYS1.PARMLIB.
2. Change the current HOSTNAME configuration to HOSTNAME('*').
3. Change the current HTTP_SSL_PORT configuration to HTTP_SSL_PORT('1443').

Important! If you change the port in the z/OSMF configuration file, all your applications lose connection to z/
OSMF.

For more information, see Syntax rules for IZUPRMxx.

If changing the z/OSMF configuration does not fix the issue, reconfigure Zowe.

Follow these steps:

1. Open .zowe_profile in the home directory of the user who installed Zowe.
2. Modify the value of the ZOWE_ZOSMF_PORT variable.
3. Reinstall Zowe.

Missing z/OSMF host name in subject alternative names

In following message, failure to connect to API Catalog is caused by a missing z/OSMF host name in the subject
alternative names:

Certificate for <ABC12.slv.broadcom.net> doesn't match any
 of the subject alternative names: ..; nested exception is
 javax.net.ssl.SSLPeerUnverifiedException: Certificate for
 <ABC12.slv.broadcom.net> doesn't match any of the subject alternative
 names: ..

Solutions:

Fix the missing z/OSMF host name in subject alternative names using the following methods:

Note: Apply the insecure fix only if you use API Catalog for testing purposes.

• Secure fix
• Insecure fix on page 283

Secure fix

Follow these steps:

1. Obtain a valid certificate for z/OSMF and place it in the z/OSMF keyring. For more information, see Configure
the z/OSMF Keyring and Certificate.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_IZUPRMxx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm

 | Troubleshooting | 283

2. Navigate to $ZOWE_RUNTIME/components/api-mediation and run the following command:

scripts/apiml_cm.sh --action trust-zosmf

2a. (Optional) If you do not use the default z/OSMF userid (IZUSVR) and keyring (IZUKeyring.IZUDFLT), issue
the following command:

scripts/apiml_cm.sh --action trust-zosmf--zosmf-userid **ZOSMF_USER** --
zosmf-keyring **ZOSMF_KEYRING**

where;

• --zosmf-keyring and --zosmf-userid - options that override the default userid and keyring
accordingly.

Insecure fix

Follow these steps:

1. Set the value of the VERIFY_CERTIFICATES property to false in $ZOWE_RUNTIME/scripts/
internal/run-zowe.sh to disable verification of certificates in Zowe.

2. Reinstall Zowe.

Invalid z/OSMF host name in subject alternative names

In the following message, failure to connect to API Catalog is caused by an invalid z/OSMF host name in the subject
alternative names:

Certificate for <ABC12.slv.broadcom.net> doesn't match any of the
 subject alternative names: [abc12.ca.com, abc12, localhost, abc12-slck,
 abc12-slck.ca.com, abc12-slck1, abc12-slck1.ca.com, abc12-slck2, abc12-
slck2.ca.com, usilabc12, usilabc12.ca.com];
nested exception is javax.net.ssl.SSLPeerUnverifiedException: Certificate
 for <ABC12.slv.broadcom.net> doesn't match any of the subject alternative
 names: [abc12.ca.com, abc12, localhost, abc12-slck, abc12-slck.ca.com,
 abc12-slck1, abc12-slck1.ca.com, abc12-slck2, abc12-slck2.ca.com,
 usilabc12, usilabc12.ca.com]

Solutions:

Fix the invalid z/OSMF host name in the subject alternative names using the following methods:

• Request a new certificate on page 283
• Change the ZOWE_EXPLORER_HOST variable

Request a new certificate

Request a new certificate that contains a valid z/OSMF host name in the subject alternative names.

Change the ZOWE_EXPLORER_HOST variable

Change ZOWE_EXPLORER_HOST variable to fix the issue.

Follow these steps:

1. Open .zowe_profile in the home directory of the user who installed Zowe.
2. Change ZOWE_EXPLORER_HOST to a host name from the subject alternative names of the z/OSMF certificate.

For example, issue the following command:

export ZOWE_EXPLORER_HOST=SAN (change this to the correct one > in the
 code block).

3. Reinstall Zowe.

 | Troubleshooting | 284

Zowe Application Framework

Troubleshooting Zowe Application Framework

The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior installing and using Zowe™ Application Framework.

Before you reach out for support:

1. Is there already a GitHub issue (open or closed) that covers the problem? Check Application Framework issues.
2. Review the current list of Known Zowe Application Framework issues on page 286 in documentation. Also try

searching using the Zowe Docs search bar.

Gathering information to troubleshoot Zowe Application Framework

Gather the following information to troubleshoot Zowe™ Application Framework issues:

• z/OS release level
• Zowe version and release level on page 284
• Zowe application configuration on page 285
• Zowe Application Server ports on page 285
• Log output from the Zowe Application Server on page 285
• Error message codes on page 286
• Javascript console output on page 286
• Screen captures on page 286
• Other relevant information on page 286

z/OS release level

To find the z/OS release level, issue the following command in SDSF:

/D IPLINFO

Check the output for the release level, for example:

RELEASE z/OS 02.02.00

Zowe version and release level

 cd <zowe-installation-directory>
 cat manifest.json

Output:

Displays zowe version

 {
 "name": "Zowe",
 "version": "1.2.0",
 "description": "Zowe is an open source project created to host
 technologies that benefit the Z platform from all members of the Z
 community (Integrated Software Vendors, System Integrators and z/OS
 consumers). Zowe, like Mac or Windows, comes with a set of APIs and OS
 capabilities that applications build on and also includes some applications
 out of the box. Zowe offers modern interfaces to interact with z/OS
 and allows you to work with z/OS in a way that is similar to what you
 experience on cloud platforms today. You can use these interfaces as

https://github.com/zowe/zlux/issues

 | Troubleshooting | 285

 delivered or through plug-ins and extensions that are created by clients or
 third-party vendors.",
 "license": "EPL-2.0",
 "homepage": "https://zowe.org",
 "build": {
 "branch": "master",
 "number": 685,
 "commitHash": "63efa85df629db474197ec8481db50021e8fdd65",
 "timestamp": "1556733977010"
 }
 }

Zowe application configuration

Configuration file helps customize the Zowe app server, and is important to look at while you troubleshoot.

navigate to zowe installation folder
cd <zowe-installation-folder>

navigate to server configuration folder
cd zlux-app-server/deploy/instance/ZLUX/serverConfig

display config
cat zluxserver.json

Read more about the Zowe app server Zowe Application Framework configuration on page 103 in the Zowe User
Guide.

Zowe Application Server ports

 # navigate to zowe installation folder
 cd <zowe-installation-folder>

 # navigate to install log directory
 cd install_log

 # list file by most recent first
 ls -lt

 # pick latest file
 cat 2019-05-02-17-13-09.log | grep ZOWE_ZLUX_SERVER_HTTPS_PORT
 cat 2019-05-02-17-13-09.log | grep ZOWE_ZSS_SERVER_PORT

Log output from the Zowe Application Server

There are two major components of Zowe application server: ZLUX and ZSS. They log to different files.

The default location for logs for both zlux and zss is folder zlux-app-server/log. You can customize the log
location by using the environment variable.

env | grep ZLUX_NODE_LOG_DIR
env | grep ZSS_LOG_DIR

Read more about controlling the log location Controlling the logging location on page 113.

navigate to zowe installation folder
cd <zowe-installation-folder>

navigate to logs default location or custom location as described above
cd zlux-app-server/log

custom log location can be found using environment variable

 | Troubleshooting | 286

list file by most recent first
ls -lt

Output:

List of files by most recent timestamp for both nodeServer as well ZSS.

nodeServer-<yyyy-mm-dd-hh-mm>.log
zssServer-<yyyy-mm-dd-hh-mm>.log

Error message codes

It is advisable to look into log files for capturing error codes.

Javascript console output

Web Developer toolkit is accessible by pressing F12.

Read more about it here.

Screen captures

If possible, add a screen capture of the issue.

Other relevant information

Node.js – v6.14.4 minimum for z/OS, elsewhere v6, v8, and v10 work well.

node -v

npm – v6.4 minimum

npm -v

Java – v8 minimum

java -version

Known Zowe Application Framework issues

The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior installing and using Zowe™ Application Framework.

Most of the solutions below identify issues by referring to the Zowe Gathering information to troubleshoot Zowe
Application Framework on page 284. To identify and resolve issues, you should become familiar with their names
and locations.

Desktop apps fail to load

Symptom:

When you open apps in the desktop they display a page with the message "The plugin failed to load."

Solution:

NodeJS v8.16.1 performs auto-encoding in a way that breaks Zowe apps. See https://github.com/ibmruntimes/node/
issues/142 for details.

Use node v8.16.0 which is available at https://www.ibm.com/ca-en/marketplace/sdk-nodejs-compiler-zos. Download
the ibm-trial-node-v8.16.0-os390-s390x.pax.Z file.

https://developers.google.com/web/tools/chrome-devtools/open
https://github.com/ibmruntimes/node/issues/142
https://github.com/ibmruntimes/node/issues/142
https://www.ibm.com/ca-en/marketplace/sdk-nodejs-compiler-zos

 | Troubleshooting | 287

NODEJSAPP disables immediately

Symptom:

If you receive the message CEE5207E The signal SIGABRT was received in stderr, you might
have reached the limit for shared message queues on your LPAR.

Solution:

When Node.js applications are terminated by a SIGKILL signal, shared message queues might not be deallocated. In
the IBM "Troubleshooting Node.js applications" documentation, see the section titled If the NODEJSAPP disables
immediately.

Cannot log in to the Zowe Desktop

Symptom:

When you attempt to log in to the Zowe Desktop, you receive the following error message, displayed beneath the
Username and Password fields.

Authentication failed for 1 types: Types: ["zss"]

Solution:

For the Zowe Desktop to work, the node server that runs under the ZOWESVR started task must be able to make
cross memory calls to the ZWESIS01 load module running under the ZWESIS01 started task. If this communication
fails, you see the authentication error.

To solve the problem, follow these steps:

1. Open the log file /zlux-app-server/log/zssServer-yyyy-mm-dd-hh-ss.log. This file is created
each time ZOWESVR is started and only the last five files are kept.

2. Look for the message that starts with ZIS status.

If communication is working the message includes Ok. For example:

ZIS status - Ok (name='ZWESIS_STD ', cmsRC=0, description='Ok'

If communication is not working the message includes Failure. For example:

ZIS status - Failure (name='ZWESIS_STD ', cmsRC=39,
 description='Cross-memory call ABENDed'

If communication is not working, check that the ZWESIS01 started task is running. If not, start it. Also, search the
log for problems, for example statements saying that the server was unable to find the load module.

If the problem is not easily-fixable (such as the ZWESIS01 task not running), then it is likely that the cross
memory server setup and configuration did not complete successfully. To set up and configure the cross memory
server, follow steps as described in the topic Manually installing the Zowe Cross Memory Server.

If there is an authorization problem, the message might include Permission Denied. For example:

ZIS status - Failure (name='ZWESIS_STD ', cmsRC=33,
 description='Permission denied'

Check that the user ID of the ZOWESVR started task is authorized to access the load module. Only authorized
code can call ZWESIS01 because it is an APF-authorized load module. The setup for each security manager

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/troubleshooting/node/node-troubleshooting.html

 | Troubleshooting | 288

is different and is documented in the section "Security requirements for the cross memory server" in the topic
Manually installing the Zowe Cross Memory Server.

Note If you are using RACF security manager, a common reason for seeing Permission Denied is that the
user running the started task ZOWESVR (typically IZUSVR) does not have READ access to the FACILITY class
ZWES.IS.

If the message includes the following text, the configuration of the Application Framework server may be
incomplete:

ZIS status - Failure read failed ret code 1121 reason 0x76650446

If you are using AT/TLS, then the "attls" : true statement might be missing from the
zluxserver.json file. For more information, see Configuring ZSS for HTTPS on page 107

Server startup problem ret=1115

Symptom: When ZOWESVR is restarted, the following message is returned in the output of the ZSS server log file,
/zlux-app-server/log/zssServer-yyyy-mm-dd-hh-ss.log:

server startup problem ret=1115

Solution: This message means that some other process is already listening on port 7542, either at address 127.0.0.1
(localhost) or at 0.0.0.0 (all addresses). This prevents the ZSS server from starting.

One possibility is that a previously running ZSS server did not shut down correctly, and either the operating system
has not released the socket after the ZSS server shut down, or the ZSS server is still running.

Application plug-in not in Zowe Desktop

Symptom:An application plug-in is not appearing in the Zowe Desktop.

Troubleshooting:To check if the plug-in loaded successfully, enter the following URL in a browser to display all
successfully loaded Zowe plug-ins:

https://my.mainframe.com:8544/plugins?type=application

You can also search the Gathering information to troubleshoot Zowe Application Framework on page 284 for
the plug-in identifier, for example org.zowe.sample.app. If the plug-in loaded successfully, you will find the
following message:

[2019-08-06 13:54:21.341 _zsf.bootstrap INFO] - Plugin org.zowe.sampleapp at
 path=zlux\org.zowe.sampleapp loaded.

If the plug-in did not load successfully, you will find the following message:

[2019-08-06 13:54:21.208 _zsf.bootstrap WARNING] - Error:
 org.zowe.sampleapp

If the identifier is not in the logs, make sure the plug-in's locator file is in the /zlux-app-server/deploy/
instance/ZLUX/plugins/ directory. The plug-in locator is a .json file, usually with same name as the
identifier, for example org.zowe.sampleapp.json. Open the file and make sure that the path defined with the
pluginLocation attribute is correct. If the path is relative, make sure it is relative to the zlux-app-server/
bin directory.

For more information on loading plug-ins to the Desktop, see Adding Your App to the Desktop on page 264.

Error: You must specify MVD_DESKTOP_DIR in your environment

Symptom:

A plug-in build in your local environment using npm run start or npm run build failed with an error
message about a missing MVD_DESKTOP_DIR environment variable.

 | Troubleshooting | 289

Solution:Add the Zowe Desktop directory path to the MVD_DESKTOP_DIR environment variable. To specify the
path, run the following commands in your Windows console or Linux bash shell:

• Windows

export MVD_DESKTOP_DIR=<zlux-root-dir>/zlux-app-manager/virtual-desktop

• Mac Os/Linux

set MVD_DESKTOP_DIR=<zlux-root-dir>/zlux-app-manager/virtual-desktop

Raising a Zowe Application Framework issue on GitHub

When necessary, you can raise GitHub issues against the Zowe™ zlux core repository here. It is suggested that you
use either the bug or enhancement template.

For issues with particular applications, such as Code Editor or JES Explorer, create the issue in the application's
project.

Raising a bug report

Please provide as much of the information listed on Troubleshooting Zowe Application Framework on page 284 as
possible. Anyone working on the issue might need to request this and other information if it is not supplied initially.
A description of the error and how it can be reproduced is the most important information.

Raising an enhancement report

Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should be clear
and detailed requirements for a potential enhancement.

Troubleshooting z/OS Services
The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior installing and using Zowe™ z/OS Services.

z/OS Services are unavailable

Solution:

If the z/OS Services are unavailable, take the following corrective actions.

https://github.com/zowe/zlux/issues
https://github.com/zowe/zlux-editor/issues
https://github.com/zowe/explorer-jes/issues

 | Troubleshooting | 290

• Ensure that the z/OSMF REST API services are working. Check the z/OSMF IZUSVR1 task output for errors
and confirm that the z/OSMF RESTFILES services are started successfully. If no errors occur, you can see the
following message in the IZUSVR1 job output:

CWWKZ0001I: Application IzuManagementFacilityRestFiles started in n.nnn
 seconds.

To test z/OSMF REST APIs you can run curl scripts from your workstation.

curl --user <username>:<password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSMF-HEADER: true' "https://<z/os host
 name>:<securezosmfport>/zosmf/restjobs/jobs?prefix=*&owner=*

where the securezosmfport is 443 by default. You can verify the port number by checking the izu.https.port
variable assignment in the z/OSMF bootstrap.properties file.

If z/OSMF returns jobs correctly, you can test whether it is able to returns files by using the following curl scripts:

curl --user <username>:<password> -k -X GET --header 'Accept: application/
json' --header 'X-CSRF-ZOSMF-HEADER: true' "https://<z/os host
 name>:<securezosmfport>/zosmf/restfiles/ds?dslevel=SYS1"

If the restfiles curl statement returns a TSO SERVLET EXCEPTION error, check that the the z/OSMF installation
step of creating a valid IZUFPROC procedure in your system PROCLIB has been completed. For more
information, see the z/OSMF Configuration Guide.

The IZUFPROC member resides in your system PROCLIB, which is similar to the following sample:

//IZUFPROC PROC ROOT='/usr/lpp/zosmf' /* zOSMF INSTALL ROOT */
//IZUFPROC EXEC PGM=IKJEFT01,DYNAMNBR=200
//SYSEXEC DD DISP=SHR,DSN=ISP.SISPEXEC
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//ISPLLIB DD DISP=SHR,DSN=SYS1.SIEALNKE
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPTLIB DD RECFM=FB,LRECL=80,SPACE=(TRK,(1,0,1))
// DD DISP=SHR,DSN=ISP.SISPTENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPROF DD DISP=NEW,UNIT=SYSDA,SPACE=(TRK,(15,15,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//IZUSRVMP DD PATH='&ROOT./defaults/izurf.tsoservlet.mapping.json'
//SYSOUT DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//

Note: You might need to change paths and data sets names to match your installation.

A known issue and workaround for RESTFILES API can be found at TSO SERVLET EXCEPTION
ATTEMPTING TO USE RESTFILE INTERFACE.

• Check your system console log for related error messages and respond to them.

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278419?OpenDocument
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398

 | Troubleshooting | 291

Troubleshooting Zowe CLI

Troubleshooting Zowe CLI

Problem

Zowe™ CLI is experiencing a problem. You need to collect information that will help you resolve the issue.

Environment

These instructions apply to Zowe CLI installed on Windows, Mac OS X, and Linux systems as a standalone
installation via a Zowe download or an NPM registry.

Before reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check CLI Issues.
2. Review the current list of Known Zowe CLI issues on page 294 in documentation. Also try searching using the

Zowe Docs search bar.

Resolving the problem

Collect the following information to help diagnose the issue:

• Zowe CLI version installed.
• List of plug-ins installed and their version numbers.
• Node.js and NPM versions installed.
• List of environment variables in use.

For instructions on how to collect the information, see Gathering information to troubleshoot Zowe CLI on page
291.

The following information is also useful to collect:

• If you are experiencing HTTP errors, see z/OSMF troubleshooting on page 294 for information to collect.
• Is the CLI part of another Node application, such as VSCode, or is it a general installation?
• Which operating system version are you running on?
• What shell/terminal are you using (bash, cmd, powershell, etc...)?
• Which queue managers are you trying to administer, and on what systems are they located?
• Are the relevant API endpoints online and valid?

Gathering information to troubleshoot Zowe CLI

Follow these instructions to gather specific pieces of information to help troubleshoot Zowe™ CLI issues.

[]

Identify the currently installed CLI version

Issue the following command:

zowe -V

Zowe CLI versions may vary depending upon if the @latest or @lts-incremental version is installed.

For the @latest (forward-development) version:

npm list -g @zowe/cli

https://github.com/zowe/zowe-cli/issues

 | Troubleshooting | 292

For the @lts-incremental version:

npm list -g @brightside/core

More information regarding versioning conventions for Zowe CLI and plug-ins is located in Versioning Guidelines.

Identify the currently installed versions of plug-ins

Issue the following command:

zowe plugins list

The output describes version and the registry information. Note that the offical downloads are located at https://
api.bintray.com/npm

Environment variables

The following settings are configurable via environment variables:

Log levels

Environment variables are available to specify logging level and the CLI home directory.

Important\! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,
command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

ZOWE_APP_LOG_LEVEL Zowe CLI logging level Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

ZOWE_IMPERATIVE_LOG_LEVELImperative CLI Framework
logging level

Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

Home directory

You can set the location on your computer for the Zowe CLI home directory, which contains log files, profiles, and
plug-ins for the product.

Tip! The default .zowe folder is created when you issue your first Zowe CLI command. If you change the location
of the folder, you must reinstall plug-ins and recreate or move profiles and log files that you want to retain. In some
cases, you might want to maintain a different set of profiles in multiple folders, then switch between them using the
environment variable.

Environment Variable Description Values Default

ZOWE_CLI_HOME Zowe CLI home directory
location

Any valid path on your
computer

C:\Users\\<username\>\
\.zowe

The values for these variables can be echoed.

https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

 | Troubleshooting | 293

Home directory structure

Location of logs

There are two sets of logs to be aware of:

• Imperative CLI Framework log, which generally contains installation and configuration information.
• Zowe CLI log, which contains information about interaction between CLI and the server endpoints.

Analyze these logs for any information relevant to your issue.

Profile configuration

The profiles folder stores connnection information.

Important\! The profile directory might contain "sensitive" information, such as your mainframe password. You
should obfuscate any sensitive references before providing configuration files.

Node.js and npm

Zowe CLI should be compatible with Node.js v8 and greater.

To gather Node.js and npm versions, use the following:

node --version
npm --version

npm configuration

If you are having trouble installing Zowe CLI from an npm registry, gather your npm configuration to help identify
issues with registry settings, global install paths, proxy settings, etc...

npm config ls -l

 | Troubleshooting | 294

npm log files

In case of errors, npm creates log files in the npm_cache_logs location. To get the npm_cache location for a
specific OS, run the following command:

npm config get cache

By default, npm keeps only 10 log files, but sometimes more are needed. Increase the log count by issuing the
following command:

npm config set logs-max 50

This command increases the log count to 50, so that more log files will be stored on the system. Now you can run
tests multiple times and not lose the log files. The logs can be passed to Support for analysis.

As the log files are created only when an npm conmmand fails, but you are interested to see what is executed, you can
increase the log level of npm. Issue the following command:

npm config set loglevel verbose

• With this change, you can see all actions taken by npm on the stdout. If the command is successful, it still does not
generate a log file.

• The available log levels are: "silent", "error", "warn", "notice", "http", "timing", "info", "verbose", "silly", and
"notice". "Notice" is the default.

• Alternatively, you can pass --loglevel verbose on the command line, but this only works with npm related
commands. By setting log level in the config, it also works when you issue some zowe commands that use npm
(for example, zowe plugins install @zowe/cics).

z/OSMF troubleshooting

The core command groups use the z/OSMF REST APIs which can experience any number of problems.

If you encounter HTTP 500 errors with the CLI, consider gathering the following information:

1. The IZU* (IZUSVR and IZUANG) joblogs (z/OSMF server)
2. z/OSMF USS logs (default location: /global/zosmf/data/logs - but may change depending on installation)

If you encounter HTTP 401 errors with the CLI, consider gathering the following information:

1. Any security violations for the TSO user in SYSLOG

Alternate methods

At times, it may be beneficial to test z/OSMF outside of the CLI. You can use the CLI tool curl or a REST tool such
as "Postman" to isolate areas where the problem might be occurring (CLI configuration, server-side, etc.).

Example curl command to GET /zosmf/info:

curl -k -H "Accept: application/json" -H "X-CSRF-ZOSMF-HEADER: true"
 "https://zosmf.hostname.net:443/zosmf/info"

Known Zowe CLI issues

The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior installing and using Zowe™ CLI.

Command not found message displays when issuing npm install commands

Valid on all supported platforms

Symptom:

 | Troubleshooting | 295

When you issue NPM commands to install the CLI, the message command not found displays. The message indicates
that Node.js and NPM are not installed on your computer, or that PATH does not contain the correct path to the
NodeJS folder.

Solution:

To correct this behavior, verify the following:

• Node.js and NPM are installed.
• PATH contains the correct path to the NodeJS folder.

More Information: System requirements on page 35

npm install -g Command Fails Due to an EPERM Error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub
repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some
users also report success using the following workarounds:

• Issue the npm cache clean command.
• Uninstall and reinstall Zowe CLI. For more information, see Installing Zowe CLI on page 98.
• Add the --no-optional flag to the end of the npm install command.

Sudo syntax required to complete some installations

Valid on Linux and macOS

Symptom:

The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo before the
npm install -g command or the npm uninstall -g command. This step gives Node.js write access to the
installation directory.

npm install -g command fails due to npm ERR! Cannot read property 'pause' of
undefined error

Valid on Windows or Linux

Symptom:

You receive the error message npm ERR! Cannot read property 'pause' of undefined when you
attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert to a
previous version of npm that does not contain this defect. To revert to a previous version of npm, issue the following
command:

npm install npm@5.3.0 -g

Node.js commands do not respond as expected

Valid on Windows or Linux

 | Troubleshooting | 296

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named node on your path. The Node.js installer automatically adds a program that is
named node to your path. When there are pre-existing programs that are named node on your computer, the program
that appears first in the path is used. To correct this behavior, change the order of the programs in the path so that
Node.js appears first.

Installation fails on Oracle Linux 6

Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with Oracle
Linux 6.

Raising a CLI issue on GitHub

When necessary, you can raise GitHub issues against the Zowe™ CLI repository here. It is suggested that you use
either the bug or enhancement template.

Raising a bug report

Please provide as much of the information listed on Troubleshooting Zowe CLI on page 291 as is reasonable.
Anyone working on the issue might need to request this and other information if it is not supplied initially. A
description of the error and how it can be reproduced is the most important information.

Raising an enhancement report

Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should be clear
and detailed requirements for a potential enhancement.

Troubleshooting Zowe through Zowe Open Community
To help Zowe™ Open Community effectively troubleshoot Zowe, we introduce a shell script that captures diagnostics
data that is required for successful troubleshooting. By running the shell script on your z/OS environment, you receive
a set of output files, which contain all relevant diagnostics data necessary to start a troubleshooting process. You can
find the zowe-support.sh script in the ZOWEDIR/scripts folder with the rest of Zowe scripts. The script
captures the following data:

• Started task output

• Zowe server started task
• Zowe Cross Memory started task (STC)

• Zowe CLI or REXX (TSO output command, STATUS, capture all)
• Zowe Install log
• Scripts that are called from run-zowe.sh
• Versions:

• manifest.json
• z/OS version
• Java version
• Node version

https://github.com/zowe/zowe-cli/issues

 | Troubleshooting | 297

• Additional logs

• Zowe app server
• zLUX app server

• Process list with CPU info with the following data points:

• Running command and all arguments of the command
• Real time that has elapsed since the process started
• Job name
• Process ID as a decimal number
• Parent process ID as a decimal number
• Processor time that the process used
• Process user ID (in a form of user name if possible, or as a decimal user ID if not possible)

Contact Zowe Open Community to Troubleshoot Zowe

Contact Zowe Open Community to address and troubleshoot a Zowe issue.

Follow these steps:

1. Contact Open Zowe Community in Slack to address your issues.
2. Get instructions from the Community on whether you need to run the script that collects diagnostics data. If you

do not need to run the script, the Community will proceed with troubleshooting.
3. If the Community instructs you to run the zowe-support.sh script, issue the following commands:

cd $ZOWE_ROOT_DIR/scripts
./zowe-support.sh

4. Send the .pax.Z output file to Community members for further troubleshooting.

Community members will help you troubleshoot an issue.

https://app.slack.com/client/T1BAJVCTY/C1BAK03LN

Chapter

5
Contributing

Topics:

• Code guidelines
• UI guidelines
• How to contribute

 | Contributing | 300

Code guidelines

Code categories

The Zowe™ codebase consists of a few key areas, with both unique and shared guidelines that define how to write
new code. A few such areas are:

• Server Core
• Server Security
• Microservices
• Zowe Desktop Applications
• Zowe Application Framework
• Zowe CLI and CLI Plug-ins
• Imperative CLI Framework

Programming languages

For each area of the codebase, there are established and favored programming languages. Each repository in Github
identifies the primary language used. Some of the basic skills needed to contribute to the project include:

• CLI - Node.js, TypeScript
• Desktop UI - Node.js, JavaScript
• APIs - C, Assembler, Java, Spring
• API Mediation Layer - Java, Spring

Note: JavaScript is not recommended and should be avoided in favor of Typescript to utilize typing.

Component-specific guidelines and tutorials

This "Code Guidelines" section provides high-level best practices. Each component may have more specific
contribution guidelines. Look for a CONTRIBUTING.md file in the component's GitHub repository for specific
details.

To learn more about how to develop Zowe applications and plug-ins or extending Zowe with APIs, see Onboarding
Overview on page 158.

General code style guidelines

All code written in the languages described in Code categories on page 300 should adhere to the following
guidelines to facilitate collaboration and understanding.

Note: Uncertainties, unimplemented but known future action-items, and odd/specific constants should all be
accompanied with a short comment to make others aware of the reasoning that went into the code.

Whitespaces

Do not use tabs for whitespace. Use 2 spaces per tab instead.

Naming Conventions

Self-documenting code reduces the need for extended code comments. It is encouraged to use names as long as
necessary to describe what is occurring.

Functions and methods

Methods should be named as verbs (for example, get or set), while Objects/Classes should be nouns.

Objects and functions should be CamelCase. Methods on Objects should be dromedaryCase.

 | Contributing | 301

Variables

Constants should be CAPITALIZED_AND_UNDERSCORED for clarity, while variables can remain
dromedaryCase.

Avoid non-descriptive variable names such as single letters (except for iteration in loops such as i or j) and variable
names that have been arbitrarily shortened (Don't strip vowels; long variable names are OK).

Pull requests guidelines

The Zowe™ source code is stored in GitHub repositories under the Zowe GitHub project. You contribute to the
project through Pull Requests in GitHub.

Each pull request is made against a repository that has assigned "maintainers". Pull requests cannot be merged
without the approval of at least one maintainer, who will review Pull Requests to ensure that they meet the following
criteria:

• The code in the pull request must adhere to the General code style guidelines on page 300.
• The code must compile/transpile (where applicable) and pass a smoke-test such that the code is not known to

break the current state of Zowe.
• The pull request must describe the purpose and implementation to the extent that the maintainer understands what

is being accomplished. Some pull requests need less details than others.
• The pull request must state how to test this change, if applicable, such that the maintainer or a QA team can check

correctness. The explanation may simply be to run included test code.
• If a pull request depends upon a pull request from the same/another repository that is pending, this must be stated

such that maintainers know in which order to merge open pull requests.

Documentation Guidelines

Documentation of Zowe™ comes in various forms depending on the subject being detailed. In general, consider how
you can help end users and contributors through external documentation, in-product help, error messages, etc... and
open an issue in zowe/docs-site if you need assistance.

Contributing to external documentation

The external documentation for the Zowe project, Zowe Docs, is completely open-source. See How to contribute on
page 315 for more information about contributing to the documentation.

Consider: Release Notes, Install/Config/User Guides, Developer Tutorials, etc...

Component Categories

Provide the following documentation depending on the component that you contribute to:

Server Core

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs
site. Code documentation follows language-specific formats.

Server Security

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs
site. Code documentation follows language-specific formats.

Microservices

Microservices implement a web API, and therefore must be documented for understanding and testing. These web
APIs must be accompanied with documentation in the Swagger (https://swagger.io/) format. These documents must
be Swagger 2.0, .yaml extension files. Zowe Application Framework plug-ins that implement microservices should
store these files within the /doc/swagger folder.

https://github.com/zowe
https://github.com/zowe/docs-site
https://docs.zowe.org/

 | Contributing | 302

Zowe Desktop Applications

Zowe Desktop applications should include documentation that explains how to use them, such that this
documentation can integrate with a Zowe Desktop documentation reader. This is not strictly API documentation, but
rather user guides that can display within the Desktop GUI. The preferred documentation format is a .md extension
file that exists in the /doc/guide folder of an App.

Web Framework

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs
site. Code documentation follows language-specific formats.

CLI Plugins

Provide a readme.md file for developers (overview, build, test) as well as end-user documentation for your plug-in on
Zowe Docs site.

For more information, see the CLI documentation contribution guidelines.

Core CLI Imperative CLI Framework

Contributions that affect end users of the CLI should be documented on Zowe Docs site.

Contributions that affect the underlying Imperative CLI Framework should be documented in the GitHub Wiki for
future developers using the framework.

Code documentation follows language-specific formats.

Programming Languages

Each of the common languages in Zowe have code-documentation-generation tools, each with their own in-code
comment style requirements to adhere to in order to generate readable API references. Objects and functions of
interest should be commented in accordance to the language-specific tools to result in output that serves as the first
point of documentation for APIs.

Typescript

When writing TypeScript code, comment objects and functions in compliance with JSDoc. If you are writing in an
area of the codebase that does not yet have a definition file for JSDoc, define a configuration file that can be used for
future documentation of that code.

Java

When writing TypeScript code, comment objects and functions in the Javadoc format.

C

When writing C code, comment functions and structures in compliance with Doxygen.

UI guidelines

Introduction

This style guide is the visual language that represents Zowe™. It is a living document that will be updated based on
the needs of our users and software requirements.

Clear

Our users rely on our software to help them be efficient in their work. The interfaces and experiences that we design
should be clear so that there is never confusion about where to click or how to take the next step. Users should always
feel confident in their actions.

https://github.com/zowe/zowe-cli/blob/conformance/CONTRIBUTING.md#documentation-guidelines
https://github.com/zowe/imperative/wiki
http://usejsdoc.org/

 | Contributing | 303

Consistent

Users should be able to look at Zowe software products and know that they are in a family. Each software product is
different, but should use similar patterns, icons, and interactions. If a user switches to a new product within Zowe, it
should feel familiar.

Smart

Our users are intelligent, and they need smart software. Zowe design patterns should always compliment the user’s
intelligence and reflect the user’s complex work environment. Designs should align with the Zowe design language
by putting the human needs of the user first.

Colors

Color brings a design to life. Color is versatile; it's used to express emotion and tone, as well as place emphasis and
create associations. Color should always be used in meaningful and intentional ways to create patterns and visual
cues.

Color palette

The Zowe™ color palette is designed and implemented in a theme-able manner. The universal color variables are
determined by common roles and usage; it is not based singularly on a color value (i.e. unique hex code). The same
color value might be assigned to multiple variables in a theme's palette when the values have distinctly different roles.

A universal variable can also have multiple associated roles when the color is consistently used across those roles.
This allows for uniform color application across themes, while giving each theme the freedom to express its own
individuality at a more detailed level.

 | Contributing | 304

 | Contributing | 305

Light theme

 | Contributing | 306

Dark theme

 | Contributing | 307

Color contrast | WCAG AA standards

• Type colors

All type color combinations on Zowe must pass WCAG AA standards of 4.5:1 for normal text and 3:1 for large
text. For larger text, if the font weight is light (300) or normal (400) the text should be no smaller than 24px. If the
font weight is Semi-Bold (600) then the large text should be no smaller than 19px.

• Body Text (4.5:1)
• Large Text (3:1): at least 24px / 19px semi-bold

WCAG guidelines: https://www.w3.org/WAI/standards-guidelines/wcag/

Contrast Checker Tool: https://webaim.org/resources/contrastchecker/

Typography

Typography is used to create clear hierarchies, useful organizations, and purposeful alignments that guide users
through the product and experience. It is the core structure of any well designed interface.

Typeface

Title typeface: Roboto Condensed

Body typeface: Roboto

Sample:

Font weight

Font weight is an important typographic style that can add emphasis and is used to differentiate content hierarchy.
Font weight and size pairings must be carefully balanced. A bold weight will always have more emphasis than a
lighter weight font of the same size. However, a lighter weight font can rank hierarchically higher than a bold font if
the lighter weight type size is significantly larger than the bold.

Roboto font family provides a wide range of weights. However, only SemiBold, Regular, Light should be used for
product design.

https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/resources/contrastchecker/

 | Contributing | 308

• Font-weight: 300 / Light

Should only be used at sizes greater than or equal to 18px / 1.125rem
• Font-weight: 400 / Normal

• Font-weight: 500 / Semi-bold

Body copy

We recommended that you use two sizes for body copy. The first size is UI specific. To maximize screen real
estate we chose a smaller 14px / 0.875rem body copy size for the standard UI console. However, for areas that have
prolonged reading, such as Documentation, we use a larger body copy size of 16px / 1rem to enhance readability.

Line scale

• 1.333 Perfect Fourth-type scale - desktop

 | Contributing | 309

• 1.2 Minor Third type-scale - mobile

Line-height

Line-height, traditionally known as leading, is one of several factors that directly contribute to readability and pacing
of copy. Line-heights are based on the size of the font itself. Ideal line-heights for standard copy have a ratio of 1:1.5
(typesize : line-height). For example, a type at 16px / 1rem would have a line-height of 1.5rem / 24px (16 x 1.5). The
exception to this rule are headings, which need less spacing and therefore have a line-height ratio of 1:1.25.

Embed font

To embed your selected fonts into a web page, copy the following code into the <head> of your HTML document:

<link href="https://fonts.googleapis.com/css?family=Roboto+Condensed|
Roboto:300,400,500" rel="stylesheet">

Import font

<style>
@import url('https://fonts.googleapis.com/css?family=Roboto+Condensed|
Roboto:300,400,500');
</style>

Specify in CSS

Use the following CSS rules to specify these families:

font-family: 'Roboto', sans-serif;
font-family: 'Roboto Condensed', sans-serif;

Grid

Grid systems are used for creating page layouts through a series of rows and columns that house your content.
Zowe™ uses a responsive, mobile-first, fluid grid system that appropriately scales up to 12 columns as the device or
view port size increases.

12 column grid

A 12 column grid is recommended. 12 is a well-distributed division that provides a good range of widths to assign to
content. It is dividable by 2, 3, 4 and 6, which allows flexibility. Many frameworks, such as Bootstrap and Pure, use a
12 column grid by default. Other grid systems like a 5 column grid can reduce flexibility, balance, and consistency.

 | Contributing | 310

Gutters

Columns create gutters (gaps between column content) through padding. For devices with a screen width greater than
768px, the column padding is 20px. For devices with a screen width less than 768px, the column padding is 10px.

Screen width # 768px = 20px gutters

Screen width 768px = 10px gutters

Columns

Zowe designs should be limited to 12 columns. If designers feel that they need fewer columns in their grid, they can
specify the number of 12 available columns they wish to span.

This can translate to percentages of the twelve columns. Using this method, a designer can create a folded, less
granular grid. For example, if your component spans three equal columns, that is equal to 25% of twelve columns.

Column count: 12

Margins

The 12 column grid does not have a maximum width. It has a width of 100%, with built in margins that create
padding between column count and the edges of the viewport.

In devices with a screen width greater than 768px, the margins are 5% on the left, and 5% on the right.

In devices with a screen width less than 768px, the margins are 3% on the left, and 3% on the right.

Example: Screen Width > 768px

5% left = 38px (rounded to nearest whole pixel)
 5% right = 38px (rounded to nearest whole pixel)
 12 columns + gutters = 768px - 38px - 38px = 692px (rounded to nearest
 whole pixel)

 | Contributing | 311

Example: Screen Width 320px

3% left = 10px (rounded to nearest whole pixel)
 3% right = 10px (rounded to nearest whole pixel)
 12 columns + gutters = 320px - 10px - 10px = 300px (rounded to nearest
 whole pixel)

Iconography

Icons are key component for a successful UI design because they are a visual way to help add meaning to elements.

 | Contributing | 312

Font Awesome is a robust icon library that allows for an easy addition to any web project. Scalable vector icons that
can instantly be customized — size, color, drop shadow, and anything that can be done with the power of CSS.

• One Font, Hundreds of Icons – In a single collection, Font Awesome is a pictographic language of web-related
actions.

• No JavaScript Required – Fewer compatibility concerns because Font Awesome doesn’t require JavaScript.
• Infinite Scalability – Scalable vector graphics means every icon looks awesome at any size.
• Free, as in Speech – Font Awesome is completely free for commercial use. Check out the license.
• CSS Control – Easily style icon color, size, shadow, and anything that’s possible with CSS.
• Perfect on Retina Displays – Font Awesome icons are vectors, which mean they’re gorgeous on high-resolution

displays.
• Plays Well with Others – Originally designed for Bootstrap, Font Awesome works great with all frameworks.
• Desktop Friendly – To use on the desktop or for a complete set of vectors, check out the cheatsheet.
• Accessibility-minded – Font Awesome loves screen readers and helps make your icons accessible on the web.

To learn more or download the library go to www.fontawesome.com

Application icon

General rules

Embrace simplicity. Use a simple, unique shape or element that represents the essence of the application. Avoid
excessive details and redundant shading.

Use the Zowe™ color palette. Avoid using a monochromatic palette for your icons. Use the Zowe color palette to
ensure that the icons have a consistent look.

Use unique shapes and design elements. Avoid using single commonly used design elements, such as the gear,
document, or folder. These elements can reduce recognizability. Do not use photos and screenshots. Keep icons
simple and abstract.

https://fontawesome.com/

 | Contributing | 313

Avoid labels and text. Short, commonly used abbreviations are acceptable, if necessary. Remember that all icons
have center-aligned labels beneath them.

Use brand identity. If your Zowe application has a brand identity element such as a logo, you can use it. Remember
to include the copyright symbol.

Shape, size, and composition

Use a flat design style. Flat design focuses on open space, bright colors, and flat graphics or illustrations. Our
minimalistic design approach puts the emphasis on usability.

A flat icon has clean, crisp edges and a flat dimensional layout.

Use solid fill shapes. Most Zowe App icons have solid fill shapes, which are more readable on dark backgrounds.

Use the circle shape for the background application icons. Set the outer corners to 100% opacity. Create an image file
that is 87x87 pixels, and save the file in PNG format.

Maintain consistent visual proportions.

 | Contributing | 314

Colors and shades
Verify the contrast

Verify that the background color of the icon provides enough contrast against the desktop.

Use the Zowe palette

To ensure that your app icons are clear and consistent, use the Color palette on page 303. If you need to use well-
established brand identity elements, you can use the colors that are associated with the brand.

Layer Shadows

Use smooth shadows to represent that some elements are on different layers and should be visually separated. Avoid
using too many layers because they can overcomplicate the icon.

Use the long shadow for consistency.

Although the long shadow effect does not have any semantic meaning, it adds focus to the main icon shape and
identifies the central,most meaningful element.

Use the gradient shadow settings shown in the following image, or use a flat non-gradient shadow with 20% opacity
and #000000 color.

 | Contributing | 315

How to contribute
:fireworks: :balloon: First off, thanks for taking the time to contribute! :sparkler: :confetti_ball:

We provide you a set of guidelines for contributing to Zowe™ documentation, which are hosted in the https://
github.com/zowe/docs-site on GitHub. These are mostly guidelines, not rules. Use your best judgment, and feel free
to propose content changes to this documentation.

:arrow_right: Before you get started

:arrow_right: Contributing to documentation

:arrow_right: Documentation style guide

:arrow_right: Word usage

Before you get started

The Zowe documentation is written in Markdown markup language. Not familiar with Markdown? https://
www.markdownguide.org/basic-syntax.

Contributing to documentation

You can use one of the following ways to contribute to documentation:

https://github.com/zowe/docs-site
https://github.com/zowe/docs-site
https://www.markdownguide.org/basic-syntax
https://www.markdownguide.org/basic-syntax

 | Contributing | 316

• Send a GitHub pull request to provide a suggested edit for the content by clicking the Propose content change in
GitHub link on each documentation page.

• Open an issue in GitHub to request documentation to be updated, improved, or clarified by providing a comment.

Sending a GitHub pull request

You can provide suggested edit to any documentation page by using the Propose content change in GitHub link on
each page. After you make the changes, you submit updates in a pull request for the Zowe content team to review and
merge.

Follow these steps:

1. Click Propose content change in GitHub on the page that you want to update.
2. Make the changes to the file.
3. Scroll to the end of the page and enter a brief description about your change.
4. Optional: Enter an extended description.
5. Select Propose file change.
6. Select Create pull request.

Opening an issue for the documentation

You can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by
opening an issue in GitHub for the Zowe content team to address. The content team tracks the issues and works to
address your feedback.

Follow these steps:

1. Click the GitHub link at the top of the page.
2. Select Issues.
3. Click New issue.
4. Enter a title and description for the issue.
5. Click Submit new issue.

Documentation Style guide

This section gives writing style guidelines for the Zowe documentation. These are guidelines, not rules. Use your best
judgment, and feel free to propose content changes to this documentation in a pull request.

:arrow_right: Headings and titles

:arrow_right: Technical elements

:arrow_right: Tone on page 318

:arrow_right: Word usage

:arrow_right: Graphics on page 320

:arrow_right: Abbreviations on page 320

:arrow_right: Structure and format

Headings and titles
Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as proper
nouns. Examples of proper nouns include the names of specific people, places, companies, languages, protocols, and
products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings.

Example:

 | Contributing | 317

• Building an API response
• Setting the active build configuration

For conceptual and reference information, use noun phrases for headings.

Example:

• Query language
• Platform and application integration

Use headline-style capitalization for only these items:

Titles of books, CDs, videos, and stand-alone information units.

Example:

• Installation and User's Guide
• Quick Start Guides or discrete sets of product documentation

Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.

If the subject is a functional overview, begin a heading with words such as Introduction or Overview rather than
contriving a pseudo-task-oriented heading that begins with Understanding, Using, Introducing, or Learning.

Technical elements
Variables

Style:

• Italic when used outside of code examples,

Example: myHost
• If wrap using angle brackets <> within code examples, italic font is not supported.

Example:

• put <pax-file-name>.pax
• Where pax-file-name is a variable that indicates the full name of the PAX file you download. For example,

zoe-0.8.1.pax.

Message text and prompts to the user

Style: Put messages in quotation marks.

Example: "The file does not exist."

Code and code examples

Style: Monospace

Example: java -version

Command names, and names of macros, programs, and utilities that you can type as commands

Style: Monospace

Example: Use the BROWSE command.

Interface controls

Categories: check boxes, containers, fields, folders, icons, items inside list boxes, labels (such as Note:), links, list
boxes, menu choices, menu names, multicolumn lists, property sheets, push buttons, radio buttons, spin buttons, and
Tabs

Style: Bold

Example: From the Language menu, click the language that you want to use. The default selection is English.

 | Contributing | 318

Directory names

Style: Monospace

Example: Move the install.exe file into the newuser directory.

File names, file extensions, and script names

Style: Monospace

Example:

• Run the install.exe file.
• Extract all the data from the .zip file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Brightside.

Citations that are not links

Categories: Chapter titles and section titles, entries within a blog, references to industry standards, and topic titles in
IBM Knowledge Center

Style: Double quotation marks

Example:

• See the "Measuring the true performance of a cloud" entry in the Thoughts on Cloud blog.
• See "XML Encryption Syntax and Processing" on the W3C website.
• For installation information, see "Installing the product" in IBM Knowledge Center.

Tone
Use simple present tense rather than future or past tense, as much as possible.

Example:

:heavy_check_mark: The API returns a promise.

:x: The API will return a promise.

Use simple past tense if past tense is needed.

Example:

:heavy_check_mark: The limit was exceeded.

:x: The limit has been exceeded.

Use active voice as much as possible

Example:

:heavy_check_mark: In the Limits window, specify the minimum and maximum values.

:x: The Limits window is used to specify the minimum and maximum values.

Exceptions: Passive voice is acceptable when any of these conditions are true:

• The system performs the action.
• It is more appropriate to focus on the receiver of the action.
• You want to avoid blaming the user for an error, such as in an error message.

 | Contributing | 319

• The information is clearer in passive voice.

Example:

:heavy_check_mark: The file was deleted.

:x: You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our".

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.

Example:

:heavy_check_mark: Click the item that you want to search for.

:x: Click the item for which you want to search.

Avoid using "Please", "thank you"

In technical information, avoid terms of politeness such as "please" and "thank you". "Please" is allowed in UI only
when the user is being inconvenienced.

Example: Indexing might take a few minutes. Please wait.

Avoid anthropomorphism.

Focus technical information on users and their actions, not on a product and its actions.

Example:

:heavy_check_mark: User focus: On the Replicator page, you can synchronize your local database with replica
databases.

:x: Product focus: The Replicator page lets you synchronize your local database with replica databases.

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Word usage
Note headings such as Note, Important, and Tip should be formatted using the lower case and bold
format.

Example:

• Note:
• Important!
• Tip:

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.

Example:

• Before a procedure, use "Follow these steps:"
• The <component_name> supports the following use cases:
• Before you intall Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".

Example:

:x: Complete the following.

:heavy_check_mark: Complete the following tasks.

 | Contributing | 320

Use a consistent style for referring to version numbers.

When talking about a specific version, capitalize the first letter of Version.

Example:

:heavy_check_mark: Java Version 8.1 or Java V8.1

:x: Java version 8.1, Java 8.1, or Java v8.1

When just talking about version, use "version" in lower case.

Example: Use the latest version of Java.

Avoid "may"

Use "can" to indicate ability, or use "might" to indicate possibility.

Example:

• Indicating ability:

:heavy_check_mark: You can use the command line interface to update your application."

:x: "You may use the command line interface to update your application."
• Indicating possibility:

:heavy_check_mark: "You might need more advanced features when you are integrating with another application.
"

:x: "You may need more advanced features when you are integrating with another application."

Use "issue" when you want to say "run/enter" a command.

Example: At a command prompt, type the following command:

Graphics

• Use graphics sparingly.

Use graphics only when text cannot adequately convey information or when the graphic enhances the meaning of
the text.

• When the graphic contains translatable text, ensure you include the source file for the graphic to the doc repository
for future translation considerations.

Abbreviations
Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the
spelled-out form of the term.

Example:

:x: The tutorials are available as PDFs.

:heavy_check_mark: The tutorials are available as PDF files.

Do not use abbreviations as verbs.

Example:

:x: You can FTP the files to the server.

:heavy_check_mark: You can use the FTP command to send the files to the server.

Do not use Latin abbreviations.

Use their English equivalents instead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent

e.g. for example

 | Contributing | 321

Latin English equivalent

etc. and so on. When you list a clear sequence of elements
such as "1, 2, 3, and so on" and "Monday, Tuesday,
Wednesday, and so on." Otherwise, rewrite the sentence
to replace "etc." with something more descriptive such as
"and other output."

i.e. that is

Spell out the full name and its abbreviation when the word appears for the first time. Use
abbreviations in the texts that follow.

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "More information" to link to useful resources or related topics at the end of topics where necessary.

Word usage

The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

API Mediation Layer

application app

Capitalize "Server" when it's part of the product name

data set dataset

Java java

IBM z/OS Managemnt Facility (z/OSMF) z/OSMF zosmf (unless used in syntax)

ID id

PAX pax

personal computer PC server machine

later higher Do not use to describe versions of software or fix
packs.

macOS MacOS

Node.js node.js Nodejs

plug-in plugin

REXX Rexx

UNIX System Services z/OS UNIX System Services USS

zLUX ZLUX zLux

Zowe CLI

	Contents
	Getting Started
	Zowe overview
	Zowe overview
	Zowe Demo Video
	Component Overview
	Zowe Application Framework
	z/OS Services
	Zowe CLI
	Zowe CLI capabilities

	API Mediation Layer
	Key features
	API Mediation Layer architecture
	Components
	Onboarding APIs

	Zowe Third-Party Software Requirements and Bill of Materials

	Zowe architecture

	Release notes
	Version 1.7.1 (December 2019)
	New features and enhancements
	Zowe App Server
	Zowe SMP/E installation

	Bug fixes
	Zowe App Server

	Version 1.7.0 (November 2019)
	New features and enhancements
	API Mediation Layer
	Zowe App Server
	Zowe Explorer (Extension for VSCode)

	Bug fixes
	API Mediation Layer
	Zowe App Server
	Zowe CLI

	Version 1.6.0 (October 2019)
	What's new in the Zowe App Server
	What's new in Zowe CLI
	What's new in the Visual Studio Code (VSC) Extension for Zowe

	Version 1.5.0 (September 2019)
	What's new in API Mediation Layer
	What's new in the Zowe App Server
	What's new in Zowe CLI and Plug-ins

	Zowe SMP/E Alpha (August 2019)
	Version 1.4.0 (August 2019)
	What's new in API Mediation Layer
	What's new in the Zowe App Server
	What's new in Zowe CLI and Plug-ins

	Version 1.3.0 (June 2019)
	What's new in API Mediation Layer
	What's new in the Zowe App Server
	What's new in Zowe CLI and Plug-ins

	Version 1.2.0 (May 2019)
	What's new in the Zowe installer
	What's new in API Mediation Layer
	What's new in the Zowe App Server
	What's new in Zowe CLI and Plug-ins
	What's new in Zowe USS API

	Version 1.1.0 (April 2019)
	What's new in Zowe system requirements
	What's new in the Zowe App Server
	What's new in the Zowe CLI and Plug-ins
	What's new in API Mediation Layer

	Version 1.0.1 (March 2019)
	What's new in Zowe installation on z/OS
	What's new in the Zowe App Server
	What's new in Zowe CLI
	What's new in the Zowe REST APIs
	What's changed

	Version 1.0.0 (February 2019)
	What's new in API Mediation Layer
	What's new in Zowe CLI
	What's new in the Zowe Desktop
	What's new in the Zowe App Server
	What's changed
	Known issues

	Zowe CLI quick start
	Installing
	Installing Zowe CLI core
	Installing CLI plug-ins

	Issuing your first commands
	Listing all data sets under a high-level qualifier (HLQ)
	Downloading a partitioned data-set (PDS) member to local file

	Using profiles
	Profile types
	Creating a zosmf profile
	Using a zosmf profile

	Writing scripts
	Example:

	Next Steps

	Frequently Asked Questions
	Zowe FAQ
	What is Zowe?
	Who is the target audience for using Zowe?
	What language is Zowe written in?
	What is the licensing for Zowe?
	Why is Zowe licensed using EPL2.0?
	What are some examples of how Zowe technology might be used by z/OS products and applications?
	What is the best way to get started with Zowe?
	What are the prerequisites for Zowe?
	How is access security managed on z/OS?
	How is access to the Zowe open source managed?
	How do I get involved in the open source development?
	When will Zowe be completed?
	Can I try Zowe without a z/OS instance?

	Zowe CLI FAQ
	Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?
	With what tools is Zowe CLI compatible?
	Where can I use the CLI?
	Which method should I use to install Zowe CLI?
	How can I get help with using Zowe CLI?
	How can I use Zowe CLI to automate mainframe actions?
	How can I contribute to Zowe CLI?

	User Guide
	Installing Zowe
	Planning the installation
	Installation roadmap
	Planning the installation of Zowe z/OS components

	System requirements
	Common system requirements
	Zowe Application Framework requirements
	Zowe CLI requirements
	Free disk space

	Installing Node.js on z/OS
	How to obtain IBM SDK for Node.js - z/OS
	Hardware and software requirements
	Installing the PAX evaluation version of Node.js -z/OS

	Configuring z/OSMF
	z/OS requirements
	Configuring z/OSMF
	z/OSMF REST services for the Zowe CLI

	Configuring z/OSMF Lite (for non-production use)
	Introduction
	Assumptions
	Software Requirements
	Minimum Java level
	WebSphere® Liberty profile (z/OSMF V2R3 and later)
	System settings
	Web browser

	Creating a z/OSMF nucleus on your system
	Running job IZUNUSEC to create security
	Before you begin
	Procedure
	Results
	Common errors

	Running job IZUMKFS to create the z/OSMF user file system
	Before you begin
	Procedure
	Results
	Common errors

	Copying the IBM procedures into JES PROCLIB
	Before you begin
	Procedure
	Results
	Common errors

	Starting the z/OSMF server
	Before you begin
	Procedure
	Results

	Accessing the z/OSMF Welcome page
	Before you begin
	Procedure
	Results
	Common errors

	Mounting the z/OSMF user file system at IPL time
	Before you begin
	Procedure
	Results

	Adding the required REST services
	Enabling the z/OSMF JOB REST services
	Procedure
	Results
	Common errors

	Enabling the TSO REST services
	Before you begin
	Procedure
	IZUTSSEC
	Results

	Enabling the z/OSMF data set and file REST services
	Before you begin
	Procedure
	Results
	Common errors

	Enabling the z/OSMF Workflow REST services and Workflows task UI
	Before you begin
	Procedure
	Results

	Troubleshooting problems
	Common problems and scenarios
	System setup requirements not met

	Tools and techniques for troubleshooting
	Common messages

	Appendix A. Creating an IZUPRMxx parmlib member
	Appendix B. Modifying IZUSVR1 settings
	Appendix C. Adding more users to z/OSMF
	Before you Begin
	Procedure
	Results

	Installing Zowe on z/OS
	Before you begin
	Methods of installing Zowe on z/OS
	High-level installation process
	Looking for troubleshooting help?

	Installing Zowe runtime from a convenience build
	Obtaining and preparing the convenience build
	Installing the Zowe runtime
	Step 1: Locate the install directory
	Step 2: Review the zowe-install.yaml file
	Step 3: Install and configure the Zowe runtime

	Installing Zowe SMP/E Alpha
	Introduction
	Zowe description
	Zowe FMIDs

	Program materials
	Basic machine-readable material
	Program publications
	Program source materials
	Publications useful during installation

	Program support
	Statement of support procedures

	Program and service level information
	Program level information
	Service level information

	Installation requirements and considerations
	Driving system requirements
	Driving system machine requirements
	Driving system programming requirements

	Target system requirements
	Target system machine requirements
	Target system programming requirements
	DASD storage requirements

	FMIDs deleted

	Installation instructions
	SMP/E considerations for installing Zowe
	SMP/E options subentry values
	Overview of the installation steps
	Download the Zowe SMP/E package
	Allocate file system to hold the download package
	Upload the download package to the host
	Extract and expand the compressed SMPMCS and RELFILEs
	GIMUNZIP

	Sample installation jobs
	ZWE2RCVE
	ZWE1SMPE and ZWE4ZFS
	ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

	Create SMP/E environment (Optional)
	Perform SMP/E RECEIVE
	Allocate SMP/E target and distributions libraries
	Allocate, create and mount ZSF files (Optional)
	Allocate z/OS UNIX paths
	Create DDDEF entries
	Perform SMP/E APPLY
	Perform SMP/E ACCEPT
	Run REPORT CROSSZONE
	Cleaning up obsolete data sets, paths, and DDDEFs

	Activating Zowe
	File system execution

	Zowe customization

	Configuring the Zowe runtime
	Prerequisites
	Configuring the Zowe runtime directory
	Environment variables
	Configuration variables
	Directory that stores configuration
	Address space name
	Port allocations
	PROCLIB member name
	Certificates
	Unix File Permissions

	Configuring the ZOWESVR started task
	Creating the ZOWESVR PROCLIB member to launch the Zowe runtime
	Configuring ZOWESVR to run under the correct user ID
	Granting users permission to access Zowe

	The Zowe Cross Memory Server
	Overview
	Manually installing the Zowe Cross Memory Server
	Installing the Cross Memory Server using the script
	Installing using the script

	Starting and stopping the Zowe runtime on z/OS
	Starting the ZOWESVR PROC
	Stopping the ZOWESVR PROC

	Starting and stopping the Zowe Cross Memory Server on z/OS

	Verifying Zowe installation on z/OS
	Verifying Zowe Application Framework installation
	Verifying z/OS Services installation
	Verifying API Mediation installation

	Installing Zowe CLI
	Methods to install Zowe CLI
	Installing Zowe CLI from a local package
	Installing Zowe CLI from an online registry

	Updating Zowe CLI
	(Optional) Identify the currently installed version of Zowe CLI
	(Optional) Identify the currently installed versions of Zowe CLI plug-ins
	Update Zowe CLI from the online registry
	Update or revert Zowe CLI to a specific version
	Update Zowe CLI from a local package

	Uninstalling Zowe
	Uninstalling Zowe from z/OS
	Uninstalling Zowe CLI from the desktop

	Configuring Zowe
	Zowe Application Framework configuration
	Configuring the framework as a Mediation Layer client
	Enabling the Application Server to register with the Mediation Layer
	Accessing the Application Server

	Setting up terminal application plug-ins
	Setting up the TN3270 mainframe terminal application plug-in
	Setting up the VT Terminal application plug-in

	Configuration file
	Network configuration
	HTTP
	HTTPS
	Network example

	Deploy configuration
	Deploy example

	Application plug-in configuration
	Plug-ins directory example

	Logging configuration
	ZSS configuration
	Connecting the Zowe Application Server to ZSS
	Configuring ZSS for HTTPS
	Creating certificates and a key ring
	Defining the AT-TLS rule
	Configuring the Zowe App Server for HTTPS communication with ZSS

	Installing additional ZSS instances

	Applying role-based access control to dataservices
	Defining the RACF ZOWE class
	Enabling RBAC
	Creating authorization profiles
	Creating generic authorization profiles
	Configuring basic authorization
	Endpoint URL length limitations

	Enabling tracing
	Zowe Application Server tracing
	Log levels
	Enabling tracing for ZSS

	Zowe Application Framework logging
	Controlling the logging location
	ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables
	ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

	Retaining logs

	Administering the servers and plugins using an API

	Configuring Zowe CLI
	Defining Zowe CLI connection details
	Understanding command option order of precedence
	Creating Zowe CLI profiles
	Displaying profiles help
	Creating and Using a profile
	Creating a profile that accesses API Mediation Layer

	Defining Environment Variables
	Transforming arguments/options to environment variable format
	Setting environment variables in an automation server
	Using secure credential storage

	Integrating with API Mediation Layer

	Testing Zowe CLI connection to z/OSMF
	Certificate security
	Configure certificates signed by a Certificate Authority (CA)
	Extend trusted certificates on client
	Bypass certificate requirement with CLI flag

	Setting Zowe CLI log levels
	Setting the Zowe CLI home directory

	Using Zowe
	Getting started tutorial
	Learning objectives
	Estimated time
	Prerequisites and assumptions
	Logging in to the Zowe Desktop
	Querying JES jobs and viewing related status in JES Explorer
	Using TN3270 in Zowe Desktop to view the job
	Editing a data set in MVS Explorer
	Using the Zowe CLI to edit a data set
	Viewing the data set changes in MVS Explorer
	Next steps
	Go deeper with Zowe
	Try the Extending Zowe scenarios
	Give feedback

	Using the Zowe Desktop
	Navigating the Zowe Desktop
	Accessing the Zowe Desktop
	Logging in and out of the Zowe Desktop
	Pinning applications to the task bar
	Changing the desktop language

	Zowe Desktop application plug-ins
	Hello World Sample
	IFrame Sample
	z/OS Subsystems
	TN3270
	VT Terminal
	API Catalog
	Editor
	Workflows
	JES Explorer
	MVS Explorer
	USS Explorer

	Using the Workflows application plug-in
	Logging on to the system
	Updating the data display
	Configuration
	Adding a z/OSMF server
	Testing a server connection
	Setting a server as the default z/OSMF server
	Removing a server
	Reload a server configuration
	Save a server configuration
	Workflows
	Searching workflows
	Defining a workflow
	Viewing tasks
	Task work area
	Performing a task
	Checking a task
	Managing tasks
	Viewing warnings

	Using the Editor
	Specifying a language server
	Specifying a language
	Opening a directory
	Creating a new file
	Saving a file

	API Catalog
	View Service Information and API Documentation in the API Catalog

	Zowe CLI extensions and plug-ins
	Extending Zowe CLI
	Software requirements for Zowe CLI plug-ins
	Installing Zowe CLI plug-ins
	Installing plug-ins from an online registry
	Installing plug-ins from a local package
	Validating plug-ins
	Updating plug-ins
	Update plug-ins from an online registry
	Update plug-ins from a local package

	Uninstall Plug-ins

	IBM® CICS® Plug-in for Zowe CLI
	Use cases
	Commands
	Software requirements
	Installing
	Creating a user profile

	IBM® Db2® Database Plug-in for Zowe CLI
	Use cases
	Commands
	Software requirements
	Installing
	Installing from an online registry
	Installing from a local package
	Downloading the ODBC driver
	Installing the plug-in

	Addressing the license requirement
	Creating a user profile

	Zowe Explorer Extension for VSCode
	Use-Cases
	Software requirements
	Installing

	Extending
	Developing for API Mediation Layer
	Onboarding Overview
	Overview of APIs
	Sample REST API Service
	API Service Types

	Java REST APIs with Spring Boot
	Add Zowe API enablers to your service
	Add API ML onboarding configuration
	Setup keystore with the service certificate
	Externalize API ML configuration parameters
	Test your service
	Validate that your API instance is still working
	Validate that your API instance is discoverable

	Review the configuration examples of the discoverable client

	Java REST APIs service without Spring Boot
	Prerequisites
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	(Optional) Add Swagger API documentation to your project
	Add endpoints to your API for API Mediation Layer integration
	Add configuration for Discovery client
	Add a context listener
	Add a context listener class
	Register a context listener

	Setup key store with the service certificate
	Run your service
	(Optional) Validate discovery of the API service by the Discovery Service

	Java Jersey REST APIs
	Get enablers from the Artifactory
	Gradle guide
	Maven guide

	Add API ML Onboarding Configuration
	Setup keystore with the service certificate
	Externalize parameters
	Download Apache Tomcat and enable SSL
	Run your service

	REST APIs without code changes required
	Identify the API that you want to expose
	Route your API

	Define your service and API in YAML format
	Configuration parameters
	Add and validate the definition in the API Mediation Layer running on your machine
	Add a definition in the API Mediation Layer in the Zowe runtime
	(Optional) Check the log of the API Mediation Layer
	(Optional) Reload the services definition after the update when the API Mediation Layer is already started

	API Mediation Layer Message Service Component
	Message Definition
	Creating a message
	Mapping a message
	API ML Logger

	Developing for Zowe CLI
	Developing for Zowe CLI
	How can I contribute?
	Getting started
	Tutorials
	Plug-in Development Overview
	Imperative CLI Framework Documentation
	Contribution Guidelines

	Setting up your development environment
	Prequisites
	Initial setup
	Branches
	Clone zowe-cli-sample-plugin and build from source
	(Optional) Run the automated tests

	Next steps

	Installing the sample plug-in
	Overview
	Installing the sample plug-in to Zowe CLI
	Viewing the installed plug-in
	Using the installed plug-in
	Testing the installed plug-in
	Next steps

	Extending a plug-in
	Overview
	Creating a Typescript interface for the Typicode response data
	Creating a programmatic API
	Exporting interface and programmatic API for other Node.js applications
	Checkpoint
	Defining command syntax
	Defining command handler
	Defining command to list group
	Checkpoint

	Using the installed plug-in
	Summary
	Next steps

	Developing a new plug-in
	Overview
	Cloning the sample plug-in source
	Changing package.json
	Adjusting Imperative CLI Framework configuration
	Adding third-party packages
	Creating a Node.js programmatic API
	Exporting your API

	Checkpoint
	Defining commands

	Trying your command
	Bringing together new tools!
	Next steps

	Implementing profiles in a plug-in
	Next steps

	Developing for Zowe Application Framework
	Overview
	How Zowe Application Framework works
	Tutorials
	Samples
	Sample Iframe App
	Sample Angular App
	Sample React App
	User Browser Workshop Starter App

	Creating application plug-ins
	Setting the environment variables for plug-in development
	Using the sample application plug-in

	Plug-ins definition and structure
	Application plug-in filesystem structure
	Root files and directories
	pluginDefinition.json

	Dev and source content
	nodeServer
	webClient

	Runtime content
	lib
	web

	Packaging applications as compressed files

	Location of plug-in files
	pluginsDir directory

	Plug-in definition file
	Plug-in attributes
	General attributes
	Application attributes
	Application web content attributes
	IFrame application web content

	Dataservices
	Defining dataservices
	Defining Java dataservices
	Prerequisites
	Defining Java dataservices
	Defining Java Application Server libraries
	Java dataservice logging
	Java dataservice limitations

	Using dataservices with RBAC
	Dataservice APIs
	Router-based dataservices
	HTTP/REST Router dataservices
	WebSocket Router dataservices
	Router dataservice context

	Documenting dataservices

	Internationalizing applications
	Internationalizing Angular applications
	Internationalizing React applications
	Internationalizing application desktop titles

	Zowe Desktop and window management
	Loading and presenting application plug-ins
	Plug-in management
	Application management
	Windows and Viewports
	Viewport Manager
	Injection Manager
	Plug-in definition
	Logger
	Launch Metadata
	Viewport Events
	Window Events
	Window Actions

	Configuration Dataservice
	Resource Scope
	REST API
	REST query parameters
	REST HTTP methods
	GET
	PUT
	DELETE

	Administrative access and group

	Application API
	Internal and bootstrapping
	Plug-in definition
	Aggregation policies

	URI Broker
	Accessing the URI Broker
	Functions
	Accessing an application plug-in's dataservices
	HTTP Dataservice URI
	Websocket Dataservice URI

	Accessing application plug-in's configuration resources
	Standard configuration access
	Scoped configuration access

	Accessing static content
	Accessing the application plug-in's root
	Server queries
	Accessing a list of plug-ins

	Application-to-application communication
	Why use application-to-application communication?
	Actions
	Action target modes
	Action types
	Loading actions
	Dynamically
	Saved on system

	Recognizers
	Recognition clauses
	Loading Recognizers at runtime
	Dynamically
	Saved on system

	Recognizer example

	Dispatcher
	Registry
	Pulling it all together in an example

	Configuring IFrame communication
	Error reporting UI
	ZluxPopupManagerService
	ZluxErrorSeverity
	ErrorReportStruct
	Implementation
	Declaration
	Usage
	HTML

	Logging utility
	Logging objects
	Logger IDs
	Accessing logger objects
	Logger
	App Server
	Web

	Component logger
	App Server
	Web

	Using log message IDs
	Logger API
	Component Logger API
	Log Levels
	Logging verbosity
	Configuring logging verbosity
	Server startup logging configuration

	Tutorial: Stand up a local version of the Example Zowe Application Server
	Server layout
	ZSS and Zowe Application Server overlap

	First-time Installation and Use
	0. (Optional) Install git for z/OS
	1. Acquire the source code
	2. Acquire external components
	3. Set the server configuration
	4. Build application plug-ins
	5. Deploy server configuration files
	6. Run the server
	7. Connect in a browser
	Deploy example

	Application plug-in configuration
	Plugins directory example

	ZSS Configuration
	Connecting Zowe Application Server to ZSS

	Tutorial: User Browser Workshop App
	Constructing an App Skeleton
	Defining your first plugin
	Constructing a Simple Angular UI
	Packaging Your Web App
	Adding Your App to the Desktop

	Building your first Dataservice
	Working with ExpressJS
	Adding your Dataservice to the Plugin Definition

	Adding your first Widget
	Adding your Dataservice to the App
	Introducing Zowe Application Server Grid

	Adding Zowe App-to-App Communication
	Adding the Starter App
	Enabling Communication
	Calling back to the Starter App

	Zowe Conformance Program
	Introduction
	How to participate

	Troubleshooting
	Troubleshooting
	Troubleshooting API ML
	Enable API ML Debug Mode
	Change the Log Level of Individual Code Components
	Known Issues
	API ML stops accepting connections after z/OS TCP/IP stack is recycled
	SEC0002 error when logging in to API Catalog
	Connection refused
	Configure z/OSMF
	Missing z/OSMF host name in subject alternative names
	Secure fix
	Insecure fix
	Invalid z/OSMF host name in subject alternative names
	Request a new certificate
	Change the ZOWE_EXPLORER_HOST variable

	Zowe Application Framework
	Troubleshooting Zowe Application Framework
	Gathering information to troubleshoot Zowe Application Framework
	z/OS release level
	Zowe version and release level
	Zowe application configuration
	Zowe Application Server ports
	Log output from the Zowe Application Server
	Error message codes
	Javascript console output
	Screen captures
	Other relevant information

	Known Zowe Application Framework issues
	Desktop apps fail to load
	NODEJSAPP disables immediately
	Cannot log in to the Zowe Desktop
	Server startup problem ret=1115
	Application plug-in not in Zowe Desktop
	Error: You must specify MVD_DESKTOP_DIR in your environment

	Raising a Zowe Application Framework issue on GitHub
	Raising a bug report
	Raising an enhancement report

	Troubleshooting z/OS Services
	z/OS Services are unavailable

	Troubleshooting Zowe CLI
	Troubleshooting Zowe CLI
	Problem
	Environment

	Before reaching out for support
	Resolving the problem

	Gathering information to troubleshoot Zowe CLI
	Identify the currently installed CLI version
	Identify the currently installed versions of plug-ins
	Environment variables
	Log levels
	Home directory

	Home directory structure
	Location of logs
	Profile configuration

	Node.js and npm
	npm configuration
	npm log files

	z/OSMF troubleshooting
	Alternate methods

	Known Zowe CLI issues
	Command not found message displays when issuing npm install commands
	npm install -g Command Fails Due to an EPERM Error
	Sudo syntax required to complete some installations
	npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
	Node.js commands do not respond as expected
	Installation fails on Oracle Linux 6

	Raising a CLI issue on GitHub
	Raising a bug report
	Raising an enhancement report

	Troubleshooting Zowe through Zowe Open Community
	Contact Zowe Open Community to Troubleshoot Zowe

	Contributing
	Code guidelines
	Code categories
	Programming languages
	Component-specific guidelines and tutorials

	General code style guidelines
	Whitespaces
	Naming Conventions
	Functions and methods
	Variables

	Pull requests guidelines
	Documentation Guidelines
	Contributing to external documentation
	Component Categories
	Server Core
	Server Security
	Microservices
	Zowe Desktop Applications
	Web Framework
	CLI Plugins
	Core CLI Imperative CLI Framework

	Programming Languages
	Typescript
	Java
	C

	UI guidelines
	Introduction
	Clear
	Consistent
	Smart

	Colors
	Color palette
	Light theme
	Dark theme

	Color contrast | WCAG AA standards

	Typography
	Typeface
	Font weight
	Body copy
	Line scale
	Line-height
	Embed font
	Import font
	Specify in CSS

	Grid
	12 column grid
	Gutters
	Columns
	Margins

	Iconography
	Application icon
	General rules
	Shape, size, and composition
	Colors and shades
	Verify the contrast
	Use the Zowe palette
	Layer Shadows
	Use the long shadow for consistency.

	How to contribute
	Before you get started
	Contributing to documentation
	Sending a GitHub pull request
	Opening an issue for the documentation

	Documentation Style guide
	Headings and titles
	Use sentence-style capitalization for headings
	For tasks and procedures, use gerunds for headings.
	For conceptual and reference information, use noun phrases for headings.
	Use headline-style capitalization for only these items:
	Make headings brief, descriptive, grammatically parallel, and, if possible, task oriented.

	Technical elements
	Variables
	Message text and prompts to the user
	Code and code examples
	Command names, and names of macros, programs, and utilities that you can type as commands
	Interface controls
	Directory names
	File names, file extensions, and script names
	Search or query terms
	Citations that are not links

	Tone
	Use simple present tense rather than future or past tense, as much as possible.
	Use simple past tense if past tense is needed.
	Use active voice as much as possible
	Using second person such as "you" instead of first person such as "we" and "our".
	End sentences with prepositions selectively
	Avoid using "Please", "thank you"
	Avoid anthropomorphism.
	Avoid complex sentences that overuse punctuation such as commas and semicolons.

	Word usage
	Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format.
	Use of "following"
	Use a consistent style for referring to version numbers.
	Avoid "may"
	Use "issue" when you want to say "run/enter" a command.

	Graphics
	Abbreviations
	Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the term.
	Do not use abbreviations as verbs.
	Do not use Latin abbreviations.
	Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that follow.

	Structure and format

	Word usage

